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Second moments of holomorphic Hilbert modular forms
and subconvexity
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We have two results in this note. First, we generalize the result of Sarnak
[Sa] to holomorphic Hilbert cusp forms (not necessarily newforms) over a
totally real number field of degree n by applying the technique of Titchmarsh
[Ti] and obtain the average version of the second moments. Second, by
applying the technique of [PSa], we obtain the subconvexity bound in t-
aspect.

We recall some facts on Hilbert cusp forms from [G, §1.9]: Let F be a
totally real number field. Let [F : Q] = n. Let o be the ring of integers and
n be an ideal. Let

Γ = Γ (n) = {γ ∈ GL+(2, o) : γ ≡ 12 mod n}.
Let f be a Hilbert cusp form with respect to Γ of weight k = (k, . . . , k),
where k is a positive integer. Let z = (z1, . . . , zn) ∈ Hn. Let Λ =

{
u ∈ F :(

1 u
0 1

)
∈ Γ

}
. Then f has the Fourier expansion

f(z) =
∑
ξ∈Λ∗

a(ξ)N(ξ)(k−1)/2e2πiTr(ξz),

where Tr is the C-linear extension to Cn → C of the Galois trace F → Q,
and Λ∗ = {u ∈ F : Tr(uΛ) ⊂ o}.

Let T = Rn
+, and χ : T → C× be a continuous group homomorphism

which is trivial on the two subgroups

∆ = {(y, . . . , y) ∈ Rn
+ : y > 0}, U = {η ∈ T : η ∈ o×, η ≡ 1 mod n}.

We write

T/U ' {(y1, . . . , yn) : y1 · · · yn = 1}/U × {(r1/n, . . . , r1/n) : r > 0}.
Then by the units theorem, the first factor is compact. Choose a compact set
X in T of representatives of the first factor, and identify (r1/n, . . . , r1/n) with
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r1/n. Then we can write any element (y1, . . . , yn) ∈ T/U as (y1, . . . , yn) =
xr1/n for some x ∈ X.

Here χ is a character of X, and we can write

χ(y) = χ(y1, . . . , yn) =
∏
j

y
iνj
j ,

where νj ∈ R and ν1 + · · ·+ νn = 0.
For simplicity, we assume that n = o. Then Λ = o and Λ∗ = d−1, where d

is the different of F . In this case, we can write down νj ’s explicitly in terms of
fundamental units: Let u1, . . . , un−1 be fundamental units. Since U is the im-
age of the map o× → T given by u 7→ (u(1), . . . , u(n)), |u(1)

j |iν1 · · · |u
(n)
j |iνn = 1

for each j = 1, . . . , n− 1, namely, for m1, . . . ,mn−1 ∈ Z,

(ν1, . . . , νn)


1 log |u(1)

1 | · · · log |u(1)
n−1|

...
... · · ·

...

1 log |u(n)
1 | · · · log |u(n)

n−1|

 = (0, 2πm1, . . . , 2πmn−1).

Hence for ξ ∈ d∗, χ(ξ) =
∏n
j=1

∣∣ ξ(j)

N(ξ)1/n

∣∣iνj .
Define the L-function

L(s, f, χ) =
∑

ξmodU

a(ξ)χ(ξ)N(ξ)−s.

Then we have the following integral representation:

Λ(s, f, χ) = L(s, f, χ)
n∏
j=1

(2π)−(s+(k−1)/2+iνj)Γ

(
s+

k − 1
2

+ iνj

)
=

�

T/U

f(iy)χ̄(y)ys+(k−1)/2 d×y,

where d×y = dy1···dyn
y1···yn . If f is an eigenfunction with eigenvalue λ ∈ {±1,±i}

for the map f 7→ f ] = f |kJ , where J =
(

0 −1
1 0

)
, then we have the functional

equation
Λ(s, f, χ) = λinkΛ(1− s, f, χ̄).

1. Average of second moments. We write

Λ(s, f, χ) =
∞�

0

�

X

f(ir1/nx)χ̄(x)rs+(k−1)/2 d×x
dr

r
.

