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Identities for traces of singular moduli

by

Kathrin Bringmann and Ken Ono (Madison, WI)

1. Introduction and statement of results. Let q := e2πiz and let

J(z) = q−1 + 196884q + 21493760q2 + · · ·
be the Hauptmodul for Γ = PSL2(Z). Similarly, let

j∗3(z) = q
−1 + 783q + 8672q2 + 65367q3 + 371520q4 + · · ·

be the Hauptmodul for Γ ∗0 (3), the extension of Γ0(3) by the Fricke involu-
tionW3. The values of such functions at imaginary quadratic arguments are
known as singular moduli.
There are general identities relating singular moduli for functions such

as J(z) and j∗3(z). To illustrate, observe that the evaluations

J
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= −744, j∗3
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= −42,

j∗3
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imply that

J
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√
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)

= j∗3
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√
−3

6

)

+ 3j∗3

(−7 +
√
−3

6

)

.(1.1)

Such identities follow from arithmetic relations between modular forms of
different levels.
For a positive integer m, let Jm(z) be the unique modular function on

Γ with Fourier expansion

Jm(z) = q
−m +

∞
∑

n=1

cm(n)q
n.

Zagier [Za] computed the generating functions for the “traces” of the
Jm(z) singular moduli, as well as several other classes of modular functions.
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To describe these traces, let D ≡ 0, 3 (mod4) be a positive integer, and let
QD denote the positive definite integral binary quadratic forms Q(a, b, c) =
ax2+ bxy+ cy2 of discriminant −D = b2− 4ac. The group Γ acts on QD by

Q ◦
(

α β
γ δ

)

:= Q(αx+ βy, γx+ δy).

For each Q ∈ QD, we let αQ := (−b+
√
b2 − 4ac)/2a ∈ H and ωQ := |ΓQ|,

where ΓQ is the isotropy subgroup of Q in Γ . If m is a positive integer and
−D is a discriminant, then Zagier defined the trace of the singular moduli
of discriminant −D for Jm(z) by

tm(D) :=
∑

Q∈QD/Γ

1

ωQ
Jm(αQ).(1.2)

He proved the striking fact that their generating functions are weight 3/2
modular forms.

It turns out that (1.1) is a special case of a general phenomenon where
sums of coefficients of certain weakly holomorphic weight 3/2 modular forms
are given in terms of such traces. A meromorphic modular form is weakly
holomorphic if it is holomorphic on H. Following Kohnen, for integers k let
M+k+1/2(Γ0(4)) be the space of weakly holomorphic weight k+1/2 modular
forms on Γ0(4) with a Fourier expansion of the form

∑

n≫−∞
(−1)kn≡0,1 (mod 4)

a(n)qn.(1.3)

Furthermore, if p is an odd prime and ε = ±1, then let M+,ε
k+1/2
(Γ0(4p))

be the space of those weight k + 1/2 weakly holomorphic modular forms
f(z) =

∑

n≫−∞ a(n)q
n on Γ0(4p) whose Fourier coefficients satisfy

a(n) = 0 whenever (−1)kn ≡ 2, 3 (mod4) or
(

(−1)kn
p

)

= −ε.(1.4)

The generic identities, for forms inM+,ε3/2(Γ0(4p)), are expressed in terms
of a distinguished sequence of modular forms. To define them, for each pos-
itive m ≡ 0, 1 (mod4) let gm(z) be the unique form inM+3/2(Γ0(4)) with a
Fourier expansion of the form

gm(z) = q
−m +

∞
∑

n=0

B(m,n)qn.(1.5)

Remark. The uniqueness of the gm(z) essentially follows from the fact
that there are no holomorphic forms in M+3/2(Γ0(4)) (see the discussion
preceding Theorem 4 of [Za]).
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Theorem 1.1. If p is an odd prime, ε = ±1, and

g =
∑

n≫−∞

a(n)qn ∈M+,ε3/2(Γ0(4p)),

then for every positive n ≡ 0, 3 (mod4) we have

a(n) + εa(np2) =
∑

m≥1

(a(−m) + εa(−mp2))B(m,n).

Remark. Since Zagier (see Section 7 of [Za]) proved that the integers
B(m,n) are traces or “twisted traces” of singular moduli, Theorem 1.1 pro-
vides identities expressing sums of coefficients of forms in M+,ε

3/2
(Γ0(4)) as

sums of traces of singular moduli. For brevity and aesthetics, we do not
give the general formulas here. Instead, we simply give Corollary 1.2 which
relates the traces tm(D) to the level p traces defined below.

