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1. Introduction. Let Γ ⊂ PSL2(R) be a Fuchsian group of the first
kind acting on the complex upper half plane H and X the resulting mod-
ular curve, i.e. the complex points of X can be described analytically as
a compactification of the quotient Γ \ H by adding cusps of Γ . Further,
suppose we have a non-constant map ϕ : X → E, where E is some ellip-
tic curve defined over Q, i.e. E is modular. The pull-back of the unique
(up to scalar multiplication) holomorphic differential on E is the differential
2πif(τ)dτ , where f : H → C is a holomorphic cuspform of weight 2 on Γ
(we assume that the Manin constant is 1). Recent results ([1], [2], [6]–[8])
show that every elliptic curve E defined over Q is modular, i.e. there exist
ϕ : X0(N)→ E and f related to E as above, the integer N being the con-
ductor of E and f is a newform of level N . We refer to the map ϕ as “the
modular parameterization.”

In [9], Zagier computes the Petersson norm of the cusp-form f , related
to E as above, in two different ways. He thus obtains a formula for the
degree of the modular parameterization in terms of period integrals on the
modular curve. In this paper we extend the ideas presented in [9] to obtain
another formula for the degree of the modular parameterization and one
for the Hecke eigenvalues (Fourier coefficients) of the the cusp form f . The
degree of the map ϕ : X0(N)→ E is of interest for it was shown by Frey [3]
that Szpiro’s conjecture (relating the conductor and discriminant of elliptic
curves over Q) is equivalent to the degree of the map ϕ having polynomial
growth in the level N . The Hurwitz formula gives no information about the
degree since the Euler characteristic of E is zero.
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2. Fundamental domains and the homomorphism Cf . Let Γ ⊂
PSL2(R) be a Fuchsian group of the first kind acting on the complex upper
half plane H and F = Γ \ H∗ be a fundamental domain for the action
(H∗ = H∪{cusps of Γ}). We view F as a hyperbolic polygon with vertices
being interior or boundary points of H and having a finite number of edges
which are identified in pairs in F . The vertices {Pj}j∈J are labeled in such a
way that Pj+1 is the successor of Pj in the natural orientation. Let ej denote
the edge PjPj+1, ej∗ the edge with which it gets identified and γj ∈ Γ the
element that identifies them. The map ∗ : J → J is an involution on J and
the matrices γj are generators of Γ satisfying γj∗ = γ−1

j . Henceforth we fix
these matrices {γj}j∈J to be our preferred set of generators for Γ .

We have γj(Pj) = Pj∗+1 and the map T : J → J sending j 7→ j∗ + 1
breaks J up into finitely many orbits [j] = {j = T tj, T j, T 2j, . . . , T t−1j}
in such a way that two vertices Pj and Pj′ are identified in F iff j and
j′ are in the same orbit. We pick a base point j0 in each orbit and define
a partial order on J by j ≺ j′ if j and j′ belong to the same orbit and
j = T aj0, j

′ = T bj0 with 0 ≤ a < b < t = the size of the orbit.
The following construction allows us to pass from holomorphic cusp-

forms of weight 2 for Γ (denoted S2(Γ )) to homomorphisms from Γ to the
additive complex numbers C. Fix f ∈ S2(Γ ), τ0 ∈ H∗ and put

Φf (τ) = 2πi
τ�

τ0

f(ξ) dξ.

Since f is holomorphic Φf (τ) is well defined and for γ ∈ Γ , the invariance
of f(τ)dτ gives

Φf (γ(τ))− Φf (τ) = 2πi
γ(τ0)�

τ0

f(ξ) dξ = Cf (γ).

It is easy to show (see [4]) that Cf (γ) is independent of base-point τ0 and
it defines a homomorphism Cf : Γ → C. Its kernel contains all elliptic and
parabolic elements of Γ as well as commutators.

3. The Petersson inner product. For f and g ∈ S2(Γ ) their Peters-
son inner product 〈f, g〉 is defined to be

〈f, g〉 =
i

2

���

F
f(τ)g(τ)dτ ∧ dτ .

In [9], Zagier computes the Petersson norm of f in terms of the values
of Cf (γj) for the preferred generators {γj}j∈J of (see §2) Γ . We show that
his method works for arbitrary f and g ∈ S2(Γ ) and in so doing obtain
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Theorem 1. With the above notation, the Petersson inner product of f
and g in S2(Γ ) is

(1) 〈f, g〉 =
i

16π2

(∑

j∈J
Cf (γj)Cg(γj) + 2

∑

j,j′∈J
j≺j′

Cf (γj)Cg(γj′)
)
.

Remark. Let f = g in (1) and keeping in mind that ‖f‖2 is real we
recover the formula in [9], i.e.

(2) ‖f‖2 =
1

8π2

∑

j,j′∈J
j≺j′

Im(Cf (γj)Cf (γ′j)).