By Mellin inversion, we have
�

X

f(ir1/nx)χ̄(x) d×x =
1

2πi

2+i∞�

2−i∞
Λ(s, f, χ)r−s−(k−1)/2 ds.
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The above equation is valid by substituting r with z with Re(z1/n) > 0, i.e.,

�

X

f(iz1/nx)χ̄(x) d×x =
1

2πi

2+i∞�

2−i∞
Λ(s, f, χ)z−s−(k−1)/2 ds.

Since L(s, f, χ) is entire, we can move the contour to Re(s) = σ, 0 < σ < 1.
We will set z1/n = r1/nei(π/2−δ). Then

�

X

f(iz1/nx)χ̄(x) d×x

=
1

2πi

σ+i∞�

σ−i∞
Λ(s, f, χ)e−i(s+(k−1)/2)n(π/2−δ)r−s−(k−1)/2 ds.

Hence r(k−1)/2
	
X f(iz1/nx)χ̄(x) d×x and Λ(s, f, χ)e−i(s+(k−1)/2)n(π/2−δ) are

Mellin transforms and by Parseval’s formula,
∞�

0

∣∣∣ �
X

f(iz1/nx)χ̄(x) d×x
∣∣∣2rk+2σ−2 dr =

1
2π

∞�

−∞
|Λ(σ + it, f, χ)|2etnπ−2δt dt.

Now, c(χ) =
	
X f(iz1/nx)χ̄(x) d×x is the Fourier coefficient of f(iz1/nx) =∑

χ c(χ)χ(x). By Parseval’s formula,∑
χ

∣∣∣ �
X

f(iz1/nx)χ̄(x) d×x
∣∣∣2 =

�

X

|f(iz1/nx)|2 d×x.

Therefore, we have

(1.1)
∑
χ

1
2π

∞�

−∞
|Λ(σ + it, f, χ)|2etnπ−2δt dt

=
∞�

0

�

X

|f(iz1/nx)|2rk+2σ−2 d×x dr.

Set σ = 1/2.
We first analyze the RHS of (1.1). We write

	∞
0 =

	1
0 +

	∞
1 . By the func-

tional equation, we see that
	1
0 =

	∞
1 . We write

�∞
1

=
�(sin δ)−n
1

+
�∞
(sin δ)−n

.

If r > (sin δ)−n, then r1/n sin δ > 1, and |f(iz1/nx)| � e−c(x)r
1/n sin δ for

a constant c(x) depending only on x. Then
∞�

(sin δ)−n

�
∞�

(sin δ)−n

rk−1e−2c(x)r1/n sin δ dr = O((sin δ)−nk).
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For
	(sin δ)−n
1 , we use the fact that yk|f(z)|2 < C for some constant C [G,

p. 24]. Then |f(iz1/nx)|2 � c(x, k)r−k(sin δ)−nk for some constant c(x, k),
depending only on x, k. Hence

(sin δ)−n�

1

� (sin δ)−nk
(sin δ)−n�

1

r−1 dr = O

(
(sin δ)−nk log

1
sin δ

)
.

Therefore,

RHS of (1.1)� (sin δ)−nk log
1

sin δ
.

Next we analyze the LHS of (1.1). By a change of variables,
0�

−∞
|Λ(1/2 + it, f, χ)|2etnπ−2δt dt =

∞�

0

|Λ(1/2− it, f, χ)|2e−tnπ+2δt dt.

By Stirling’s formula, if k > 1,

|Γ (k/2− it+ iνj)|2 = 2π|t− νj |k−1e−π|t−νj |(1 +O(|t− νj |−1)).

If k = 1,

|Γ (1/2− it+ iνj)|2 = 2πe−π|t−νj | +O(e−3π|t−νj |).

Let ‖χ‖ = max |νj | and ‖m‖ = max |mj |. Then clearly ‖χ‖ � ‖m‖ and
‖m‖ � ‖χ‖. By the convexity bound, |L(1/2− it, f, χ)| �

∏n
j=1 |t−νj |k/2+ε

for any ε > 0.
Let R = ‖χ‖. Then since |t− νj | ≤ t+R for t ≥ 0,
∞�

R

|Λ(1/2− it, f, χ)|2e−tnπ+2δt dt�
∞�

R

(t+R)2nk−n+2nεe−2t(πn−δ) dt

� R2nk−n+2nεe−2R(n−δ).