Recently, Bruinier and Funke [BF] have greatly generalized Zagier’s re-
sults to include traces of singular moduli of modular functions on groups
which do not necessarily have a Hauptmodul. A particularly elegant exam-
ple of their general work corresponds to modular functions on Γ0(p) which
are fixed by the Fricke involution Wp =

(

0−1
p 0

)

. To define these traces, let

p be an odd prime, and let Γ ∗0 (p) be the projective image of the extension
of Γ0(p) by the Fricke involution Wp in PSL2(R). Let QD,p be the set of
quadratic forms Q ∈ QD such that a ≡ 0 (modp). The group Γ ∗0 (p) acts
on QD,p, where the action for elements of Γ0(p) is defined as before, and
Q ◦Wp := Q′(x, y), where Q′(x, y) = (pc,−b, a/p).
Suppose that f(z) is inM0(Γ ∗0 (p)), the set of weakly holomorphic mod-

ular functions for Γ ∗0 (p). For such f , the discriminant −D trace is given
by

t∗f (D) :=
∑

Q∈QD,p/Γ
∗

0 (p)

1

|Γ ∗0 (p)Q|
f(αQ).(1.6)

Here Γ ∗0 (p)Q is the stabilizer of Q in Γ
∗
0 (p). Applying Theorem 1.1 to the

Bruinier–Funke generating functions gives the following corollary.

Corollary 1.2. If p is an odd prime and f =
∑

a(n)qn ∈M0(Γ ∗0 (p)),
with a(0) = 0, then for every positive integer D ≡ 0, 3 (mod4) we have

t∗f (D) + t
∗
f (Dp

2) =
∑

m≥1

b(m)

m

∑

l|m

µ(m/l) tl(D).

Here µ(n) denotes the usual Möbius function, and

b(m) =
∑

n≥1

(ma(−mn) + p2ma(−p2mn)).
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Remark. There is an alternate approach to proving Corollary 1.2. Using
the weight zero analog of Lemma 2.2, one can obtain an identity of the form

M
∑

m=1

c(m)Jm(z) = f(z) + pf(z)|U(p).

Using this identity, one easily obtains sums of tm(n) as sums of singular
moduli for f(z). To prove Corollary 1.2, one needs to relate such sums to
(1.6). This requires a somewhat lengthy calculation which aligns the corre-
sponding CM points, counted with the correct multiplicity, with the points
obtained from definition of the U(p) operator. The extra information pro-
vided by Bruinier and Funke, and Zagier, allows us to argue instead with
standard properties of half-integral weight modular forms.

Example. If f = j∗3 , D = 3, and p = 3, then Corollary 1.2 implies that

t∗j∗3 (3) + t
∗
j∗3
(27) = t1(3) =

1

3
J

(−1 +
√
−3

2

)

= −248.

It turns out that

t∗j∗3 (3) =
1

6
j∗3

(−3 +
√
−3

6

)

= −42
6
= −7,

t∗j∗3 (27) = j
∗
3

(−7 +
√
−3

6

)

+
1

6
j∗3

(−9 +
√
−3

6

)

= −234− 42
6
= −241.

Noting that

j∗3

(−3 +
√
−3

6

)

= j∗3

(−9 +
√
−3

6

)

= −42

gives (1.1).

In Section 2 we recall facts about half-integral weight modular forms. In
Section 3 we discuss features of the “Kohnen spaces”, recall the formula-
tion of the Bruinier–Funke and the Zagier generating functions, and prove
Theorem 1.1 and Corollary 1.2.

Acknowledgements. The authors thank W. Kohnen and J. Rouse for
their helpful comments.

2. Preliminaries on half-integral weight modular forms. We re-
call basic facts about half-integral weight modular forms (see [Sh] and [Ko]).
Throughout, let k be an integer, and let p = 1 or an odd prime. We letSk+1/2
be the group consisting of all pairs (A, φ(z)), where A =

(

a b
c d

)

∈ GL+2 (R)
and φ is a complex-valued holomorphic function on H satisfying

|φ(z)| = (detA)−k/2−1/4|cz + d|k+1/2.
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The group law in Sk+1/2 is given by

(A, φ(z)) · (B,ψ(z)) := (AB, φ(Bz)ψ(z)).(2.1)

The group algebra of Sk+1/2 over C acts on functions f : H→ C by

f
∣

∣

∣

∑

ν

cν(Aν , φν) =
∑

ν

cνφν(z)
−1f(Aνz).

