On additive bases with two elements

by

GIAMPIERO CHIASELOTTI (Cosenza)

1. Introduction. Let G be a finite abelian additive group. If S is a non-empty subset, we set

$$
\Sigma(S) = \left\{ \sum_{x \in B} x \mid B \subseteq S, B \neq \emptyset \right\}
$$

and

$$
X = \{m \in \mathbb{N} \mid \text{if } S \subseteq G \setminus \{0\}, |S| \geq m \text{ then } \Sigma(S) = G\}.
$$

Let us observe that $X \neq \emptyset$ if $|G| > 2$, since $|G| - 1 \in X$. The number

$$
c(G) = \min\{m \mid m \in X\}
$$

is called the critical number of G. It was first studied by Erdős and Heilbronn [4] for $G = \mathbb{Z}_p$, with p a prime number. Recently the parameter $c(\mathbb{Z}_q)$ has been studied for various values of q (see [4], [9], [1], [8]).

For evaluation of $c(G)$ for more general groups, the work of Diderrich [2] was fundamental. He proved that $p + q - 2 \leq c(G) \leq p + q - 1$ if G is an abelian group of order pq, with p, q prime numbers. Moreover he conjectured that $c(G) = p + h - 2$ if $|G| = ph$, where p is the smallest prime dividing $|G|$ and h is a composite integer. First, this conjecture was checked in special cases: for $p = 2$ in [3], for $p \geq 43$ in [5], and for $p = 3$ in [7]. Then Gao and Hamidoune [6] gave a complete proof of the conjecture.

In additive number theory we usually ask what may be said about the set $M + M$, for a given subset M of some additive structure; in particular when $M + M$ is the whole structure. In this note, if S is a non-empty subset of a finite abelian group G, we set

$$
\Sigma_k(S) = \left\{ \sum_{x \in B} x \mid B \subseteq S, |B| = k \right\},
$$

for any integer k with $1 \leq k \leq |S|$, and we study when the subset $\Sigma_2(S)$ of $S + S$ is the whole G.

2000 Mathematics Subject Classification: 11B75, 20K09.
For this purpose, for integer \(k \leq |G| - 1 \) we define
\[
X_k = \{ m \in \mathbb{N} \mid \forall S \subseteq G \setminus \{0\}, |S| \geq m \Rightarrow \Sigma_k(S) = G \}
\]
and call the number
\[
c_k(G) = \min\{ m \mid m \in X_k \}
\]
the \(k \)th critical number of \(G \). For some integer \(k \) the set \(X_k \) can be empty; in this case we set formally \(c_k(G) = \infty \). If \(k = 1 \) note that \(c_1(G) = \infty \), since if \(S \subseteq G \setminus \{0\} \) we have \(\Sigma_1(S) = S \neq G \). Here we determine the 2nd critical number of any finite abelian group \(G \) in terms of the order of its subgroup of elements of order 2. More precisely, if \(H_G = \{ 2g \mid g \in G \} \) and \(K_G = \{ g \in G \mid 2g = 0 \} \), we prove that
\[
c_2(G) = \begin{cases}
\left(|G| + |K_G| \right)/2 + 1 & \text{if } H_G \neq \{0\}, \\
\infty & \text{if } H_G = \{0\}.
\end{cases}
\]
Finally, note that \(c(G) \leq c_k(G) \) for any integer \(k \) with \(1 \leq k \leq |G| \).

2. The results. First we observe that the number \(|G| + |K_G| \) is even. In fact, if \(|G| \) is odd, then \(K_G = \{0\} \). If \(|G| \) is even, then \(K_G \neq \{0\} \) and any element of \(K_G \setminus \{0\} \) has order 2; therefore \(|K_G| \) is a power of 2.

Theorem 2.1. Let \(G \) be an abelian group of order \(n \). Set
\[
H_G = \{ 2g \mid g \in G \} \quad \text{and} \quad K_G = \{ g \in G \mid 2g = 0 \}.
\]
Then
\[
c_2(G) = \begin{cases}
\left(|G| + q \right)/2 + 1 & \text{if } H_G \neq \{0\}, \\
\infty & \text{if } H_G = \{0\},
\end{cases}
\]
where \(q = |K_G| \).