If t ≤ R, then since |t− νj | ≥ |νj | − t, we have

R�

0

|Λ(1/2− it, f, χ)|2e−tnπ+2δt dt�
R�

0

(t+R)2nk−n+2nεe2δte−π(|ν1|+···+|νn|) dt

� R2nk−n+1+2nεe2δRe−π(|ν1|+···+|νn|).

Here |ν1|+ · · ·+ |νn| − 2δR/π ≥ cR/π for some constant c > 0 if we take δ
very small. Therefore

∞�

0

|Λ(1/2− it, f, χ)|2e−tnπ+2δt dt� R2nk−n+1+2nεe−c
′R

for some constant c′ > 0. For each positive integer l, let N(l) be the number
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of χ’s such that l − 1 ≤ ‖χ‖ < l. Then N(l)� ln−1. So∑
χ

∞�

0

|Λ(1/2− it, f, χ)|2e−tnπ+2δt dt�
∞∑
l=1

l2nk+2nεe−c
′l = O(1).

Hence on the left hand side of (1.1), the sum of the integrals
	0
−∞ is O(1).

So as δ → 0+,∑
χ

∞�

0

|Λ(1/2 + it, f, χ)|2etnπ−2δt dt = O

(
δ−nk log

1
δ

)
.

By [Ti, p. 157], this is equivalent to:∑
χ

T�

0

|Λ(1/2 + it, f, χ)|2eπnt dt = O(Tnk log T )

as T →∞. By integration by parts, we have∑
χ

T�

0

|Λ(σ + it, f, χ)|2t−nk+neπnt dt = O(Tn log T ).

Letting M(χ, t) = t−nk+neπtn
∏n
j=1 |Γ (k/2 + it+ iνj)|2, we have proved

Theorem 1.1. As T →∞,∑
χ

T�

0

|L(1/2 + it, f, χ)|2M(χ, t) dt = O(Tn log T ).

When χ = 1, M(1, t) ∼ 1/(2π)n, and so

Corollary 1.2. As T →∞,
T�

0

|L(1/2 + it, f)|2 dt = O(Tn log T ).

Now we can prove a result analogous to [Sa].

Theorem 1.3. As T →∞, for any constant α < 1/2,

(1.2)
∑
‖χ‖≤αT

T�

T/2

|L(1/2 + it, f, χ)|2 dt = O(Tn log T ).

Proof. By Stirling’s formula,

M(χ, t) =
n∏
j=1

eπ(t−|t+νj |)
(
|t+ νj |

t

)k−1

(1 +O(|t+ νj |−1)).
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If ‖χ‖ ≤ αT and t ≥ T/2, then |t + νj | = t + νj ≥ (1 − 2α)t. Hence,
M(χ, t)� 1. Therefore,∑
‖χ‖≤αT

T�

T/2

|L(1/2 + it, f, χ)|2 dt�
∑
χ

T�

0

|L(1/2 + it, f, χ)|2M(χ, t) dt.

Our result follows.

Remark 1.4. In [D, p. 214], it is claimed that the above estimate would
imply the estimate∑

‖χ‖≤T

T�

0

|L(1/2 + it, f, χ)|2 dt = O(Tn log T ).

However, we do not see how it is possible.

2. Subconvexity at the critical line. As the referee pointed out, the
L-function of an arbitrary holomorphic Hilbert cusp form is a finite linear
combination of L-functions of holomorphic newforms with coefficients being
bounded on the critical line (cf. [BH, p. 11]; any holomorphic Hilbert cusp
form f is a finite linear combination of Rth, where Rt is the shift operator
with an ideal t, and h is a newform; now L(s,Rth) = N(t)sL(s, h)). So for
our purpose of obtaining a subconvexity bound in t-aspect, we can assume
that f is a newform, i.e., an eigenform of all Hecke operators. In this case,
f is attached to a cuspidal representation of GL2(F )\GL2(AF ), and we can
use the result in [H].