We require the automorphy factor

φ(z) := χ(d)

(

c

d

)(−4
d

)−k−1/2

(cz + d)k+1/2,

where χ is an even Dirichlet character modulo 4p. As an abuse of notation,
we shall let

A∗ := (A, φ).(2.2)

Let ∆0(4p, χ)k+1/2 be the set of those pairs A
∗, where A ∈ Γ0(4p).

A meromorphic function f : H→ C is a weight k+1/2 meromorphic modular
form with Nebentypus χ if it is meromorphic at the cusps of Γ0(4p) and if
f |A∗ = f for all A∗ ∈ ∆0(4p, χ)k+1/2. We letMk+1/2(Γ0(4p), χ) be the space
of weakly holomorphic modular forms of weight k + 1/2 with Nebentypus
character χ on Γ0(4p). Furthermore, writeMk+1/2(Γ0(4p)) if χ is trivial.
Remark. Although we only describe those forms with level 4p, most

of the following arguments hold for general levels. Furthermore, the facts
we quote from works of Shimura and Kohnen were originally stated for
holomorphic forms or cusp forms, although their proofs also apply for weakly
holomorphic forms.

For m ≥ 1, define the operators U(m) and V (m) on formal power series
in q by

(

∑

n∈Z

a(n)qn
)
∣

∣

∣
U(m) :=

∑

n∈Z

a(mn)qn,(2.3)

(

∑

n∈Z

a(n)qn
) ∣

∣

∣
V (m) :=

∑

n∈Z

a(n)qnm.(2.4)

We also require the Atkin–Lehner operators W (p) defined by

W (p) :=

((

p a
4p pb

)

,

(−4
p

)−k−1/2

p−k/2−1/4(4pz + pb)k+1/2
)

,(2.5)

where a and b are integers with pb− 4a = 1. The next proposition (see [Sh]
and [Ko]) describes the modularity of these operators.

Proposition 2.1. Suppose that f ∈Mk+1/2(Γ0(4p), χ).
(1) f |U(p), f |W (p) ∈Mk+1/2

(

Γ0(4p),
(p
·

)

χ
)

.

(2) f |V (p) ∈Mk+1/2
(

Γ0(4p
2),
(p
·

)

χ
)

.
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We shall employ the trace map Tr4p4 :Mk+1/2(Γ0(4p))→Mk+1/2(Γ0(4))
defined by

Tr4p4 (f) :=

r
∑

i=1

f |k+1/2γi,(2.6)

where {γ1, . . . , γr} is a set of coset representatives for Γ0(4p)\Γ0(4). The
next lemma (see page 66 of [Ko]) gives a description of this map in terms of
W (p) and U(p).

Lemma 2.2. If p is an odd prime and f ∈Mk+1/2(Γ0(4p)), then

Tr4p4 (f) = f +

(−1
p

)−(k+1/2)

p−k/2+3/4f |k+1/2W (p)|U(p).

3. Kohnen’s spaces and the traces of singular moduli. Let
M+
k+1/2
(Γ0(4p)) and M+,εk+1/2(Γ0(4p)) be the spaces defined in (1.3) and

(1.4).

3.1. Trace generating functions. Zagier showed how the forms gm(z)
may be used to compute the generating functions for traces and twisted
traces of singular moduli. For example, consider

g1(z) = q
−1 +

∞
∑

D=0

B(1, D)qD(3.1)

= q−1 − 2 + 248q3 − 492q4 + · · · ∈ M+3/2(Γ0(4)).

To make the connection to traces, for positive integers m, let

Bm(1, D) := the coefficient of q
D in g1(z)|T (m2),(3.2)

where T (m2) is the usual Hecke operator onM+
3/2
(Γ0(4)). Zagier’s formulas

for the traces tm(D) are given by the following theorem (see Theorem 5
of [Za]).

Theorem 3.1. If m ≥ 1 and 0 ≤ D ≡ 0, 3 (mod4), then tm(D) =
−Bm(1, D).

More generally, Zagier (see Theorem 5 of [Za]) obtains the following
formula:

Bm(1, D) =
∑

l|m

lB(l2, D).(3.3)

Applying Möbius inversion to these formulas immediately gives the following
lemma.
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Lemma 3.2. If m is a positive integer and 1 ≤ D ≡ 0, 3 (mod4), then

B(m2, D) = − 1
m

∑

l|m

µ(m/l)tl(D).