On the other hand, assuming that we have ϕ : X → E = C/Λ (see §1)
for some lattice Λ ⊂ C then the holomorphic differential dz on C being Λ-
invariant defines a form on E. The pull-back ϕ∗(dz) is of the form 2πif(τ)dτ
for some f ∈ S2(Γ ) and we have

‖f‖2 =
i

2

�

Γ0(N)\H
f(τ) dτ ∧ f(τ) dτ

=
i

8π2

�

Γ0(N)\H
ϕ∗(dz) ∧ ϕ∗(dz) =

i

8π2 deg(ϕ)
�

E

dz ∧ dz,

‖f‖2 =
deg(ϕ)

4π2 Vol(E),(3)

where Vol(E) is the area of the fundamental period parallelogram for the
lattice Λ.

Equations (2) and (3) are combined in [9] to give the following formula:

deg(ϕ) =
1

2 Vol(E)

∑

j,j′∈J
j≺j′

Im(Cf (γj)Cf (γ′j)).

4. The action of the Hecke operators on Cf and explicit formu-
las for the degree of the modular parameterization and Hecke
eigenvalues of f . Fix f ∈ S2(Γ0(N)) with Fourier expansion f(τ) =∑
n≥1 ane

2πinτ , and for each prime p with (p,N) = 1, let T (p) be the weight
2 Hecke operator. The operator T (p) acts on the cusp-form f as follows:

T (p)(f(τ)) =
1
p

p−1∑

l=0

f

(
τ + l

p

)
+ pf(pτ).

Further, let the matrices {γj}j∈J be the preferred generators of the Hecke
congruence subgroup Γ0(N). Then, for a fixed prime p not dividing N , we
have
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Theorem 2.
CT (p)f (γj) =

∑

k∈J
np,k,jCf (γk).

Here np,k,j =
∑p−1
l=0 (mk,l +m′k,j,l) + m′′k,j and the integers mk,l, m′k,j,l and

m′′k,j are defined as follows. For a fixed j ∈ J , let Al, Bj,l and Dj denote the
matrices in Γ0(N) that map 0 to l/p, (γj(0) + l)/p and pγj(0) respectively.
Write these matrices as a product of the standard generators, i.e.

Al =
∏

i=1
(k∈J)

γ
αki,l
ki

, Bj,l =
∏

i=1
(k∈J)

γ
βki,j,l
ki

and Dj =
∏

i=1
(k∈J)

γ
δki,j
ki

and set

mk,l =
∑

ki=k

αki,l, m′k,j,l =
∑

ki=k

βki,j,l and m′′k,j =
∑

ki=k

δki,j .

Remark. Note that the coefficients np,k,j do not depend on the cusp-
form f .

Combining Theorem 2 and equation (2), with the added assumption that
the function f is a newform of level N , results in

〈T (p)f, f〉 =
1

8π2

∑

j,j′∈J
j≺j′

Im(CT (p)f (γj)Cf (γ′j)),

ap‖f‖2 =
1

8π2

∑

j,j′∈J
j≺j′

∑

k∈J
np,k,j Im(Cf (γk)Cf (γ′j)).(4)

Now equation (3) coupled with (4) results in the following two corollaries.

Corollary 1. The pth Hecke eigenvalue (Fourier coefficient) of the
cusp-form f is

(5) ap =
1

2 deg(ϕ)Vol(E)

∑

j,j′∈J
j≺j′

∑

k∈J
np,k,j Im(Cf (γk)Cf (γj′)).

Corollary 2. For each prime p we have

(6) deg(ϕ) =
1

2apVol(E)

∑

j,j′∈J
j≺j′

∑

k∈J
np,k,j Im(Cf (γk)Cf (γj′)).

Remarks. In [5] Goldfeld gives an algorithm for computing the numbers
Cf (γ) for f ∈ S2(Γ0(N)) and γ ∈ Γ0(N) if the first N2 Fourier coefficients
of f are known. Moreover, one can compute the degree of the map ϕ without
knowledge of the Fourier coefficients and vice-versa.
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5. A proof of Theorem 1. Starting with the definition of the Petersson
inner product we compute

〈f, g〉 =
i

2

� �

F
f(τ)g(τ)dτ ∧ dτ

=
1

4π

� �

F
d[Φf (τ)g(τ) dτ ]

(
Φf (τ) = 2πi

τ�

τ0

f(ξ) dξ
)

=
1

4π

�

∂F
Φf (τ)g(τ) dτ (by Stokes’ theorem)

=
1

4π

∑

j

�

ej

Φf (τ)g(τ)dτ

=
1

8π

∑

j

( �

ej

+
�

ej∗

)
Φf (τ)g(τ)dτ .

Since ej∗ is the image of ej under γj with orientation reversed and g(τ)dτ
is γj-invariant, we have

�

ej∗

Φf (τ)g(τ)dτ = −
�

ej

Φf (γjτ)g(τ) dτ .

Consequently,

〈f, g〉 =
1

8π

∑

j

�

ej

[Φf (τ)− Φf (γjτ)]g(τ)dτ

= − 1
8π

∑

j

�

ej

Cf (γj)g(τ)dτ

= − i

16π2

∑

j

Cf (γj)[Φg(Pj+1)− Φg(Pj)].

