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On additive bases with two elements
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1. Introduction. Let G be a finite abelian additive group. If S is a
non-empty subset, we set

Σ(S) =
{∑

x∈B
x
∣∣∣B ⊆ S,B 6= ∅

}

and
X = {m ∈ N | if S ⊆ G \ {0}, |S| ≥ m then Σ(S) = G}.

Let us observe that X 6= ∅ if |G| > 2, since |G| − 1 ∈ X. The number

c(G) = min{m | m ∈ X}
is called the critical number of G. It was first studied by Erdős and Heilbronn
[4] for G = Zp, with p a prime number. Recently the parameter c(Zq) has
been studied for various values of q (see [4], [9], [1], [8]).

For evaluation of c(G) for more general groups, the work of Diderrich [2]
was fundamental. He proved that p + q − 2 ≤ c(G) ≤ p + q − 1 if G is an
abelian group of order pq, with p, q prime numbers. Moreover he conjectured
that c(G) = p+h− 2 if |G| = ph, where p is the smallest prime dividing |G|
and h is a composite integer. First, this conjecture was checked in special
cases: for p = 2 in [3], for p ≥ 43 in [5], and for p = 3 in [7]. Then Gao and
Hamidoune [6] gave a complete proof of the conjecture.

In additive number theory we usually ask what may be said about the
set M + M , for a given subset M of some additive structure; in particular
when M +M is the whole structure. In this note, if S is a non-empty subset
of a finite abelian group G, we set

Σk(S) =
{∑

x∈B
x
∣∣∣B ⊆ S, |B| = k

}
,

for any integer k with 1 ≤ k ≤ |S|, and we study when the subset Σ2(S) of
S + S is the whole G.
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For this purpose, for integer k ≤ |G| − 1 we define

Xk = {m ∈ N | ∀S ⊆ G \ 0, |S| ≥ m⇒ Σk(S) = G}
and call the number

ck(G) = min{m | m ∈ Xk}
the kth critical number of G. For some integer k the set Xk can be empty;
in this case we set formally ck(G) = ∞. If k = 1 note that c1(G) = ∞,
since if S ⊆ G \ {0} we have Σ1(S) = S 6= G. Here we determine the 2nd
critical number of any finite abelian group G in terms of the order of its
subgroup of elements of order 2. More precisely, if HG = {2g | g ∈ G} and
KG = {g ∈ G | 2g = 0}, we prove that

c2(G) =
{

(|G|+ |KG|)/2 + 1 if HG 6= {0},
∞ if HG = {0}.

Finally, note that c(G) ≤ ck(G) for any integer k with 1 ≤ k ≤ |G|.

2. The results. First we observe that the number |G| + |KG| is even.
In fact, if |G| is odd, then KG = {0}. If |G| is even, then KG 6= {0} and any
element of KG \ {0} has order 2; therefore |KG| is a power of 2.

Theorem 2.1. Let G be an abelian group of order n. Set

HG = {2g | g ∈ G} and KG = {g ∈ G | 2g = 0}.
Then

c2(G) =
{

(|G|+ q)/2 + 1 if HG 6= {0},
∞ if HG = {0},

where q = |KG|.
Proof. Let φ : G → G be the homomorphism φ : x 7→ 2x; then we have

Kerφ = KG and Imφ = HG, therefore G/KG
∼= HG. If HG = {0} then

G = KG; this implies that each element in G \ {0} has order 2. In this case
0 cannot be the sum of two distinct elements of G; hence for each subset
S ⊆ G \ {0} we have Σ2(S) 6= G, i.e. c2(G) =∞. We can therefore assume
that HG 6= {0} (in this case note that n ≥ 2q since |HG| ≥ 2).

Let S be a non-empty subset of G such that 0 6∈ S and |S| ≥ (n+q)/2+1.
Let a ∈ G. We claim that a ∈ Σ2(S). Let a1, . . . , am be m = (n+ q)/2 + 1
distinct elements of S. We set

A = {a1, . . . , am}, B = a− A = {a− a1, . . . , a− am}.
Since |G| = n ≥ |A ∪B| = |A|+ |B| − |A ∩B|, it follows that

|A ∩B| ≥ 2m− n = 2
(
n+ q

2
+ 1
)
− n = q + 2.
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There exist therefore q+2 distinct elements ai1 , . . . , aiq+2 of A such that

ai1 = a− aj1 , . . . , aiq+2 = a− ajq+2 ,

where aj1 , . . . , ajq+2 are elements of A. We obtain

a = ai1 + aj1 = . . . = aiq+2 + ajq+2 ,

where ai1 , . . . , aiq+2 , aj1 , . . . , ajq+2 are elements of A.
Now, if aik 6= ajk for some k ∈ {1, . . . , q+2}, then a = aik +ajk ∈ Σ2(S);

thus now we suppose that

ai1 = aj1 , . . . , aiq+2 = ajq+2 ,

i.e.

(1) a = 2ai1 = 2ai2 = . . . = 2aiq+2 .