Proof. Let \(\phi : G \to G \) be the homomorphism \(\phi : x \mapsto 2x \); then we have \(\ker \phi = K_G \) and \(\im \phi = H_G \), therefore \(G/K_G \cong H_G \). If \(H_G = \{0\} \) then \(G = K_G \); this implies that each element in \(G \setminus \{0\} \) has order 2. In this case 0 cannot be the sum of two distinct elements of \(G \); hence for each subset \(S \subseteq G \setminus \{0\} \) we have \(\Sigma_2(S) \neq G \), i.e. \(c_2(G) = \infty \). We can therefore assume that \(H_G \neq \{0\} \) (in this case note that \(n \geq 2q \) since \(|H_G| \geq 2 \)).

Let \(S \) be a non-empty subset of \(G \) such that \(0 \notin S \) and \(|S| \geq (n+q)/2+1 \). Let \(a \in G \). We claim that \(a \in \Sigma_2(S) \). Let \(a_1, \ldots, a_m \) be \(m = (n+q)/2 + 1 \) distinct elements of \(S \). We set
\[
A = \{a_1, \ldots, a_m\}, \quad B = a - A = \{a - a_1, \ldots, a - a_m\}.
\]
Since \(|G| = n \geq |A \cup B| = |A| + |B| - |A \cap B| \), it follows that
\[
|A \cap B| \geq 2m - n = 2 \left(\frac{n+q}{2} + 1 \right) - n = q + 2.
\]
Additive bases with two elements

There exist therefore $q + 2$ distinct elements $a_{i_1}, \ldots, a_{i_{q+2}}$ of A such that
\[
a_{i_1} = a - a_{j_1}, \ldots, a_{i_{q+2}} = a - a_{j_{q+2}},
\]
where $a_{j_1}, \ldots, a_{j_{q+2}}$ are elements of A. We obtain
\[
a = a_{i_1} + a_{j_1} = \ldots = a_{i_{q+2}} + a_{j_{q+2}},
\]
where $a_{i_1}, \ldots, a_{i_{q+2}}, a_{j_1}, \ldots, a_{j_{q+2}}$ are elements of A.

Now, if $a_{i_k} \neq a_{j_k}$ for some $k \in \{1, \ldots, q + 2\}$, then $a = a_{i_k} + a_{j_k} \in \Sigma_2(S)$; thus now we suppose that
\[
a_{i_1} = a_{j_1}, \ldots, a_{i_{q+2}} = a_{j_{q+2}},
\]
i.e.
\[
(1) \quad a = 2a_{i_1} = 2a_{i_2} = \ldots = 2a_{i_{q+2}}.
\]
Set $K_a = \{x \in G \mid 2x = a\}$. By (1) it follows that $K_a \neq \emptyset$. For every $c \in K_a$ the map $K_G \to K_a, x \mapsto x + c$, is onto and one-to-one; whence $q = |K_G| = |K_a|$. This implies that G contains exactly q distinct elements, say y_1, \ldots, y_q, for which $2y_i = a$ ($i = 1, \ldots, q$); but this contradicts (1) since $a_{i_1}, \ldots, a_{i_{q+2}}$ are themselves distinct. Thus we have proved our claim. This also proves that $c_2(G) \leq (n + q)/2 + 1$. We now want to construct a subset $S \subseteq G \setminus \{0\}$ having exactly $(n + q)/2$ distinct elements and such that $\Sigma_2(S) \neq G$.

