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1. Introduction. Let I" C PSLy(R) be a Fuchsian group of the first
kind acting on the complex upper half plane H and X the resulting mod-
ular curve, i.e. the complex points of X can be described analytically as
a compactification of the quotient I" \ ‘H by adding cusps of I'. Further,
suppose we have a non-constant map ¢ : X — F, where E is some ellip-
tic curve defined over Q, i.e. E is modular. The pull-back of the unique
(up to scalar multiplication) holomorphic differential on F is the differential
2rif(7)dr, where f : H — C is a holomorphic cuspform of weight 2 on I
(we assume that the Manin constant is 1). Recent results ([1], [2], [6]-[8])
show that every elliptic curve E defined over QQ is modular, i.e. there exist
¢ : Xo(N) — E and f related to E as above, the integer N being the con-
ductor of E and f is a newform of level N. We refer to the map ¢ as “the
modular parameterization.”

In [9], Zagier computes the Petersson norm of the cusp-form f, related
to E as above, in two different ways. He thus obtains a formula for the
degree of the modular parameterization in terms of period integrals on the
modular curve. In this paper we extend the ideas presented in [9] to obtain
another formula for the degree of the modular parameterization and one
for the Hecke eigenvalues (Fourier coefficients) of the the cusp form f. The
degree of the map ¢ : Xo(N) — E is of interest for it was shown by Frey [3]
that Szpiro’s conjecture (relating the conductor and discriminant of elliptic
curves over Q) is equivalent to the degree of the map ¢ having polynomial
growth in the level N. The Hurwitz formula gives no information about the
degree since the Euler characteristic of F is zero.
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2. Fundamental domains and the homomorphism C;. Let I' C
PSL3(R) be a Fuchsian group of the first kind acting on the complex upper
half plane H and F = I' \ ‘H* be a fundamental domain for the action
(H* = HU{cusps of I'}). We view F as a hyperbolic polygon with vertices
being interior or boundary points of ‘H and having a finite number of edges
which are identified in pairs in F. The vertices { P; } jc; are labeled in such a
way that P4 is the successor of P; in the natural orientation. Let e; denote
the edge PjPji1, ej~ the edge with which it gets identified and ~; € I" the
element that identifies them. The map * : J — J is an involution on J and
the matrices 7, are generators of I" satisfying v« = fyj_l. Henceforth we fix
these matrices {7, };es to be our preferred set of generators for I'.

We have «;(P;) = Pj«41 and the map T': J — J sending j — j* +1
breaks J up into finitely many orbits [j] = {j = T%4,T4,T?j,..., T 15}
in such a way that two vertices P; and Pj are identified in F iff j and
j' are in the same orbit. We pick a base point jo in each orbit and define
a partial order on J by j < j’' if 7 and j' belong to the same orbit and
j =T%0,j = T"jo with 0 < a < b < t = the size of the orbit.

The following construction allows us to pass from holomorphic cusp-
forms of weight 2 for I" (denoted S3(I")) to homomorphisms from I” to the
additive complex numbers C. Fix f € So(I), 79 € H* and put

T

Gy (7) = 2mi | £(£)dE.

70
Since f is holomorphic @¢(7) is well defined and for v € I', the invariance
of f(7)dr gives

¥(70)
Dr(y(7)) = Bp(r) =2mi | f(€)de=Cy(v).
To
It is easy to show (see [4]) that C'f(v) is independent of base-point 7y and
it defines a homomorphism Cy : I' — C. Its kernel contains all elliptic and
parabolic elements of I" as well as commutators.

3. The Petersson inner product. For f and g € So(I") their Peters-
son inner product (f,g) is defined to be

i S _
(F.9) = 2 {§ F)ar dr n
f
In [9], Zagier computes the Petersson norm of f in terms of the values
of C¢(v;) for the preferred generators {;};cs of (see §2) I'. We show that
his method works for arbitrary f and g € S3(I") and in so doing obtain
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THEOREM 1. With the above notation, the Petersson inner product of f
and g in Sy(I") is

) (9= s (L GG +2 Y Cn)T0s)).
jedJ j,j_;%]

REMARK. Let f = g in (1) and keeping in mind that || f||? is real we
recover the formula in [9], i.e.