Set Ka = {x ∈ G | 2x = a}. By (1) it follows that Ka 6= ∅. For every
c ∈ Ka the map KG → Ka, x 7→ x + c, is onto and one-to-one; whence
q = |KG| = |Ka|. This implies that G contains exactly q distinct elements,
say y1, . . . , yq, for which 2yi = a (i = 1, . . . , q); but this contradicts (1)
since ai1 , . . . , aiq+2 are themselves distinct. Thus we have proved our claim.
This also proves that c2(G) ≤ (n + q)/2 + 1. We now want to construct a
subset S ⊆ G\{0} having exactly (n+ q)/2 distinct elements and such that
Σ2(S) 6= G.

Let a ∈ HG \ {0}. By definition of HG there exists c ∈ G \ {0} such that
2c = a. If KG+ c is the coset {k+ c | k ∈ G}, we have |G\ (KG+ c)| = n− q
(where n−q is even ≥ 2 since n ≥ 2q, say n−q = 2m). We now observe that
G\(KG+c) can be partitioned into disjoint pairs of the type {x, a−x}, with
a− x 6= x. In fact, if x ∈ G \ (KG + c), also a− x ∈ G \ (KG + c) (otherwise
a− x = k+ c with k ∈ KG implies x = −k− c+ a = −k− c+ 2c = −k+ c,
which is absurd); moreover, a − x 6= x (otherwise a = 2x = 2c implies
2(x − c) = 0, i.e. x − c ∈ KG). Now, since two pairs {x, a − x}, {y, a − y}
with x, y ∈ G \ (KG + c) either coincide or are disjoint, we can suppose that
G \ (KG + c) has the form

{x1, . . . , xm, a− x1, . . . , a− xm},
where m = (n− q)/2.

First assume that 0 6∈ {x1, . . . , xm}. In this case we set

S = {x1, . . . , xm} ∪ (KG + c).

Then 0 6∈ S (if 0 ∈ KG + c, then c ∈ KG implies that 0 = 2c = a, which is
impossible) and |S| = m + q = (n − q)/2 + q = (n + q)/2. We prove that
a 6∈ Σ2(S). In fact, a ∈ Σ2(S) if and only if one of the following conditions
is satisfied:
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(i) a = xi + xj , where i, j ∈ {1, . . . ,m} and i 6= j; but then a − xj =
xi ∈ S, and this contradicts the definition of S.

(ii) a = xi + (k + c), where i ∈ {1, . . . ,m} and k ∈ KG; in this case we
have xi = a− k − c = 2c− k − c = −k + c ∈ KG + c, which is impossible.

(iii) a = (k+ c)+(k+ c), where k and k are two distinct elements of KG;
but then a = k+ k+ 2c = k+ k+ a implies k+ k = 0 and since k ∈ KG we
also have k + k = 0, i.e. k = k, which is absurd. Hence a 6∈ Σ2(S).

If 0 ∈ {x1, . . . , xm}, then 0 6∈ {a− x1, . . . , a− xm} and thus we set

S = {a− x1, . . . , a− xm} ∪ (KG + c).

In this case we also have 0 6∈ S, |S| = (n+q)/2 and a 6∈ Σ2(S) (the conditions
analogous to (i)–(iii) are excluded in the same way as above). Hence in both
cases a 6∈ Σ2(S) and thus Σ2(S) 6= G. This shows that c2(G) ≥ (n+q)/2+1.
Hence

c2(G) =
n+ q

2
+ 1 if HG 6= {0}.

Corollary. Let Zn be the group of integers modulo n, with n > 2.
Then

c2(Zn) =
{

(n+ 3)/2 if n is odd ,
(n+ 4)/2 if n is even.

Proof. If n is odd, we have KZn = {0} and HZn = Zn 6= {0}; if n is even,
then KZn = {0, n/2} and HZn 6= {0} since |HZn | = n/2 6= 0. In both cases
the result follows directly from Theorem 2.1.

Finally note that if G is an abelian group of order n and S ⊆ G \ {0}
has at least dn/2e+ 1 elements, then G \HG ⊆ Σ2(S).

In fact, let a ∈ G \ HG and take m = dn/2e elements a1, . . . , am in S.
We set

A = {a1, . . . , am} and B = {a− a1, . . . , a− am}.
Now, if ai = a− aj for some pair i, j with i 6= j, then a = ai + aj ∈ Σ2(S);
on the other hand the condition ai = a − ai cannot be satisfied because
a 6∈ HG. We can suppose therefore that A ∩B = ∅. Then

|A ∪B| = |A|+ |B| = 2
⌈
n

2

⌉
≥ n

implies that A ∪ B = G. Hence the remaining element of S \ A must be
contained in B. This proves that a ∈ Σ2(S), i.e. G \HG ⊆ Σ2(S).
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[4] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9
(1964), 149–159.

[5] W. Gao, On the size of additive bases of finite groups, preprint, 1997.
[6] W. Gao and Y. O. Hamidoune, On additive bases, Acta Arith. 88 (1999), 233–237.
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