L-series and their 2-adic valuations at s = 1attached to CM elliptic curves

by

DERONG QIU and XIANKE ZHANG (Beijing)

1. Introduction and statement of main results. Consider the family of elliptic curves:

(1.0)
$$E: \quad y^2 = x^3 - Dx$$

defined over a number field K. Assume, first, $K = \mathbb{Q}$ is the rational field and $D \in \mathbb{Z}$ are rational integers (nevertheless, we will consider $K = \mathbb{Q}(\sqrt{-1})$ in the following). This family of elliptic curves E have been studied thoroughly for a long time, having close relations with several problems of number theory. For example, they correlate intimately with the congruent number problem when D is a square in \mathbb{Z} (see [Tun]). Curves E have complex multiplication by $\sqrt{-1}$, accordingly their complex L-series $L(E/\mathbb{Q}, s)$ (as curves over \mathbb{Q}) could be identified with the L-series $L(\psi, s)$ of Hecke characters ψ (i.e. Grössencharakter) of the field $K = \mathbb{Q}(\sqrt{-1})$ attached to E. (Furthermore, when E are considered as curves over the quadratic fields K above, the L-series satisfy the relation

$$L(E/K,s) = L(\psi,s)L(\psi,s),$$

where $\overline{\psi}$ is the dual of ψ .) The "conjecture of Birch and Swinnerton-Dyer" (or "BSD conjecture" for brevity) for an elliptic curve E over \mathbb{Q} asserts that the *L*-series $L(E/\mathbb{Q}, s)$ has a zero at s = 1 of order m equal to the rank r of the Mordell group $E(\mathbb{Q})$, and gives a formula for the limit of $(s-1)^{-r}L(E/\mathbb{Q}, s)$ at s = 1 involving arithmetic properties of E (see e.g. [Sil1, p. 362]). In particular, for elliptic curves E in (1.0) with complex multiplication, the BSD conjecture predicts that L(E/K, 1) (after division by

²⁰⁰⁰ Mathematics Subject Classification: Primary 11G05; Secondary 11G15, 11G40, 12J20.

 $Key\ words\ and\ phrases:$ elliptic curve, complex multiplication, $L\text{-}series\ and\ BSD$ conjecture, valuation.

an appropriate period) is divisible by a certain power of 2 (see e.g. [Raz] and [Tun]).

In 1997, C. L. Zhao considered the elliptic curves $E = E_D$ in (1.0) over the Gaussian field $\mathbb{Q}(\sqrt{-1})$ with the assumption that $D = (D_0)^2$ is a perfect square in $\mathbb{Z}[\sqrt{-1}]$, studying the 2-adic valuation of $L(\psi_D, 1)$, the value at s = 1 of the *L*-series of Hecke characters ψ_D attached to E_D . (Actually, the value of the *L*-series should be first divided by an appropriate period Ω ; this normally will not be mentioned again in the following.) He gave a rigorous lower bound for the 2-adic valuation as well as a criterion of reaching this bound, and hence obtained nice results about congruent numbers and showed the BSD conjecture is true for some elliptic curves E_D over \mathbb{Q} .

Here we study $E = E_D$ in the general case: D is not necessarily a square. Consider the elliptic curves $E_D : y^2 = x^3 - Dx$ over the Gaussian field $\mathbb{Q}(\sqrt{-1})$ with $D = \pi_1 \dots \pi_n$ and $D = \pi_1^2 \dots \pi_r^2 \pi_{r+1} \dots \pi_n$, where π_1, \dots, π_n are distinct Gaussian prime integers in $\mathbb{Z}[\sqrt{-1}]$. (In particular, when r = n, the second case turns out to be the case studied in [Zhao].) We will give a formula for the special values at s = 1 of the Hecke *L*-series attached to $E = E_D$ (expressed via the Weierstrass \wp -function), lower bounds for the 2-adic valuation of the values, and a criterion of reaching the bounds. These results develop the results for E_D with $D = (D_0)^2$ square in the Gaussian field of [Zhao]. Moreover, our results are consistent with the predictions of the BSD conjecture. We will further study the elliptic curves $E : y^2 = x^3 - D$ having complex multiplication by $\sqrt{-3}$ over the field $\mathbb{Q}(\sqrt{-3})$ in a separate paper, giving results similar to the above but for the 3-adic valuation.

Throughout the following, we put $I = \sqrt{-1}$, and let $K = \mathbb{Q}(\sqrt{-1})$ be the Gaussian number field, $O_K = \mathbb{Z}[\sqrt{-1}]$ the Gaussian integers (i.e. the ring of algebraic integers of K), $E_D : y^2 = x^3 - Dx$ an elliptic curve defined over K with complex multiplication by O_K . We let ψ_D be the Hecke character of K attached to E_D , and let $L(\overline{\psi}_D, s)$ denote the Hecke L-series of $\overline{\psi}_D$, the dual of ψ_D . (For the definition of such Hecke L-series attached to an elliptic curve, see [Sil2].)

(A) Consider E_D : $y^2 = x^3 - Dx$ with $D = \pi_1 \dots \pi_n$, where $\pi_k \equiv 1 \pmod{4}$ are distinct prime integers in O_K $(k=1,\dots,n)$. Set $S = \{\pi_1,\dots,\pi_n\}$. For any subset T of $\{1,\dots,n\}$, define

$$D_T = \prod_{k \in T} \pi_k, \quad \widehat{D}_T = D/D_T,$$

and put $D_{\emptyset} = 1$ when $T = \emptyset$. Let ψ_{D_T} be the Hecke character (Grössencharakter) of the field K attached to the elliptic curve $E_{D_T} : y^2 = x^3 - D_T x$, and let $L_S(\overline{\psi}_{D_T}, s)$ be the Hecke L-series of $\overline{\psi}_{D_T}$ (the dual of ψ_{D_T}) with all Euler factors at primes in S omitted. We have the following formula for the special value $L_S(\overline{\psi}_{D_T}, 1)$ of the above *L*-series at s = 1 expressed as a finite sum of the values of the Weierstrass \wp -function $\wp(z)$.

THEOREM 1. Let ψ_{D_T} be the Hecke character of the Gaussian field $\mathbb{Q}(\sqrt{-1})$ attached to the elliptic curve E_{D_T} : $y^2 = x^3 - D_T x$, where D_T is any factor of $D = \pi_1 \dots \pi_n \in \mathbb{Q}(\sqrt{-1})$ as above. Then we have the following formula for the value of L-series:

(1.1)
$$\frac{D}{\omega} \left(\frac{\theta}{D_T}\right)_4 L_S(\overline{\psi}_{D_T}, 1) = \frac{I}{2} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/D) - I} + \frac{1}{4} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4,$$

where $\theta = 2+2I$, $(-)_4$ is the quartic residue symbol, C is any complete set of representatives of O_K modulo D which are relatively prime to D, $L_{\omega} = \omega O_K$ is the period lattice of the elliptic curve $E_1: y^2 = x^3 - x$,

$$\omega = \int_{1}^{\infty} \frac{dx}{\sqrt{x^3 - x}} = 2.6220575\dots,$$

 $\wp(z)$ is the Weierstrass \wp -function associated to the lattice L_{ω} (i.e., $\wp(z)$ and its derivative $\wp'(z)$ satisfy the equation $\wp'(z)^2 = 4\wp(z)^3 - 4\wp(z)$).