In equation (1.2), by taking one term, we have
	T
0 |L(1/2+it, f, χ0)|2 dt =

Oχ0(Tn log T ) for a fixed χ0. This implies L(1/2 + it, f, χ0) = Oχ0(|t|n/2+ε).
This is the convexity bound. We want to prove

Theorem 2.1. For a fixed χ0,

L(1/2 + it, f, χ0) = Oχ0(|t|n/2−7/216+ε).

By considering f ⊗ χ0 instead of f , we assume that χ0 = 1. We follow
[PSa] closely. Recall the definition of analytic conductor due to [IS]:

C = C(t) =
1

(2π)2n

n∏
j=1

|(k/2 + it)(k/2 + 1 + it)|.

We use the uniform approximate functional equation due to Harcos: Theo-
rem 2.5 of [H] implies, for any ε > 0,

L(1/2 + it, f) =
∑
ξ

a(ξ)
N(ξ)1/2+it

V

(
N(ξ)√
C

)
+ inkλ

∑
ξ

a(ξ)
N(ξ)1/2−it

V

(
N(ξ)√
C

)
+Oε,V (η−1C1/4+ε).
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Here λ is a complex number of absolute value 1, and V : (0,∞) → C is
a smooth function, independent of t, with the functional equation V (x) +
V (1/x) = 1 and derivatives decaying faster than any negative power of x as
x→∞, and

η = min
j=1,...,n

{|k/2 + it|, |k/2 + 1 + it|}.

Now for any χ, we define a “fake” L-value (this idea is due to the referee):

L̃(1/2 + it, f, χ) =
∑
ξ

a(ξ)χ(ξ)
N(ξ)1/2+it

V

(
N(ξ)√
C

)
(2.1)

+ inkλ
∑
ξ

a(ξ)χ−1(ξ)
N(ξ)1/2−it

V

(
N(ξ)√
C

)
.

We reduce the size of averaging in (1.2): namely, we show, for T 101/108 ≤
H ≤ T and ε > 0,

�∑
|L̃(1/2 + it, f, χ)|2 dt� (Tn−1H)1+ε,

where the integral and sum are over the domain T −H ≤ |νj + it| ≤ T +H
for j = 1, . . . , n, and χ is given by ν1, . . . , νn. Let H = T 101/108, and take
one term corresponding to χ = 1. Here L̃(1/2+it, f) and L(1/2+it, f) differ
by the error term Oε,V (η−1C1/4+ε), and it gives rise to O(Tn−2+ε). Hence
we have

(2.2)
T+log2 T�

T−log2 T

|L(1/2 + it, f)|2 dt� Tn−7/108+ε.

By a standard argument (for example, see [Go, p. 294] or [Iv, (7.2)]), this
implies Theorem 2.1. At the end of the paper, we give an outline of how the
mean-value estimate (2.2) implies the pointwise estimate in Theorem 2.1.

As in [CPSS], we introduce a smooth dyadic partition of the identity on
(0,∞) by 1 =

∑∞
α=−∞ g(x/2α/2) with g(x) a smooth function with support

in [1, 2]. Let Xα = 2α/2. Then the first term on the right hand side of (2.1)
can be written as∑

ξ

∞∑
α=−1

a(ξ)χ(ξ)
N(ξ)1/2+it

V

(
N(ξ)√
C

)
g

(
N(ξ)
Xα

)
.

If we set WX(x) =
√
X/xx−itV (x/

√
C)g(x/X), then the above becomes

∞∑
α=−1

1√
Xα

SXα(t, χ),
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where SX(t, χ) =
∑

ξ a(ξ)χ(ξ)WX(N(ξ)). Then (2.1) can be written as

L̃(1/2 + it, f, χ) =
∞∑

α=−1

SXα(t, χ)√
Xα

+ inkλ
∞∑

α=−1

SXα(t, χ)√
Xα

.