1 _
(2) I£1I? = 32 > Im(Cr(v;)Cr (7))
g.g'€Jd
3=3’

On the other hand, assuming that we have ¢ : X — E = C/A (see §1)
for some lattice A C C then the holomorphic differential dz on C being A-
invariant defines a form on E. The pull-back ¢*(dz) is of the form 27i f(7)dr
for some f € S3(I") and we have

IfP=1 | s@dra T

I'o(N)\H
4 i .
= ? S (dz) A p* (dZ) ﬁ deg(<p) X dz N\ dz,
I'o(N)\H B
(3) 171 = 28 voim),

where Vol(F) is the area of the fundamental period parallelogram for the
lattice A.
Equations (2) and (3) are combined in [9] to give the following formula:

de5(9) = 55178 32 miC0,) 000

4. The action of the Hecke operators on C; and explicit formu-
las for the degree of the modular parameterization and Hecke
eigenvalues of f. Fix f € S3([y(N)) with Fourier expansion f(r) =
351 an€™ "7 and for each prime p with (p, N) = 1, let T'(p) be the weight
2 Hecke operator. The operator T'(p) acts on the cusp-form f as follows:

T()(f(r)) = ;;;f(”l> Tl m).

p

Further, let the matrices {v;};ecs be the preferred generators of the Hecke
congruence subgroup I(N). Then, for a fixed prime p not dividing N, we
have



100 A. Budhram

THEOREM 2.

Crp) (V) an, 3O (k)
kedJ

1 .

Here nppj = > 1o (Mig + m?«,j,l) + mgj and the integers my,, mgw-yl and
ng are defined as follows. For a fixed j € J, let A;, Bj; and D; denote the
matrices in I'h(N) that map 0 to l/p, (v;(0) +1)/p and py;(0) respectively.
Write these matrices as a product of the standard generators, i.e.

Qe 1 Bhy it Ok,
A = Ve, s B, = H Vi and Dj = H V.,
=1 i1 i=1
(keJ) (keJ) (keJ)
and set
/ 1!

Mer= Y Qka, M= Brge and mil ;=" b ;.

ki=k ki=k ki=k

REMARK. Note that the coefficients n, 1 ; do not depend on the cusp-
form f.

Combining Theorem 2 and equation (2), with the added assumption that
the function f is a newform of level IV, results in

T f) = org > W(Crins()Cr ),
i€l
J=J

1 —
) allfIP = g5 > D nps In(Cr(m)Cr(3))-
Jj'ed ked
i=J’
Now equation (3) coupled with (4) results in the following two corollaries.

COROLLARY 1. The pth Hecke eigenvalue (Fourier coefficient) of the
cusp-form f is
1

6) %= aowerE) o 2 ks I(Crw)Cr ().
3,3 EJ keJ

COROLLARY 2. For each prime p we have
1

(6) deg(p) = 2a,Vol(B) >0 npk Im(Cr () Cr(5))-
P i eJ kel
J=g’

REMARKS. In [5] Goldfeld gives an algorithm for computing the numbers
Ct(y) for f € S2(IH(N)) and v € IH(N) if the first N2 Fourier coefficients
of f are known. Moreover, one can compute the degree of the map ¢ without
knowledge of the Fourier coefficients and vice-versa.
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5. A proof of Theorem 1. Starting with the definition of the Petersson
inner product we compute

(f.9) =

T

= e rgmar) (#40r) = 2mi | f(6) )

70

f
1 -
= — S @¢(7)g(T)dr  (by Stokes’ theorem)
T

Since ej« is the image of e; under ; with orientation reversed and g(7)dr
is y;-invariant, we have