REMARK 1.1. Formula (1.1) and its proof are developed from a famous formula and proof of Birch and Swinnerton-Dyer for elliptic curves over the rationals \mathbb{Q} in [B-SD, Formula 3.14].

For any prime number p, we let \mathbb{Q}_p be the completion of \mathbb{Q} at the p-adic valuation, $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_p$ the algebraic closures of \mathbb{Q} and \mathbb{Q}_p respectively; and let v_p be the normalized p-adic exponential valuation of $\overline{\mathbb{Q}}_p$ (i.e. $v_p(p) = 1$). Fix an isomorphic embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. Then $v_p(\alpha)$ is defined for any algebraic number α in $\overline{\mathbb{Q}}$. The value $v_p(\alpha)$ for $\alpha \in \overline{\mathbb{Q}}$ depends on the choice of the embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$, but this does not affect our discussion in this paper. We will discuss the case p = 2.

For any Gaussian integers α, β which are relatively prime, write $(\alpha/\beta)_4^2 = (\alpha/\beta)_2$ for short, and define $[\alpha/\beta]_2 = (1 - (\alpha/\beta)_2)/2$. Then $[\alpha\gamma/\beta]_2 = [\alpha/\beta]_2 + [\gamma/\beta]_2$ (regard $[-]_2$ as an \mathbb{F}_2 -valued function, where \mathbb{F}_2 is the finite field with two elements). For $D = \pi_1 \dots \pi_n$ as above, put

(1.2)
$$S^*(D) = \frac{I}{2} \sum_{c \in \mathcal{C}} \frac{1}{\wp(c\omega/D) - I} \sum_T \left(\frac{c}{D_T}\right)_4.$$

We will show that $v_2(S^*(D)) \ge (n-1)/2$ (see Lemma 2.4). Accordingly we define an \mathbb{F}_2 -valued function ε_n as follows (n = n(D)) is the number of distinct prime factors of D):

$$\varepsilon_n(D) = \begin{cases} 1 & \text{if } v_2(S^*(D)) = (n-1)/2, \\ 0 & \text{if } v_2(S^*(D)) > (n-1)/2. \end{cases}$$

Then for Gaussian prime integers π , π_k congruent to 1 modulo 4 ($1 \le k \in \mathbb{Z}$) (and their products), we could define the \mathbb{F}_2 -valued functions s_1 and δ_n (n = 1, 2, ...) inductively as follows:

$$s_{1}(\pi) = \begin{cases} 1 & \text{if } v_{2}(\pi - 1) = 2, \\ 0 & \text{if } v_{2}(\pi - 1) > 2, \end{cases}$$

$$\delta_{1}(\pi) = s_{1}(\pi) + \varepsilon_{1}(\pi), \\\delta_{n}(D) = \delta_{n}(\pi_{1}, \dots, \pi_{n}) \\ = \varepsilon_{n}(D) + \sum_{\emptyset \neq T \subsetneq \{1, \dots, n\}} \left(\prod_{k \notin T} \left[\frac{D_{T}}{\pi_{k}} \right]_{2} \right) \delta_{t}(D_{T}) \quad (n \ge 2),$$

where $t = \sharp T$ is the cardinal of T.

THEOREM 2. Let ψ_D be the Hecke character of $\mathbb{Q}(\sqrt{-1})$ attached to the elliptic curve $E_D : y^2 = x^3 - Dx$, where $D = \pi_1 \dots \pi_n$ with $\pi_k \equiv 1 \pmod{4}$ distinct Gaussian prime integers $(k = 1, \dots, n)$. Then for the 2-adic valuation of the values of the L-series $L(\overline{\psi}_D, s)$ at s = 1 we have:

- (i) $v_2(L(\overline{\psi}_D, 1)/\omega) \ge (n-1)/2;$
- (ii) Equality holds in (i) if and only if $\delta_n(D) = 1$.

THEOREM 3. Let $D = \pm p_1 \dots p_m \equiv 1 \pmod{4}$ with $p_k \not\equiv 5 \pmod{8}$ distinct positive rational prime numbers $(k = 1, \dots, m)$. If $\delta_n(D) = 1$, then the first part of the BSD conjecture is true for the elliptic curve $E_D : y^2 = x^3 - Dx$, that is,

(1.3)
$$\operatorname{rank}(E_D(\mathbb{Q})) = \operatorname{Ord}_{s=1}(L(E_D/\mathbb{Q}, s)) = 0,$$

where n = n(D) is the number of distinct Gaussian prime factors of D.

(B) Consider the elliptic curves $E_D: y^2 = x^3 - Dx$ with

$$D = \pi_1^2 \dots \pi_r^2 \pi_{r+1} \dots \pi_n$$

where $\pi_k \equiv 1 \pmod{4}$ are distinct prime integers in $\mathbb{Z}[\sqrt{-1}]$ (k = 1, ..., n). Let $\Delta = \pi_1 \dots \pi_n$ and $S = \{\pi_1, \dots, \pi_n\}$. For any subset T of $\{1, \dots, n\}$, define

$$D_T = \prod_{r \ge k \in T} \pi_k^2 \prod_{r < j \in T} \pi_j.$$

Let $L_S(\overline{\psi}_{D_T}, s)$ denote the Hecke *L*-series of $\overline{\psi}_{D_T}$ (omitting all Euler factors corresponding to primes in *S*), where ψ_{D_T} is the Hecke character of $K = \mathbb{Q}(\sqrt{-1})$ attached to $E_{D_T}: y^2 = x^3 - D_T x$.

THEOREM 4. For any factor D_T of $D = \pi_1^2 \dots \pi_r^2 \pi_{r+1} \dots \pi_n \in \mathbb{Q}(\sqrt{-1})$ as above, we have

(1.4)
$$\frac{\Delta}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1) = \frac{I}{2} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/\Delta) - I} + \frac{1}{4} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4,$$

where C is any complete set of representatives of O_K modulo Δ relatively prime to Δ , $\theta = 2 + 2I$, $L_{\omega} = \omega O_K$, ω and $\wp(z)$ are as in Theorem 1.