If we take r so that Xr ≤ C1/2+ε < Xr+1, then

L̃(1/2 + it, f, χ) =
r∑

α=−1

SXα(t, χ)√
Xα

+ inkλ

r∑
α=−1

SXα(t, χ)√
Xα

+O(C−M )

for some positive constant M . Note that the length of the sum is r+ 2, and
r � logC � r + 1. So it is enough to show that

(2.3)
�∑

|SX(t, χ)|2 dt� X(Tn−1H)1+ε

for T 101/108 ≤ H ≤ T , where the sum and integral are over the domain
T −H ≤ |νj + it| ≤ T +H for j = 1, . . . , n, and X ≤ C1/2+ε ≤ Tn+ε.

In order to apply the Poisson summation formula, recall the map

u 7→ (log |u(1)|, . . . , log |u(n)|) for u ∈ F×.

The image of o×+ is a lattice Γ in P = {(x1, . . . , xn) : x1 + · · · + xn = 0} '
Rn−1. We identify χ with ν = (ν1, . . . , νn). Then χ(ξ) = e2πi(log ξ,ν), where
log ξ = (log ξ(1), . . . , log ξ(n)), and (log ξ, ν) =

∑n
j=1 νj log ξ(j). Then by the

definition of χ, the set of χ’s is the dual lattice Γ ′ of Γ .
Let ψ(x1, . . . , xn) be a non-negative function on P such that ψ(I1) = 1

and the support of ψ is in I2; here I1 = {(x1, . . . , xn) ∈ P : |xi| ≤ 1},
I2 = {(x1, . . . , xn) ∈ P : |xi| ≤ 2}. Then the left hand side of (2.3) is less
than

A =
∑
χ

∞�

−∞
ψ

(
|ν1 + it| − T

H
, . . . ,

|νn + it| − T
H

)
|SX(t, χ)|2 dt.

Hence we need to show that

A� X(Tn−1H)1+ε for T
101
18
n/(7n−1) ≤ H ≤ T .

We write

A = X
∑
ξ,η

a(ξ)a(η)
(N(ξ)N(η))1/2

g

(
N(ξ)
X

)
g

(
N(η)
X

)
(2.4)

×
∞�

−∞

(
N(ξ)
N(η)

)it
V

(
N(ξ)√
C

)
V

(
N(η)√
C

)
×
(∑

χ

ψ

(
|ν1 + it| − T

H
, . . . ,

|νn + it| − T
H

)
χ(ξ)χ(η)

)
dt.
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We apply the Poisson summation formula in χ:

(2.5)
∑
χ

ψ

(
|ν1 + it| − T

H
, . . . ,

|νn + it| − T
H

)
χ(ξ)χ(η)

=
∑
γ∈Γ

�

P

ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
× e2πi

Pn
i=1 xi(log ξ(i)−log η(i))−2πi(γ,x) dx.

Since x1 + · · ·+ xn = 0 in P , we write the integral as
�

P

ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
e2πi

Pn
i=1 xi(log ξ(i)−log η(i))−2πi(γ,x) dx

=
∞�

−∞
· · ·

∞�

−∞
ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
× e2πi(x,log ξ−log η−γ−(log ξ(n)−log η(n)−γ(n))) dx1 · · · dxn−1,

where log ξ− log η−γ−(log ξ(n)− log η(n)−γ(n)) = (log ξ(1)− log η(1)−γ(1)−
(log ξ(n) − log η(n) − γ(n)), . . . , log ξ(n−1) − log η(n−1) − γ(n−1) − (log ξ(n) −
log η(n) − γ(n))).