The following is a special case of Bruinier and Funke’s work (see Theo-
rem 1.1 of [BF]).

Theorem 3.3. If p is an odd prime and f =
∑

a(n)qn ∈ M0(Γ ∗0 (p)),
with a(0) = 0, then

Gp(f, z) :=−
∑

m≥1

∑

n≥1

ma(−mn)q−m2

+
∑

n≥1

(σ1(n) + pσ1(n/p))a(−n) +
∑

D>0

t∗f (D)q
D

is an element of M+,+3/2 (Γ0(4p)), where σ1(n) :=
∑

t|n t for positive inte-

gers n, and σ1(x) = 0 for non-integral x.

3.2. Operators on the Kohnen spaces. Here we assume that p is an odd
prime. To prove Theorem 1.1, our plan is to apply Lemma 2.2. This requires
an explicit description of the action of U(p) and W (p). Although the next
two results are proven for holomorphic forms by Kohnen in [Ko], we give
their proofs for completeness.

Proposition 3.4. If f ∈Mk+1/2(Γ0(4p)), then

f |U(p)|W (p)2 =
(−1
p

)k+1/2

f |U(p).

Proof. Using (2.1), we obtain the identity

W (p)2 =

(−1
p

)(

b+ 1

4a+ pb2

)( −1
4a+ pb2

)−k−1/2((
p 0
0 p

)

, 1

)

×
((

p+ 4a a(1 + b)
4p(1 + b) 4a+ pb2

)

,

(

b+ 1

4a+ pb2

)( −1
4a+ pb2

)−k−1/2

× (4p(1 + b)z + (4a+ pb2))k+1/2
)

.

Since
((

p 0
0 p

)

, 1
)

acts as the identity on f |U(p), and since ∆0
(

4p,
(p
·

))

k+1/2

contains
((

p+ 4a a(1 + b)
4p(1 + b) 4a+ pb2

)

,

(

b+ 1

4a+ pb2

)( −1
4a+ pb2

)−k−1/2

(4p(1 + b)z + (4a+ pb2))k+1/2
)

,
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Proposition 2.1 gives the identity

f |U(p)|W (p)2 =
(−1
p

)(

b+ 1

4a+ pb2

)( −1
4a+ pb2

)−k−1/2

f |U(p).

Since
(

−1
4a+pb2

)

=
(

−1
p

)

, to complete the proof we have to show that
(

b+ 1

4a+ pb2

)

= 1.

For this we choose l ∈ N maximal such that 2l | (b+1). Moreover, we assume
that a ≡ 0 (mod2) (i.e. b ≡ p (mod8)). The Law of Quadratic Reciprocity
implies that

(

b+ 1

4a+ pb2

)

=

(

2

p

)l

(−1)
1

4

(

b+1

2l
−1
)

(p−1)
( −1
(b+ 1)/2l

)

.(3.4)

Here we used the fact that 4a− pb = −1. To prove that the right-hand side
of (3.4) equals 1, we distinguish the cases whether l > 1 or l = 1.

If l > 1, then p ≡ b ≡ 3 (mod4). Using the fact that in this case

(−1)
1

4

(

b+1

2l
−1
)

(p−1)
=

( −1
(b+ 1)/2l

)

,

we find from (3.4) that
(

b+ 1

4a+ pb2

)

=

(

2

p

)l

.

Thus the claim is clear if l is even. If l is odd, then p ≡ b ≡ −1 (mod8) and
therefore

(

2
p

)

= 1. Thus we also obtain the claim.

If l = 1, then p ≡ b ≡ 1,−3 (mod8). If p ≡ b ≡ 1 (mod8), then we see
from (3.4) that

(

b+1
4a+pb2

)

= 1, since
(

2

p

)

= 1, (−1) 14( b+12 −1)(p−1) = 1,
( −1
(b+ 1)/2

)

= 1.

If p ≡ b ≡ 5 (mod8), we also obtain
(

b+1
4a+pb2

)

= 1 from (3.4), since
(

2

p

)

= −1, (−1) 14( b+12 −1)(p−1) = 1,
( −1
(b+ 1)/2

)

= −1.

The following lemma relates the action of U(p) and W (p) on
M+,ε
k+1/2
(Γ0(4p)).