THEOREM 5. Let $D = \pi_1^2 \dots \pi_r^2 \pi_{r+1} \dots \pi_n$, where n, r are positive integers $(1 \leq r \leq n)$ (if r = n then $D = \pi_1^2 \dots \pi_n^2$) and $\pi_k \equiv 1 \pmod{4}$ are distinct prime Gaussian integers $(k = 1, \dots, n)$. Then for the 2-adic valuation of the values of the L-series we have

(1.5)
$$v_2(L(\overline{\psi}_D, 1)/\omega) \ge \frac{n}{2} - 1,$$

where ψ_D is the Hecke character of $\mathbb{Q}(\sqrt{-1})$ attached to the elliptic curve $E_D: y^2 = x^3 - Dx$.

2. Proofs of the theorems. We need the following results.

PROPOSITION A. Let E be an elliptic curve defined over an imaginary quadratic field K with complex multiplication by O_K (the ring of integers of K), $L = \Omega O_K$ be its period lattice, $\Omega \in \mathbb{C}^{\times}$ a complex number, and ϕ be the Hecke character of K attached to E. Assume \mathfrak{g} is an integral ideal of K, $E_{\mathfrak{g}}$ is the group of \mathfrak{g} -divisible points on E. Let **B** be a set of integral ideals of K relatively prime to \mathfrak{g} such that

$$\{\sigma_{\flat} \mid \flat \in \mathbf{B}\} = \operatorname{Gal}(K(E_{\mathfrak{g}})/K), \quad \sigma_{\flat} \neq \sigma_{\flat'} \quad if \ \flat \neq \flat',$$

where $\sigma_{\mathfrak{b}} = \left(\frac{K(E_{\mathfrak{g}})/K}{\mathfrak{b}}\right)$ is the Artin symbol. Assume $\varrho \in \Omega K^{\times}$ is a complex number such that $\varrho \Omega^{-1} O_K = \mathfrak{g}^{-1} \mathfrak{h}$ for some integral ideal \mathfrak{h} of K which is relatively prime to \mathfrak{g} . Then

$$\frac{\phi^{k}(\mathfrak{h})}{N(\mathfrak{h})^{k-s}} \cdot \frac{\overline{\varrho}^{k}}{|\varrho|^{2s}} \cdot L_{\mathfrak{g}}(\overline{\phi}^{k}, s) = \sum_{\flat \in \mathbf{B}} H_{k}(\phi(\flat)\varrho, 0, s, L)$$

 $(\operatorname{Re}(s) > 1 + k/2)$, where k is a positive integer and N denotes the norm map from K to \mathbb{Q} ,

$$L_{\mathfrak{g}}(\overline{\phi}^{k},s) = \prod_{\wp \nmid \mathfrak{g}} (1 - \overline{\phi}^{k}(\wp)N(\wp)^{-s})^{-1} \quad (\operatorname{Re}(s) > 1 + k/2),$$
$$H_{k}(z,0,s,L) = \sum' \frac{(\overline{z} + \overline{\alpha})^{k}}{|z + \alpha|^{2s}} \quad (\operatorname{Re}(s) > 1 + k/2),$$

here \sum' is taken over $\alpha \in L$ other than -z if $z \in L$ (see [Go-Sch]).

LEMMA B. Let the elliptic curve E, field K, Hecke character ϕ , and \mathfrak{g} be as in Proposition A. If the conductor f_{ϕ} of ϕ divides \mathfrak{g} , then the ray class field of K modulo \mathfrak{g} is $K(E_{\mathfrak{g}})$, the extension of K obtained by adding the coordinates of all \mathfrak{g} -division points of E to K (see [Go-Sch]).

Now we consider Theorem 1 and let K, E_D , D_T and $L_S(\overline{\psi}_{D_T}, s)$ be as there. Then by definition (see [B-SD], [Ire-Ro]) we have

Lemma 2.1.

$$L_{S}(\overline{\psi}_{D_{T}}, s) = \begin{cases} L(\overline{\psi}_{D_{T}}, s) & \text{if } \prod_{\pi_{k} \in S} \pi_{k} = D_{T}, \\ L(\overline{\psi}_{D_{T}}, s) \prod_{\pi_{k} \mid \widehat{D}_{T}} \left(1 - \left(\frac{D_{T}}{\pi_{k}}\right)_{4} \cdot \overline{\pi}_{k} / (\pi_{k} \overline{\pi}_{k})^{s} \right) & \text{otherwise.} \end{cases}$$

Proof of Theorem 1. Assume $L = \Omega O_K$ is the period lattice of E_{D_T} : $y^2 = x^3 - D_T x$, where $\Omega = \alpha \omega$, $\alpha \in \mathbb{C}^{\times}$. (Obviously $\Omega = \omega/\sqrt[4]{D_T}$.) From [Bir-Ste] we know that the conductor of ψ_{D_T} is (θD_T) . Now, in Proposition A, let $k = 1, \ \rho = \Omega/(\theta D), \ \mathfrak{g} = (\theta D), \ \mathfrak{h} = O_K$. We have

(2.1)
$$\frac{\varrho}{|\varrho|^{2s}} L_{\mathfrak{g}}(\overline{\psi}_{D_T}, s) = \sum_{\flat \in \mathbf{B}} H_1(\psi_{D_T}(\flat)\varrho, 0, s, L) \quad (\operatorname{Re}(s) > 3/2).$$

Since the conductor of ψ_{D_T} is θD_T , and $(\theta D_T)|(\theta D) = \mathfrak{g}$, by Lemma B the ray class field of K modulo (θD) is $K((E_{D_T})_{(\theta D)})$, the extension of K obtained by adding the coordinates of θD -division points of E_{D_T} to K. In particular we have the following isomorphism via the Artin map:

$$(O_K/(\theta D))^{\times}/\mu_4 \cong \operatorname{Gal}(K((E_{D_T})_{(\theta D)})/K),$$

where μ_4 is the group of quartic roots of unity, and $\mu_4 \cong (O_K/\theta)^{\times}$. So we may take the set

(2.2)
$$\mathbf{B} = \{ (c\theta + D) \mid c \in \mathcal{C} \},\$$

where \mathcal{C} is as in Theorem 1, a set of representatives of $(O_K/(D))^{\times}$; thus

(2.3)
$$\frac{\varrho}{|\varrho|^{2s}} L_{\mathfrak{g}}(\overline{\psi}_{D_T}, s) = \sum_{c \in \mathcal{C}} H_1(\psi_{D_T}(c\theta + D)\varrho, 0, s, L) \quad (\operatorname{Re}(s) > 3/2).$$