By the change of variables, the integral becomes
Hn−1ψ̂T,H,t(H(log ξ − log η − γ − (log ξ(n) − log η(n) − γ(n)))),

where ψT,H,t(y1, . . . , yn−1) = ψ(|it/H + y1| − T/H, . . . , |it/H + yn| − T/H),
and yn = −(y1 + · · ·+ yn−1). By integration by parts,

ψ̂T,H,t(y1, . . . , yn−1)� (‖y‖+ 1)−N

for any N ≥ 1, where ‖y‖ = min{|y1|, . . . , |yn−1|}. Since ξ, η ∈ d/o×+, we can
choose ξ, η so that log ξ − log η is in the fundamental domain of Γ in P .
Hence in (2.5), only the term γ = 0 is significant. That is,∑
χ

ψ

(
|ν1 + it| − T

H
, . . . ,

|νn + it| − T
H

)
χ(ξ)χ(η)

=
�

P

ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
e2πi

Pn
i=1 xi(log ξ(i)−log η(i)) dx

+O(H−N ).
Plugging this into (2.4), we have

A = X
∑
ξ,η

a(ξ)a(η)
(N(ξ)N(η))1/2

g

(
N(ξ)
X

)
g

(
N(η)
X

)
(2.6)

×
∞�

−∞

(
N(ξ)
N(η)

)it
V

(
N(ξ)√
C

)
V

(
N(η)√
C

)
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×
�

P

ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
e2πi

Pn
i=1 xi(log ξ(i)−log η(i)) dx dt

+ small error.

Note that (N(ξ)/N(η))it = eit
Pn
i=1(log ξ(i)−log η(i)). So the above integral is

∞�

−∞
· · ·

∞�

−∞
ψ

(
|x1 + it| − T

H
, . . . ,

|xn + it| − T
H

)
V

(
N(ξ)√
C

)
V

(
N(η)√
C

)
×e2πi(x,log ξ−log η−γ−(log ξ(n)−log η(n)−γ(n)))+it

Pn
i=1(log ξ(i)−log η(i))dx1 · · ·dxn−1dt.

Set t/H = t′, xi/H = yi. Then the above integral is Hnφ̂T,H , where

φ̂T,H = φ̂T,H

(
H(log ξ(1) − log η(1) − log ξ(n) + log η(n)), . . . ,

H(log ξ(n−1) − log η(n−1) − log ξ(n) + log η(n)),
H

2π
(logN(ξ)− logN(η))

)
,

and φT,H(y1, . . . , yn−1, t
′) = ψ(|y1 + it′| − T/H, . . . , |yn + it′| − T/H) ×

V (N(ξ)/
√
C)V (N(η)/

√
C). Repeated integration by parts shows that

φ̂T,H(u1, . . . , un−1, un)� (T/H)n−1(1 + ‖u‖)−N

for any N ≥ 1, where ‖u‖ = min{|u1|, . . . , |un−1|, |un|}. Hence if δ > 0 is
arbitrarily small, the contribution to (2.6) of the terms with

min{|log ξ(i) − log η(i) − log ξ(n) + log η(n)| (i = 1, . . . , n− 1),

|logN(ξ)− logN(η)|} � Hδ−1

is negligible. Also N(ξ), N(η) are of size X. Hence |N(ξ)−N(η)| � XHδ−1.
Also

|log ξ(i) − log η(i) − log ξ(n) + log η(n)| � Hδ−1,

|logN(ξ)− logN(η)| � Hδ−1

implies that |log ξ(i)−log η(i)| � Hδ−1 for each i = 1, . . . , n. So |ξ(i)−η(i)| �
Hδ−1|η(i)| for each i. Therefore

∏n
i=1 |ξ(i) − η(i)| � XHnδ−n. Hence

(2.7) A = XHn
∑

N(ξ−η)�XHnδ−n

a(ξ)a(η)
(N(ξ)N(η))1/2

g

(
N(ξ)
X

)
g

(
N(η)
X

)
φ̂T,H

with small error. The contribution to (2.6) of the diagonal ξ = η is

XHn
∑
ξ

|a(ξ)|2

N(ξ)
g

(
N(ξ)
X

)2

φ̂T,H(0).
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Here

φ̂T,H(0) =
∞�

−∞
· · ·

∞�

−∞
ψ(|y1 + it′| − T/H, . . . , |yn + it′| − T/H)

× V
(
N(ξ)√
C

)
V

(
N(η)√
C

)
dy1 · · · dyn−1 dt

′ � (T/H)n−1.

Also by Rankin–Selberg convolution,∑
N(ξ)≤X1+ε

|a(ξ)|2

N(ξ)
= O(Xε).