Consequently,

(£.9) = 5= 3 §15(r) = @5yl 07

Recall that v;- = ’yj_l and that Cy is a homomorphism. Replace j by j* in
the first summation to obtain

Zcf ;) P J+1 Zcf Vi) P*-H Zcf Py(Pj+41)
= =3 ) BB
:_Zcf% +¢(P)]

Inserting this in the last line of the previous computation and simplifying
gives

I,9 16 5 9 (s "‘QCf('Y]) 9(P))-
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Finally, we break up the second sum into orbits under 7' (see §2). Let
[50] = {Jo, Tjo,---, T 1jo} be a typical orbit with T%jy = jo. Now observe
that > crol Cf(’yj) = 0 because [];c(;,7 .ﬁxes Pj, henc.e is the identity
or an element of finite order. This observatlon proves fruitful as the next
computation will show:

Z Cy( 'VJ Z Cr(7;)[Pg(P)) — Pg(Pj,)]
J€ljo] J€[jo]

Z Cr(v5) Z 9(75)

J€[jo] J'=j

since P; = ([];/<;7j7)Pj,- Combining all of this gives Theorem 1.

6. A proof of Theorem 2. Once again we start with the definition of
the action of the Hecke operator T'(p) on the cusp-form f and compute

75 (70)

Crapyp(yy) =2mi | T(p)f(€)de

70

—1 ;5 (7 75 (70)
. E4 1\ d€
:27(7,( E X f( » )?‘F S f(pf)pdg)

O ———— T e
§—pg'—l
p—1 (v (T0)+0)/p p7;(70)
—omi(> | f@dg+ | s©d).
=0 (ro+)/p P70

We know that C is independent of base-point so pick 79 = 0 to obtain

p—1 0  (wO)+)/p p7;(0)

Crop) =2mi( 3 (J+ | )r@de+ § rea).

=0 I/p 0 0

Since (p, N)=1it is easy to show that the rational numbers {/p, (v;(0) +1)/p
and py;(0) are all I)(N) equivalent to 0. Hence there exist matrices 4;, B;;
and D; (allin IH(N)) with 4;(0) = 1/p, B;:(0) = (v;(0) +1)/p and D;(0) =
p7;(0). This gives
1 0 B;.(0) D;(0)

|+ 1 Jr@a+ | reax)

1=0  A;(0) 0 0

(Z —Cy(Ay) + Cp (B )]—i-Cf(Dj)).
=0

(7) Cwmﬂw)=2m(
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Like any other element of IH(V), each of these matrices can be written in
terms of the preferred generators, i.e.

, L Sk,
A = ’Y]jék“lv Bj,l _ H ,ykikwy,l and Dj = H ”)/kf“].
i=1 i=1 i=1
(ked) (ked) (keld)
Since C'y is a homomorphism this allows us to express each term in the

expression (4) as a Z-linear combination of {C'f (k) }re.s. More precisely, for
a fixed j and [ we have

Oy = TT %) = Y musCrlw),

i=1 keJ
(keJ)
Br; 4,
Cy(Bji) = Cf( Mo l) = > mi . Cr(m);
i=1 keJ
(keJ)
Si.
Cr(D;) = Cf( H ’ijw) = ng,jcf(%)-
=1 keJ
(keJ)

Here the coefficients of C'f () on the right of any of these equations is the
sum of all numbers that occur as an exponent of 7 in the factorization
of the corresponding matrix on the left (i.e., my,; = Zki:k ag, 1 etc.). The
summation on the right can be taken over hyperbolic generators only since
C¢ () is zero for parabolic and elliptic elements. Combining all of this gives

p—1
Crs () = (Z(mk,z +mp ) + m%g)@(%)-
kedJ 1=0

Setting np 55 = S0 (M, + my, ;;) +my ; establishes Theorem 2.
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