Note that the analytic continuation of $H_1(z, 0, 1, L)$ can be given by the Eisenstein E^* -function (see [Zhao] or [We]):

$$H_1(z, 0, 1, L) = E_{0,1}^*(z, L) = E_1^*(z, L).$$

So by (2.3) we have

(2.4)
$$\frac{\theta D}{\Omega} L_{(\theta D)}(\overline{\psi}_{D_T}, 1) = \sum_{c \in \mathcal{C}} E_1^* \bigg(\psi_{D_T}(c\theta + D) \frac{\Omega}{\theta D}, \Omega O_K \bigg).$$

Since $D \equiv 1 \pmod{4}$, we get $c\theta + D \equiv 1 \pmod{\theta}$ for any $c \in C$. Thus by the definition of ψ_{D_T} and quartic reciprocity law,

$$\psi_{D_T}(c\theta + D) = \overline{\left(\frac{D_T}{c\theta + D}\right)_4}(c\theta + D) = \overline{\left(\frac{c\theta + D}{D_T}\right)_4}(c\theta + D)$$
$$= \overline{\left(\frac{c\theta}{D_T}\right)_4}(c\theta + D).$$

Then by (2.4) and the fact that $L_{(\theta D)}(\overline{\psi}_{D_T}, 1) = L_S(\overline{\psi}_{D_T}, 1)$, we have

(2.5)
$$\frac{\theta D}{\alpha \omega} L_S(\overline{\psi}_{D_T}, 1) = \sum_{c \in \mathcal{C}} E_1^* \left(\left(\frac{c\omega}{D} + \frac{\omega}{\theta} \right) \alpha \overline{\left(\frac{c\theta}{D_T} \right)_4}, \alpha \omega O_K \right).$$

Put $\lambda = \alpha \overline{\left(\frac{c\theta}{D_T}\right)_4}$. Since $E_1^*(\lambda z, \lambda L) = \lambda^{-1} E_1^*(z, L)$, we have

$$E_1^* \left(\left(\frac{c\omega}{D} + \frac{\omega}{\theta} \right) \alpha \overline{\left(\frac{c\theta}{D_T} \right)_4}, \alpha \overline{\left(\frac{c\theta}{D_T} \right)_4} \omega O_K \right) \\ = \frac{1}{\alpha} \left(\frac{c\theta}{D_T} \right)_4 E_1^* \left(\frac{c\omega}{D} + \frac{\omega}{\theta}, \omega O_K \right).$$

So by (2.5),

(2.6)
$$\frac{\theta D}{\omega} L_S(\overline{\psi}_{D_T}, 1) = \left(\frac{\theta}{D_T}\right)_4 \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 E_1^* \left(\frac{c\omega}{D} + \frac{\omega}{\theta}, \omega O_K\right).$$

For the period lattice $L_{\omega} = \omega O_K$ mentioned above, denote the corresponding Weierstrass \wp -function by $\wp(z, L_{\omega})$ and the corresponding Weierstrass zeta-function by $\zeta(z, L_{\omega})$. Then $\wp'(z)^2 = 4\wp(z)^3 - 4\wp(z)$. So by results in [Go-Sch] we have

(2.7)
$$E_1^*\left(\frac{c\omega}{D} + \frac{\omega}{\theta}, \omega O_K\right)$$
$$= \zeta\left(\frac{c\omega}{D}, L_\omega\right) + \zeta\left(\frac{\omega}{\theta}, L_\omega\right) + \frac{1}{2} \cdot \frac{\wp'(c\omega/D) - (2-2I)}{\wp(c\omega/D) - I} - \frac{\pi}{\omega}\overline{\left(\frac{c}{D} + \frac{1}{\theta}\right)}.$$

We choose C in such a way that c and -c both are in C. Obviously $\left(\frac{-c}{D_T}\right)_4 = \left(\frac{c}{D_T}\right)_4$. Since $\zeta(z, L_{\omega})$ and $\wp'(z, L_{\omega})$ are odd functions, and $\wp(z, L_{\omega})$ is even, by (2.6) we have

$$\begin{split} \frac{D}{\omega} \left(\frac{\theta}{D_T}\right)_4 L_S(\overline{\psi}_{D_T}, 1) \\ &= \frac{1}{\theta} \bigg\{ \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \zeta \left(\frac{c\omega}{D}, L_\omega\right) - \frac{\pi}{\omega} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{\overline{c}}{\overline{D}} \\ &+ \frac{1}{2} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{\wp'(c\omega/D)}{\wp(c\omega/D) - I} - (1 - I) \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/D) - I} \bigg\} \\ &+ \frac{1}{\theta} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \left(\zeta \left(\frac{\omega}{\theta}, L_\omega\right) - \frac{\pi}{\omega\overline{\theta}}\right) \\ &= -\frac{1 - I}{\theta} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/D) - I} + \frac{1}{\theta} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \left(\zeta \left(\frac{\omega}{\theta}, L_\omega\right) - \frac{\pi}{\omega\overline{\theta}}\right). \end{split}$$

That is,

$$(2.8) \qquad \frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)}_4 L_S(\overline{\psi}_{D_T}, 1) \\ = \frac{I}{2} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/D) - I} + \frac{1}{\theta} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \left(\zeta\left(\frac{\omega}{\theta}, L_\omega\right) - \frac{\pi}{\omega\overline{\theta}}\right).$$

By [Zhao] we know that

$$\zeta\left(\frac{\omega}{\theta}, L_{\omega}\right) - \frac{\pi}{\omega\overline{\theta}} = \frac{\theta}{4},$$

 \mathbf{SO}

$$\frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1) = \frac{I}{2} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4 \frac{1}{\wp(c\omega/D) - I} + \frac{1}{4} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_T}\right)_4.$$

This proves Theorem 1.

LEMMA 2.2. We have

$$\sum_{c \in \mathcal{C}} \left(\frac{c}{D_T} \right)_4 = \begin{cases} \sharp \mathcal{C} & \text{if } T = \emptyset, \\ 0 & \text{if } T \neq \emptyset. \end{cases}$$

Proof. Easy by the definition of quartic residue symbol.

LEMMA 2.3. Let $D = \pi_1 \dots \pi_n$ where $\pi_k \equiv 1 \pmod{4}$ are distinct Gaussian prime $(k = 1, \dots, n)$. Let c be any Gaussian integer relatively prime to D. Then

(1) $\sum_{T} \left(\frac{c}{D_T}\right)_4 = \mu(1+I)^t$ or 0, where $\mu \in \{\pm 1, \pm I\}$, t is an integer with $n \leq t \leq 2n$.

(2) $\sum_{T} \left(\frac{c}{D_T} \right)_4 = 0$ if and only if $\left(\frac{c}{\pi_k} \right)_4 = -1$ (for some $k \in \{1, \dots, n\}$).