Therefore, the diagonal contribution to (2.7) is

X(Tn−1H)1+ε.

For the off-diagonal terms, let ξ − η = h. Then N(h) � XHnδ−n. We
estimate the sum for each h: Let

S(h) =
∑
η

a(η + h)a(η)
(N(η + h)N(η))1/2

g

(
N(η + h)

X

)
g

(
N(η)
X

)
φ̂T,H .

Now we have N(η + h) = N(η) + O(XHδ−1), and log ξ(i) − log η(i) =
log(1 + h(i)/η(i)) = h(i)/η(i) +O(H2δ−2). We can see easily that

(2.8)
∂i1+···+in

∂ui11 · · · ∂u
in
n

φ̂T,H(u1, . . . , un−1, un)� (T/H)n−1+i1+···+in .

Hence

φ̂T,H = φ̂T,H

(
H
h

η

)
+O((T/H)nH2δ−1),

where

φ̂T,H

(
H
h

η

)
= φ̂T,H

(
H

(
h(1)

η(1)
− h(n)

η(n)

)
, . . . ,

H

(
h(n−1)

η(n−1)
− h(n)

η(n)

)
,
H

2π

(
h(1)

η(1)
+ · · ·+ h(n)

η(n)

))
.

Therefore,

(2.9) S(h)

=
∑
η

a(η + h)a(η)
N(η)

g

(
N(η)
X

)2

φ̂T,H

(
H
h

η

)
(1 +O((T/H)nH2δ−1)).

Let s = (s1, . . . , sn) and use the notation ys = ys11 · · · ysnn for y =
(y1, . . . , yn). Also for each i = 1, . . . , n, let η(i) = X1/nyi. Let

Bh,T,X(s) =
∞�

0

· · ·
∞�

0

g(y1 · · · yn)2φ̂T,H

(
H

h

X1/ny

)
ys
dy

y
,
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Df (s, h) =
∑
η

a(η + h)a(η)
ηs

.

For −1 ≤ σj ≤ 2, we integrate by parts N times, where N = i1 + · · · + in,
and using (2.8), we obtain

Bh,T,X(σj + it)� (T/H)N+n−1+ε
n∏
j=1

(1 + |tj |)−ij .

Recall the following.

Theorem 2.2 ([CPSS]). Df (s, h) has an analytic continuation to Re(sj)
> 11/18, and for sj = σj + itj,

Df (s, h)� N(h)1/9+ε
n∏
j=1

|h(j)|1/2−σj (1 + |tj |)3+ε.

Proof. In [CPSS, Theorem 1.3], it is proved that the Dirichlet series

D(s, α1, α2, h) =
∑

α1,α2, α1−α2=h

a(α1)a(α2)
(α1 + α2)s

(
(α1α2)1/2

α1 + α2

)k−1

extends analytically as a function of several variables s = (s1, . . . , sn), sj =
σj + itj to the region σj > 1/2 + 1/9, and in this region

D(s, α1, α2, h)� N(h)1/9+ε
n∏
j=1

|h(j)|1/2−σj (1 + |tj |)3+ε.

It is easy to see that this implies our result.

By multi-variable inverse Mellin transform, we have

g(y1 · · · yn)2φ̂T,H

(
H

h

X1/ny

)
=

1
(2πi)n

�

Re(s1)=2

· · ·
�

Re(sn)=2

Bh,H,X(s)y−s ds.

Hence we can write the main term of (2.9) as follows:∑
η

a(η + h)a(η)
N(η)

g

(
N(η)
X

)2

φ̂T,H

(
H
h

η

)
=

1
(2πi)n

�

Re(s1)=2

· · ·
�

Re(sn)=2

Df (s+ 1, h)(X1/n)s1+···+snBh,H,X(s) ds.

Now we move the contour to Re(sj) = −7/18 + ε1, where ε1 is arbitrarily
small. Then

S(h)�
∞�

−∞
· · ·

∞�

−∞
X−7/18(T/H)n−1+i1+···+in+εN(h)ε

n∏
j=1

(1 + |tj |)−ij+3+ε dt1 · · · dtn.
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Take ij = 5 for each j = 1, . . . , n. Then

S(h)� X−7/18(T/H)6n−1+εN(h)ε.