Lemma 3.5. If f ∈M+,ε
k+1/2
(Γ0(4p)), where ε ∈ {±1}, then

f |p−k/2+1/4U(p)|W (p)
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is inM+,εk+1/2(Γ0(4p)). Moreover ,

f |W (p) = ε
(−1
p

)k+1/2

p−k/2+1/4f |U(p).

Proof. Exactly as in [Ko, p. 41], we obtain for f =
∑

n≫−∞ a(n)q
n the

following identity:

(3.5) f |p−k/2+1/4U(p)|W (p)

=
∑

n≫−∞

(

(−1)kn
p

)

a(n)qn + p−1/2f

∣

∣

∣

∣

((

1 ν0
0 p

)

, pk/2+1/4
)∣

∣

∣

∣

W (p),

where ν0 is an integer with 1+4ν0 ≡ 0 (mod p). Since f ∈M+,εk+1/2(Γ0(4p)),
it is clear that the Fourier coefficients of the first term vanish unless

(

(−1)kn
p

)

= ε.

Moreover, the coefficients of the second term vanish unless p |n, which fol-
lows directly from the identity

(3.6)

((

1 ν0
0 p

)

, pk/2+1/4
)

W (p)

=

((

1 0
0 1

)

,

(−1
p

)k+1/2)

C∗W (p)

((

p 0
0 1

)

, p−k/2−1/4
)

,

where C ∈ Γ0(4p). Since Kohnen (see page 39 of [Ko]) proved that
f |p−k/2+1/4U(p)|W (p) ∈Mk+1/2(Γ0(4p)),

these calculations show that f |p−k/2+1/4U(p)|W (p) ∈M+,εk+1/2(Γ0(4p)).
For the second part of the lemma, note that (3.5) and (3.6) imply

f |p−k/2+1/4U(p)|W (p) = εf − εf |U(p)|V (p)

+

(−1
p

)−k−1/2

pk/2−1/4f |W (p)|V (p).

Since f |p−k/2+1/4U(p)|W (p) ∈M+,εk+1/2(Γ0(4p)), we have

h∗ := −εf |U(p)|V (p) +
(−1
p

)−k−1/2

pk/2−1/4f |W (p)|V (p)

∈M+,ε
k+1/2
(Γ0(4p)).

If h∗ =
∑

n≫−∞ c(n)q
n, then the coefficients c(n) vanish unless p divides n.

A theorem of Serre and Stark (Theorem 1 of [SS]) then implies that h∗

= h0|V (p), where h0 ∈ Mk+1/2
(

Γ0(4),
(p
·

))

. Obviously, there are no such



326 K. Bringmann and K. Ono

non-zero forms, and so h0 = 0, which in turn implies that

f |p−k/2+1/4U(p)|W (p) = εf.
The second claim in the lemma now follows by applying Proposition 3.4.

Remark. The theorem of Serre and Stark employed above is stated for
holomorphic half-integral weight forms. Note that we may apply their result
to h∗(z)∆(pz)a, where ∆(z) is the usual normalized weight 12 cusp form
on SL2(Z) and a is a sufficiently large positive integer. This results in the
desired conclusion that h∗ = 0.

3.3. Proof of Theorem 1.1. Now we prove Theorem 1.1 using the results
from the previous two subsections. Lemmas 2.2 and 3.5 imply that

Tr4p4 (g) = g +

(−1
p

)−3/2

p1/4 · g|W (p)|U(p) = g + εg|U(p2).

Therefore,

Tr4p4 (g) =
∑

m≥1

(a(−m) + εa(−mp2))q−m +
∑

n≥0

(a(n) + εa(np2))qn.

By its Fourier expansion and Lemma 2.2, we have Tr4p4 (g) ∈ M+3/2(Γ0(4)),
and

Tr4p4 (g) =
∑

m≥1

(a(−m) + εa(−mp2))gm(z).

Here we require that the gm are uniquely determined by their “princi-
pal parts”, together with the fact that there are no holomorphic forms in
M+3/2(Γ0(4)).
Proof of Corollary 1.2. By applying Theorem 1.1 to the modular form

Gp(f, z) from Theorem 3.3, we obtain the identity

Tr4p4 (Gp(f, z)) = −
∑

m≥1

(

∑

n≥1

ma(−mn) + p2ma(−mp2n)
)

gm2(z).

The corollary now follows from Theorem 3.3 and Lemma 3.2.
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