(3) Suppose that $\left(\frac{c}{\pi_k}\right)_4 \neq -1$ for any $k \in \{1, \dots, n\}$. Then $\sum_T \left(\frac{c}{D_T}\right)_4 = \mu (1+I)^{n+s}, \quad \text{where } \mu \text{ is as in } (1) \text{ above,}$ $s = \sharp \bigg\{ \pi_k : \pi_k \mid D \text{ and } \left(\frac{c}{\pi_k}\right)_4 = 1, \ k = 1, \dots, n \bigg\}.$

In particular,

$$\sum_{T} \left(\frac{c}{D_{T}}\right)_{4} = 2^{n} \quad \text{if and only if} \quad \left(\frac{c}{\pi_{1}}\right)_{4} = \dots = \left(\frac{c}{\pi_{n}}\right)_{4} = 1;$$
$$\sum_{T} \left(\frac{c}{D_{T}}\right)_{4} = \mu(1+I)^{n} \quad \text{if and only if} \quad \left(\frac{c}{\pi_{k}}\right)_{4} \in \{I, -I\}, \ k = 1, \dots, n,$$

where the sum \sum_T is taken over all subsets T of $\{1, \ldots, n\}$.

Proof of Lemma 2.3. In fact we have

$$\sum_{T} \left(\frac{c}{D_T} \right)_4 = \left(1 + \left(\frac{c}{\pi_1} \right)_4 \right) \dots \left(1 + \left(\frac{c}{\pi_n} \right)_4 \right),$$

from which the results could be deduced.

LEMMA 2.4. $v_2(S^*(D)) \ge (n-1)/2.$

Proof. By results of [Zhao] or [B-SD], we know that

$$v_2\left(\wp\left(\frac{c\omega}{D}\right) - I\right) = \frac{3}{4}$$

for any Gaussian integer c relatively prime to D. By Lemma 2.3 we have

$$v_2\left(\sum_T \left(\frac{c}{D_T}\right)_4\right) = v_2(\mu(1+I)^t) = \frac{t}{2} \ge \frac{n}{2}.$$

(Here we regard $v_2(0)$ as ∞ .) Thus by properties of valuation and our choice of C with the property $c, -c \in C$, we have

$$v_2(S^*(D)) \ge -\frac{3}{4} + \frac{n}{2}.$$

Since $\pi_k \equiv 1 \pmod{4}$ (k = 1, ..., n), it follows that

$$N(D_T) \equiv N(D) \equiv 1 \pmod{8}, \quad \left(\frac{I}{D_T}\right)_4 = I^{(N(D_T)-1)/4} = \pm 1.$$

Also

$$\sharp (O_K/(D))^{\times} = \sharp \mathcal{C} = \prod_{k=1}^n (N(\pi_k) - 1) \equiv 0 \pmod{8},$$

so we can choose \mathcal{C} such that $\pm c, \pm Ic \in \mathcal{C}$ (when $c \in \mathcal{C}$). Put

$$V = \{ c \in \mathcal{C} : c \equiv 1 \pmod{\theta} \}, \quad V' = V \cup IV.$$

Then $\mathcal{C} = V' \cup (-V')$. Since $IO_K = O_K$, we have $IL_{\omega} = I(\omega O_K) = \omega O_K = L_{\omega}$. Thus by the definition of Weierstrass \wp -function,

$$\wp(Iz, IL_{\omega}) = \frac{1}{(Iz)^2} + \sum_{\alpha \in IL_{\omega}} \left(\frac{1}{(Iz - \alpha)^2} - \frac{1}{\alpha^2} \right)$$
$$= \frac{1}{(Iz)^2} + \sum_{\alpha' \in L_{\omega}} \left(\frac{1}{(Iz - I\alpha')^2} - \frac{1}{(I\alpha')^2} \right) = -\wp(z, L_{\omega}).$$

In particular,

$$\begin{split} \wp \left(\frac{Ic\omega}{D}, L_{\omega} \right) &= -\wp \left(\frac{c\omega}{D}, L_{\omega} \right), \\ S^*(D) &= \frac{I}{2} \sum_{c \in \mathcal{C}} \frac{1}{\wp(c\omega/D) - I} \sum_T \left(\frac{c}{D_T} \right)_4 \\ &= I \sum_{c \in V'} \frac{1}{\wp(c\omega/D) - I} \sum_T \left(\frac{c}{D_T} \right)_4 \\ &= I \sum_{c \in V} \left[\frac{1}{\wp(c\omega/D) - I} \sum_T \left(\frac{c}{D_T} \right)_4 + \frac{1}{\wp(Ic\omega/D) - I} \sum_T \left(\frac{Ic}{D_T} \right)_4 \right] \\ &= I \sum_{c \in V} \left[\sum_T \left(\frac{1}{\wp(c\omega/D) - I} - \left(\frac{I}{D_T} \right)_4 \frac{1}{\wp(c\omega/D) + I} \right) \left(\frac{c}{D_T} \right)_4 \right] \\ &= I \sum_{c \in V} \frac{2B}{(\wp(c\omega/D))^2 + 1} \sum_T \left(\frac{c}{D_T} \right)_4, \end{split}$$

where B = I or $\wp(c\omega/D)$.

Note that $v_2(\wp(c\omega/D) - I) = 3/4$, so $v_2(\wp(c\omega/D) + I) = 3/4$. Hence

$$v_2\left(\left(\wp\left(\frac{c\omega}{D}\right)\right)^2 + 1\right) = v_2\left(\wp\left(\frac{c\omega}{D}\right) - I\right) + v_2\left(\wp\left(\frac{c\omega}{D}\right) + I\right) = \frac{3}{4} + \frac{3}{4} = \frac{3}{2},$$
$$v_2\left(\frac{2B}{(\wp(c\omega/D))^2 + 1}\right) = 1 - \frac{3}{2} = -\frac{1}{2}$$

(and obviously we have $v_2(B) = 0$). Therefore

$$v_2(S^*(D)) \ge -\frac{1}{2} + v_2\left(\sum_T \left(\frac{c}{D_T}\right)_4\right) \ge -\frac{1}{2} + \frac{n}{2} = \frac{n-1}{2}.$$

This proves Lemma 2.4.