Now sum over h in (2.7). Then the off-diagonal contribution to A is

� XHn(XHnδ−n)1+εX−7/18(T/H)6n−1+ε � X29/18+εT 6n−1+εH−6n+1.

Since X ≤ Tn+ε, it satisfies the desired bound O(X(Tn−1H)1+ε) as long as

H ≥ T 101/108.

This concludes the proof of (2.3).
We give an outline of how the mean-value estimate (2.2) implies the

pointwise estimate in Theorem 2.1. We do it for general L-functions. We
merely imitate the argument for the Riemann zeta function in [Iv, (7.2)]:
Let L(s) be a Dirichlet series which converges absolutely for Re(s)� 0, and
has a meromorphic continuation to all of C with pole only at s = 1, and
satisfies the functional equation

Λ(s) = L(s)Qs
m∏
j=1

Γ (ajs+ bj), Λ(s) = ωΛ(1− s̄),

where Q, aj are positive real numbers and ω, bj are complex numbers with
Re(bj) ≥ 0 and |ω| = 1. Then we prove, for k a fixed positive integer and
T/2 ≤ t ≤ 2T ,

(2.10) |L(1/2 + it)|k � (log T )
(

1 +
log2 T�

− log2 T

|L(1/2 + i(t+ v))|ke−|v| dv
)
,

where the implied constant depends only on k, Λ. Let L(s)k=
∑∞

n=1 a(n)n−s,
and c = 1/log T . By using the fact that

e−x =
1

2πi

1+i∞�

1−i∞
Γ (s)x−s ds,

we have

1
2πi

1+i∞�

1−i∞
Γ (w)L(1/2 + c+ it+ w)k dw =

∞∑
n=1

a(n)e−nn−1/2−c−it � 1.

Moving the contour to Re(w)=−c and using Stirling’s formula Γ (±c± iv)
� e−|v|(c+ |v|)−1, we have, for T/3 ≤ t ≤ 3T ,

L(1/2 + c+ it)k � 1 +
∞�

−∞
|L(1/2 + i(t+ v))|ke−|v|(c+ |v|)−1 dv.

By the functional equation,
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|L(1/2− c+ it)| � |L(1/2 + c+ it)|
m∏
j=1

|t|2ajc

� (T c)2
Pm
j=1 aj |L(1/2 + c+ it)| � |L(1/2 + c+ it)|,

since T c = e. On the other hand, by the residue theorem,

L(1/2 + it)k =
1

2πi

�

C

L(1/2 + it+ z)kΓ (z) dz,

where C is the rectangle with vertices ±c ± i log2 T . By Stirling’s formula,
the integrals over horizontal sides of C are o(1) as T → ∞. By using the
above estimate,

|L(1/2 + it)|k � 1 +
log2 T�

− log2 T

e−|u|(c+ |u|)−1

×
(

1 +
∞�

−∞
|L(1/2 + it+ i(u+ v))|k(c+ |v|)−1e−|v| dv

)
du.

By using the estimate
	log2 T

− log2 T
e−|u|(c + |u|)−1 du � log T , and making the

substitution x = u+ v, we have

|L(1/2 + it)|k � log T +
∞�

−∞
|L(1/2 + it+ ix)|k

×
( ∞�
−∞

e−|u|−|x−u|(c+ |u|)−1(c+ |x− u|)−1 du
)
dx.

Ivić [Iv, p. 173] showed that
∞�

−∞
e−|u|−|x−u|(c+ |u|)−1(c+ |x− u|)−1 du� e−|x| log T.

Using convexity bound, one can show easily
∞�

log2 T

|L(1/2 + it+ ix)|ke−|x| dx = o(1),

− log2 T�

−∞
|L(1/2 + it+ ix)|ke−|x| dx = o(1).

This proves (2.10).

Remark 2.3. Diaconu and Garrett [DG] have more general results over
arbitrary number fields. In our special case, we give a very short proof by
using the technique of [Ti] and [PSa].
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