Recall that γj∗ = γ−1
j and that Cf is a homomorphism. Replace j by j∗ in

the first summation to obtain
∑

Cf (γj)Φg(Pj+1) =
∑

Cf (γj∗)Φg(Pj∗+1) =
∑

Cf (γ−1
j )Φg(Pj∗+1)

= −
∑

Cf (γj)Φg(γj(Pj))

= −
∑

Cf (γj)[Cg(γj) + Φg(Pj)].

Inserting this in the last line of the previous computation and simplifying
gives

〈f, g〉 =
i

16π2

∑

j

(Cf (γj)Cg(γj) + 2Cf (γj)Φg(Pj)).
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Finally, we break up the second sum into orbits under T (see §2). Let
[j0] = {j0, T j0, . . . , T t−1j0} be a typical orbit with T tj0 = j0. Now observe
that

∑
j∈[j0] Cf (γj) = 0 because

∏
j∈[j0] γj fixes Pj0 hence is the identity

or an element of finite order. This observation proves fruitful as the next
computation will show:

∑

j∈[j0]

Cf (γj)Φg(Pj) =
∑

j∈[j0]

Cf (γj)[Φg(Pj)− Φg(Pj0)]

=
∑

j∈[j0]

Cf (γj)
∑

j′≺j
Cg(γj′)

since Pj = (
∏
j′≺j γj′)Pj0 . Combining all of this gives Theorem 1.

6. A proof of Theorem 2. Once again we start with the definition of
the action of the Hecke operator T (p) on the cusp-form f and compute

CT (p)f (γj) = 2πi
γj(τ0)�

τ0

T (p)f(ξ) dξ

= 2πi
( p−1∑

l=0

γj(τ0)�

τ0

f

(
ξ + l

p

)
dξ

p︸ ︷︷ ︸
ξ 7→pξ′−l

+
γj(τ0)�

τ0

f(pξ)p dξ︸ ︷︷ ︸
ξ 7→ξ′/p

)

= 2πi
( p−1∑

l=0

(γj(τ0)+l)/p�

(τ0+l)/p

f(ξ) dξ +
pγj(τ0)�

pτ0

f(ξ) dξ
)
.

We know that Cf is independent of base-point so pick τ0 = 0 to obtain

CT (p)f (γj) = 2πi
( p−1∑

l=0

( 0�

l/p

+
(γj(0)+l)/p�

0

)
f(ξ) dξ +

pγj(0)�

0

f(ξ) dξ
)
.

Since (p,N)=1 it is easy to show that the rational numbers l/p, (γj(0) + l)/p
and pγj(0) are all Γ0(N) equivalent to 0. Hence there exist matrices Al, Bj,l
and Dj (all in Γ0(N)) with Al(0) = l/p, Bj,l(0) = (γj(0) + l)/p and Dj(0) =
pγj(0). This gives

CT (p)f (γj) = 2πi
( p−1∑

l=0

( 0�

Al(0)

+
Bj,l(0)�

0

)
f(ξ) dξ +

Dj(0)�

0

f(ξ) dξ
)

(7)

=
( p−1∑

l=0

[−Cf (Al) + Cf (Bj,l)] + Cf (Dj)
)
.
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Like any other element of Γ0(N), each of these matrices can be written in
terms of the preferred generators, i.e.

Al =
∏

i=1
(k∈J)

γ
αki,l
ki

, Bj,l =
∏

i=1
(k∈J)

γ
βki,j,l
ki

and Dj =
∏

i=1
(k∈J)

γ
δki,j
ki

.

Since Cf is a homomorphism this allows us to express each term in the
expression (4) as a Z-linear combination of {Cf (γk)}k∈J . More precisely, for
a fixed j and l we have

Cf (Al) = Cf

( ∏

i=1
(k∈J)

γ
αki,l
ki

)
=
∑

k∈J
mk,lCf (γk),

Cf (Bj,l) = Cf

( ∏

i=1
(k∈J)

γ
βki,j,l
ki

)
=
∑

k∈J
m′k,j,lCf (γk),

Cf (Dj) = Cf

( ∏

i=1
(k∈J)

γ
δki,j
ki

)
=
∑

k∈J
m′′k,jCf (γk).

Here the coefficients of Cf (γk) on the right of any of these equations is the
sum of all numbers that occur as an exponent of γk in the factorization
of the corresponding matrix on the left (i.e., mk,l =

∑
ki=k αki,l etc.). The

summation on the right can be taken over hyperbolic generators only since
Cf (γ) is zero for parabolic and elliptic elements. Combining all of this gives

CT (p)f (γj) =
∑

k∈J

( p−1∑

l=0

(mk,l +m′k,j,l) +m′′k,j
)
Cf (γk).

Setting np,k,j =
∑p−1
l=0 (mk,l +m′k,j,l) +m′′k,j establishes Theorem 2.
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