Proof of Theorem 2. First let us prove

$$v_2(L(\overline{\psi}_D, 1)/\omega) \ge (n-1)/2.$$

Taking sums of both sides of formula (1.1) over subsets T of $\{1, \ldots, n\}$, we have

$$\sum_{T} \frac{D}{\omega} \left(\frac{\theta}{D_{T}}\right)_{4} L_{S}(\overline{\psi}_{D_{T}}, 1)$$

$$= \frac{I}{2} \sum_{T} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_{T}}\right)_{4} \frac{1}{\wp(c\omega/D) - I} + \frac{1}{4} \sum_{T} \sum_{c \in \mathcal{C}} \left(\frac{c}{D_{T}}\right)_{4}.$$

So by Lemma 2.2 and (1.2), we obtain

(2.9)
$$\sum_{T} \frac{D}{\omega} \overline{\left(\frac{\theta}{D_{T}}\right)}_{4} L_{S}(\overline{\psi}_{D_{T}}, 1) = S^{*}(D) + \frac{\sharp \mathcal{C}}{4},$$
$$v_{2}\left(\frac{\sharp \mathcal{C}}{4}\right) = v_{2}\left(\frac{\prod_{k=1}^{n}(\pi_{k}\overline{\pi}_{k}-1)}{4}\right) \ge 3n-2 \ge n,$$

and by Lemma 2.4 we have

$$v_2\left(\sum_T \frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1)\right) \ge \frac{n-1}{2}.$$

By Lemma 2.1 we know that $L_S(\overline{\psi}_{D_T}, 1) = L(\overline{\psi}_D, 1)$ when $T = \{1, \ldots, n\}$; and when $T = \emptyset$ we have

$$L_S(\overline{\psi}_{D_T}, 1) = L_S(\overline{\psi}_1, 1) = L(\overline{\psi}_1, 1) \prod_{k=1}^n \left(1 - \frac{\overline{\pi}_k}{\pi_k \overline{\pi}_k}\right) = L(\overline{\psi}_1, 1) \prod_{k=1}^n \left(1 - \frac{1}{\pi_k}\right).$$

By [B-SD] or [Zhao] we know that $L(\overline{\psi}_1, 1) = \omega/4$, so

$$L_S(\overline{\psi}_1, 1) = \frac{\omega}{4} \prod_{k=1}^n \left(1 - \frac{1}{\pi_k}\right),$$

$$v_2(L_S(\overline{\psi}_1, 1)/\omega) = v_2\left(\frac{1}{4}\prod_{k=1}^n \left(1 - \frac{1}{\pi_k}\right)\right) \ge 2n - 2 \quad \text{(since } v_2(\pi_k - 1) \ge 2\text{)}.$$

Now we use induction on n to prove our assertion $v_2(L(\overline{\psi}_D, 1)/\omega) \ge (n-1)/2$. If n = 1, then $D = \pi_1$, $L_S(\overline{\psi}_1, 1) = (\omega/4) \cdot (\pi_1 - 1)/\pi_1$. Since $\pi_1 \equiv 1 \pmod{4}$, we get $v_2(L_S(\overline{\psi}_1, 1)/\omega) \ge 0$. By the above analysis we have

$$v_2\left(\frac{\pi_1}{\omega}\left(\frac{\theta}{1}\right)_4 L_S(\overline{\psi}_1, 1) + \frac{\pi_1}{\omega}\overline{\left(\frac{\theta}{\pi_1}\right)_4}L_S(\overline{\psi}_{\pi_1}, 1)\right) \ge \frac{1-1}{2} = 0.$$

Therefore

$$v_2(L(\overline{\psi}_{\pi_1}, 1)/\omega) = v_2(L_S(\overline{\psi}_{\pi_1}, 1)/\omega) \ge 0.$$

Now assume our assertion is true for $1, \ldots, n-1$, and consider $D = \pi_1 \ldots \pi_n$. For any subset T of $\{1, \ldots, n\}$, set $t = t(T) = \sharp T$. By Lemma 2.1,

$$\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)_4}L_S(\overline{\psi}_{D_T},1) = \frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)_4}L(\overline{\psi}_{D_T},1)\prod_{\pi_k|\widehat{D}_T}\left(1-\left(\frac{D_T}{\pi_k}\right)_4\frac{1}{\pi_k}\right).$$

Since $(D_T/\pi_k)_4 = \pm 1, \pm I$, we get

$$1 - \left(\frac{D_T}{\pi_k}\right)_4 \frac{1}{\pi_k} = \frac{\pi_k - \mu}{\pi_k}, \quad \mu \in \{\pm 1, \pm I\}.$$

Note that $\pi_k \equiv 1 \pmod{4}$, so $v_2(\pi_k - \mu) \geq 1/2$; moreover equality holds if and only if $(D_T/\pi_k)_4^2 = -1$. Thus when T is non-trivial (i.e. $1 \leq t < n$), by our inductive assumption,

$$v_{2}\left(\frac{D}{\omega}\left(\frac{\theta}{D_{T}}\right)_{4}L_{S}(\overline{\psi}_{D_{T}},1)\right) = v_{2}(L(\overline{\psi}_{D_{T}},1)/\omega) + \sum_{\pi_{k}\mid\widehat{D}_{T}}v_{2}\left(1 - \left(\frac{D_{T}}{\pi_{k}}\right)_{4}\frac{1}{\pi_{k}}\right)$$
$$\geq \frac{t-1}{2} + \frac{1}{2} \cdot \sharp\{\pi_{k}:\pi_{k}\mid\widehat{D}_{T}\} = \frac{t-1}{2} + \frac{n-t}{2} = \frac{n-1}{2}.$$

Also when $T = \emptyset$ we have

$$L_{S}(\overline{\psi}_{D_{T}}, 1) = L_{S}(\overline{\psi}_{1}, 1) = L(\overline{\psi}_{1}, 1) \prod_{k=1}^{n} \left(1 - \frac{1}{\pi_{k}}\right) = \frac{\omega}{4} \prod_{k=1}^{n} \left(1 - \frac{1}{\pi_{k}}\right),$$

therefore

$$\begin{split} v_2(L_S(\overline{\psi}_1, 1)/\omega) &\geq 2n - 2 \geq (n - 1)/2, \\ v_2(L(\overline{\psi}_D, 1)/\omega) &= v_2 \left(\frac{D}{\omega} \overline{\left(\frac{\theta}{D}\right)_4} L(\overline{\psi}_D, 1) \right) \\ &= v_2 \left(\sum_T \frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1) \right. \\ &- \sum_{\substack{\emptyset \neq T \subsetneq \{1, \dots, n\}}} \frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1) - \frac{D}{\omega} L_S(\overline{\psi}_1, 1) \right) \\ &\geq (n - 1)/2. \end{split}$$

Thus we have proved our assertion for any positive integer n.

Now we consider the condition for equality to hold, using also induction on n. If n = 1, then $D = \pi_1$, and by (2.9) we obtain

$$\frac{\pi_1}{\omega}\overline{\left(\frac{\theta}{1}\right)_4}L_{\pi_1}(\overline{\psi}_1,1) + \frac{\pi_1}{\omega}\overline{\left(\frac{\theta}{\pi_1}\right)_4}L_{\pi_1}(\overline{\psi}_{\pi_1},1) = S^*(\pi_1) + \frac{\pi_1\overline{\pi}_1 - 1}{4},$$

that is,

$$\frac{1}{4}(\pi_1 - 1) + \frac{\pi_1}{\omega} \overline{\left(\frac{\theta}{\pi_1}\right)_4} L(\overline{\psi}_{\pi_1}, 1) = S^*(\pi_1) + \frac{\pi_1 \overline{\pi}_1 - 1}{4}.$$

Since

$$v_2\left(\frac{\pi_1\overline{\pi}_1-1}{4}\right) = v_2(\pi_1\overline{\pi}_1-1) - 2 \ge 1, \quad v_2(S^*(\pi_1)) \ge \frac{1-1}{2} = 0$$

(Lemma 2.4), the equality

$$v_2(L(\overline{\psi}_{\pi_1}, 1)/\omega) = v_2\left(\frac{\pi_1}{\omega} \left(\frac{\theta}{\pi_1}\right)_4 L_{\pi_1}(\overline{\psi}_{\pi_1}, 1)\right)$$
$$= v_2\left(S^*(\pi_1) + \frac{\pi_1\overline{\pi}_1 - 1}{4} - \frac{1}{4}(\pi_1 - 1)\right) = 0$$

holds if and only if one of the following conditions is true:

(1) $v_2(\pi_1 - 1) = 2$ when $v_2(S^*(\pi_1)) > 0;$ (2) $v_2(\pi_1 - 1) > 2$ when $v_2(S^*(\pi_1)) = 0.$

Thus

$$v_2(L(\overline{\psi}_{\pi_1}, 1)/\omega) = 0$$
 if and only if $\delta_1(\pi_1) = s_1(\pi_1) + \varepsilon_1(\pi_1) = 1$.

Assume our result is true for $1, \ldots, n-1$, and let $D = \pi_1 \ldots \pi_n$. When $T = \emptyset$, we have

$$\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)}_4 L_S(\overline{\psi}_{D_T}, 1) = \frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)}_4 L_D(\overline{\psi}_1, 1) = \frac{D}{\omega}L(\overline{\psi}_1, 1)\prod_{k=1}^n \left(1 - \frac{1}{\pi_k}\right),$$
$$v_2\left(\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)}_4 L_S(\overline{\psi}_{D_T}, 1)\right) = v_2(L(\overline{\psi}_1, 1)/\omega) + \sum_{k=1}^n v_2(\pi_k - 1)$$
$$= v_2(1/4) + \sum_{k=1}^n v_2(\pi_k - 1) \ge 2n - 2 \ge (n - 1)/2.$$

When $\emptyset \neq T \subsetneq \{1, \ldots, n\}$, we have

$$\begin{aligned} v_2 \bigg(\frac{D}{\omega} \overline{\bigg(\frac{\theta}{D_T} \bigg)}_4^2 L_S(\overline{\psi}_{D_T}, 1) \bigg) &= v_2 (L_S(\overline{\psi}_{D_T}, 1)/\omega) \\ &= v_2 \bigg(\frac{L(\overline{\psi}_{D_T}, 1)}{\omega} \prod_{\pi_k \mid \widehat{D}_T} \bigg(1 - \bigg(\frac{D_T}{\pi_k} \bigg)_4 \frac{1}{\pi_k} \bigg) \bigg) \\ &= v_2 (L(\overline{\psi}_{D_T}, 1)/\omega) + \sum_{\pi_k \mid \widehat{D}_T} v_2 \bigg(1 - \bigg(\frac{D_T}{\pi_k} \bigg)_4 \frac{1}{\pi_k} \bigg). \end{aligned}$$

Since $(D_T/\pi_k)_4 = \pm 1, \pm I$, we have

$$1 - \left(\frac{D_T}{\pi_k}\right)_4 \frac{1}{\pi_k} = \frac{\pi_k - \mu}{\pi_k} = \frac{\pi_k - 1 + (1 - \mu)}{\pi_k}, \quad \mu \in \{\pm 1, \pm I\}$$

Therefore

$$v_2\left(1-\left(\frac{D_T}{\pi_k}\right)_4\frac{1}{\pi_k}\right) \ge \frac{1}{2},$$

and equality holds if and only if $(D_T/\pi_k)_4 = \pm I$, i.e. $(D_T/\pi_k)_4^2 = -1$, that is, $[D_T/\pi_k]_2 = 1$. Thus

$$v_2\left(1-\left(\frac{D_T}{\pi_k}\right)_4\frac{1}{\pi_k}\right) = \frac{1}{2}$$
 if and only if $\left[\frac{D_T}{\pi_k}\right]_2 = 1.$

By the proof of the first part of the theorem we know that

$$v_2(L(\overline{\psi}_{D_T}, 1)/\omega) \ge (t(T) - 1)/2, \quad t(T) = \sharp T,$$

and by our inductive assumption, equality holds if and only if $\delta_t(D_T) = 1$, t = t(T). Thus

$$v_2\left(\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)_4}L_S(\overline{\psi}_{D_T},1)\right) \ge \frac{t(T)-1}{2} + \frac{n-t(T)}{2} = \frac{n-1}{2},$$

and equality holds if and only if $[D_T/\pi_k]_2 = 1$ (for any $\pi_k | \hat{D}_T$) and $\delta_t(D_T) = 1$. That is to say,

$$v_2\left(\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)_4}L_S(\overline{\psi}_{D_T},1)\right) = \frac{n-1}{2}$$

if and only if

$$\left(\prod_{\pi_k \mid \hat{D}_T} \left[\frac{D_T}{\pi_k}\right]_2\right) \delta_t(D_T) = 1.$$

For the elliptic curve E_{D_T} : $y^2 = x^3 - D_T x$ and Hecke characters ψ_{D_T} , by [Ru1,2] we know that $L(\overline{\psi}_{D_T}, 1)/\Omega \in K = \mathbb{Q}(I)$, and also we have $\Omega = \omega/\sqrt[4]{D_T}$, so

$$L(\overline{\psi}_{D_T}, 1)/\omega = (\sqrt[4]{D_T})^{-1} \cdot L(\overline{\psi}_{D_T}, 1)/\frac{\omega}{\sqrt[4]{D_T}}$$
$$= (\sqrt[4]{D_T})^{-1} \cdot L(\overline{\psi}_{D_T}, 1)/\Omega \in K(\sqrt[4]{D_T}),$$

i.e. $L(\overline{\psi}_{D_T}, 1)/\omega \in K(\sqrt[4]{D_T})$. Thus by Lemma 2.1 we get

$$\frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)}_4 L_S(\overline{\psi}_{D_T}, 1)
= D \overline{\left(\frac{\theta}{D_T}\right)}_4 \prod_{\pi_k \mid \widehat{D}_T} \left(1 - \left(\frac{D_T}{\pi_k}\right)_4 \frac{1}{\pi_k}\right) \cdot L(\overline{\psi}_{D_T}, 1) / \omega \in K(\sqrt[4]{D_T}),$$

and if

$$v_2\left(\frac{D}{\omega}\overline{\left(\frac{\theta}{D_T}\right)_4}L_S(\overline{\psi}_{D_T},1)\right) = \frac{n-1}{2},$$

then

$$\frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T}, 1) = (1+I)^{n-1} \alpha_T \sqrt[4]{D_T^3},$$

where $\alpha_T \in K$, and $v_2(\alpha_T) = 0$ (since $v_2(\sqrt[4]{D_T^3}) = \frac{3}{4}v_2(D_T) = 0$). For any subsets T and T' of $\{1, \ldots, n\}$, if $v_2(\alpha_T) = v_2(\alpha_{T'}) = 0$, then it can be easily verified that

$$v_2(\alpha_T \sqrt[4]{D_T^3} + \alpha_{T'} \sqrt[4]{D_{T'}^3}) > 0.$$

Thus, consider the terms in the sum

(2.10)
$$\sum_{\emptyset \neq T \subsetneq \{1,\dots,n\}} \frac{D}{\omega} \overline{\left(\frac{\theta}{D_T}\right)_4} L_S(\overline{\psi}_{D_T},1).$$

For any two terms with 2-adic valuations equal to (n-1)/2, the 2-adic valuation of their sum is greater than (n-1)/2. Also when n > 1 we have

$$v_2\left(\frac{D}{\omega}\overline{\left(\frac{\theta}{D_{\emptyset}}\right)_4}L_S(\overline{\psi}_{D_{\emptyset}},1)\right) \ge 2n-2 \ge n > \frac{n-1}{2}.$$

Hence $v_2(L(\overline{\psi}_D, 1)/\omega) = (n-1)/2$ if and only if one of the following statements is true:

(1) when $v_2(S^*(D)) > (n-1)/2$, in the above sum (2.10), the number of terms with 2-adic valuation (n-1)/2 is odd;

(2) when $v_2(S^*(D)) = (n-1)/2$, in the above sum (2.10), the number of terms with 2-adic valuation (n-1)/2 is even.

Statement (1) above means: if $\varepsilon_n(D) = 0$, then

$$\begin{split} \sharp \Big\{ \emptyset \neq T \varsubsetneq \{1, \dots, n\} : v_2 \Big(\frac{D}{\omega} \overline{\Big(\frac{\theta}{D_T}\Big)_4} L_S(\overline{\psi}_{D_T}, 1) \Big) &= \frac{n-1}{2} \Big\} \\ &= \sharp \Big\{ \emptyset \neq T \varsubsetneq \{1, \dots, n\} : \Big(\prod_{\pi_k \mid \widehat{D}_T} \left[\frac{D_T}{\pi_k} \right]_2 \Big) \delta_t(D_T) = 1 \Big\} \\ &\equiv \sum_{\emptyset \neq T \subsetneq \{1, \dots, n\}} \Big(\prod_{\pi_k \mid \widehat{D}_T} \left[\frac{D_T}{\pi_k} \right]_2 \Big) \delta_t(D_T) \equiv 1 \pmod{2}, \\ \delta_n(D) &= \varepsilon_n(D) + \sum_{\emptyset \neq T \varsubsetneq \{1, \dots, n\}} \Big(\prod_{\pi_k \mid \widehat{D}_T} \left[\frac{D_T}{\pi_k} \right]_2 \Big) \delta_t(D_T) \equiv 1 \pmod{2}. \end{split}$$

And (2) means: if $\varepsilon_n(D) = 1$ then

$$\sum_{\emptyset \neq T \subsetneq \{1,\dots,n\}} \left(\prod_{\pi_k \mid \widehat{D}_T} \left[\frac{D_T}{\pi_k} \right]_2 \right) \delta_t(D_T) \equiv 0 \pmod{2},$$

 \mathbf{SO}

$$\delta_n(D) = \varepsilon_n(D) + \sum_{\emptyset \neq T \subsetneq \{1, \dots, n\}} \left(\prod_{\pi_k \mid \hat{D}_T} \left[\frac{D_T}{\pi_k} \right]_2 \right) \delta_t(D_T)$$
$$\equiv 1 + 0 \equiv 1 \pmod{2}.$$

Hence $v_2(L(\overline{\psi}_D, 1)/\omega) = (n-1)/2$ if and only if $\delta_n(D) = 1$. This proves the theorem.

Proof of Theorem 3. This theorem follows from Theorem 2 and the main result of Coates–Wiles in [Co-Wi].

For the elliptic curve $E_D: y^2 = x^3 - Dx$ with $D = \pi_1^2 \dots \pi_r^2 \pi_{r+1} \dots \pi_n$, where $\pi_k \equiv 1 \pmod{4}$ are distinct Gaussian prime integers $(k = 1, \dots, n)$, we could prove Theorems 4 and 5 similarly to Theorems 1 and 2.

References

- [Bir-Ste] B. J. Birch and N. M. Stephens, The parity of the rank of the Mordell-Weil group, Topology 5 (1966), 295–299.
- [B-SD] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves II, J. Reine Angew. Math. 218 (1965), 79–108.
- [Co-Wi] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223–251.
- [Go-Sch] C. Goldstein et N. Schappacher, Séries d'Eisenstein et fonction L de courbes ellipliques à multiplication complexe, J. Reine Angew. Math. 327 (1981), 184– 218.
- [Ire-Ro] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math. 84, Springer, New York, 1990.
- [Raz] M. Razar, The nonvanishing of L(1) for certain elliptic curves with no first descent, Amer. J. Math. 96 (1974), 104–126.
- [Ru1] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527–560.
- [Ru2] —, The "main conjectures" of Iwasawa theory for imaginary quadratic fields, ibid. 103 (1991), 25–68.
- [Sil1] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.
- [Sil2] —, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, 1994.
- [Tun] J. B. Tunnell, A classical Diophantine problem and modular forms of weight $\frac{3}{2}$, Invent. Math. 72 (1983), 323–334.
- [We] A. Weil, *Elliptic Functions According to Eisenstein and Kronecker*, Springer, 1976.

[Zhao] C. L. Zhao, A criterion for elliptic curves with lowest 2-power in L(1), Math. Proc. Cambridge Philos. Soc. 121 (1997), 385–400.

Center for Advanced Study Tsinghua University Beijing 100084, P.R. China E-mail: derong@castu.tsinghua.edu.cn Department of Mathematical Sciences Tsinghua University Beijing 100084, P.R. China E-mail: xianke@tsinghua.edu.cn

Received on 12.4.2001 and in revised form on 14.7.2001 (4013)

95