Let $a \in H_G \setminus \{0\}$. By definition of H_G there exists $c \in G \setminus \{0\}$ such that $2c = a$. If $K_G + c$ is the coset $\{k + c \mid k \in G\}$, we have $|G \setminus (K_G + c)| = n - q$ (where $n - q$ is even ≥ 2 since $n \geq 2q$, say $n - q = 2m$). We now observe that $G \setminus (K_G + c)$ can be partitioned into disjoint pairs of the type $\{x, a - x\}$, with $a - x \neq x$. In fact, if $x \in G \setminus (K_G + c)$, also $a - x \in G \setminus (K_G + c)$ (otherwise $a - x = k + c$ with $k \in K_G$ implies $x = -k - c + a = -k - c + 2c = -k + c$, which is absurd); moreover, $a - x \neq x$ (otherwise $a = 2x = 2c$ implies $2(x - c) = 0$, i.e. $x - c \in K_G$). Now, since two pairs $\{x, a - x\}, \{y, a - y\}$ with $x, y \in G \setminus (K_G + c)$ either coincide or are disjoint, we can suppose that $G \setminus (K_G + c)$ has the form
\[
\{x_1, \ldots, x_m, a - x_1, \ldots, a - x_m\},
\]
where $m = (n - q)/2$.

First assume that $0 \notin \{x_1, \ldots, x_m\}$. In this case we set
\[
S = \{x_1, \ldots, x_m\} \cup (K_G + c).
\]
Then $0 \notin S$ (if $0 \in K_G + c$, then $c \in K_G$ implies that $0 = 2c = a$, which is impossible) and $|S| = m + q = (n - q)/2 + q = (n + q)/2$. We prove that $a \notin \Sigma_2(S)$. In fact, $a \in \Sigma_2(S)$ if and only if one of the following conditions is satisfied:
(i) \(a = x_i + x_j\), where \(i, j \in \{1, \ldots, m\}\) and \(i \neq j\); but then \(a - x_j = x_i \in S\), and this contradicts the definition of \(S\).

(ii) \(a = x_i + (k + c)\), where \(i \in \{1, \ldots, m\}\) and \(k \in K_G\); in this case we have \(x_i = a - k - c = 2c - k - c = -k + c \in K_G + c\), which is impossible.

(iii) \(a = (k + c) + (\overline{k} + c)\), where \(k\) and \(\overline{k}\) are two distinct elements of \(K_G\); but then \(a = k + \overline{k} + 2c = k + \overline{k} + a\) implies \(k + \overline{k} = 0\) and since \(k \in K_G\) we also have \(k + k = 0\), i.e. \(k = \overline{k}\), which is absurd. Hence \(a \notin \Sigma_2(S)\).

If \(0 \in \{x_1, \ldots, x_m\}\), then \(0 \notin \{a - x_1, \ldots, a - x_m\}\) and thus we set
\[
S = \{a - x_1, \ldots, a - x_m\} \cup (K_G + c).
\]
In this case we also have \(0 \notin S\), \(|S| = (n+q)/2\) and \(a \notin \Sigma_2(S)\) (the conditions analogous to (i)–(iii) are excluded in the same way as above). Hence in both cases \(a \notin \Sigma_2(S)\) and thus \(\Sigma_2(S) \neq G\). This shows that \(c_2(G) \geq (n+q)/2+1\). Hence
\[
c_2(G) = \frac{n + q}{2} + 1 \quad \text{if } H_G \neq \{0\}. \quad \blacksquare
\]

Corollary. Let \(\mathbb{Z}_n\) be the group of integers modulo \(n\), with \(n > 2\).

Then
\[
c_2(\mathbb{Z}_n) = \begin{cases}
(n + 3)/2 & \text{if } n \text{ is odd}, \\
(n + 4)/2 & \text{if } n \text{ is even}.
\end{cases}
\]

Proof. If \(n\) is odd, we have \(K_{\mathbb{Z}_n} = \{0\}\) and \(H_{\mathbb{Z}_n} = \mathbb{Z}_n \neq \{0\}\); if \(n\) is even, then \(K_{\mathbb{Z}_n} = \{0, n/2\}\) and \(H_{\mathbb{Z}_n} \neq \{0\}\) since \(|H_{\mathbb{Z}_n}| = n/2 \neq 0\). In both cases the result follows directly from Theorem 2.1. \(\blacksquare\)

Finally note that if \(G\) is an abelian group of order \(n\) and \(S \subseteq G \setminus \{0\}\) has at least \(\lceil n/2 \rceil + 1\) elements, then \(G \setminus H_G \subseteq \Sigma_2(S)\).

In fact, let \(a \in G \setminus H_G\) and take \(m = \lceil n/2 \rceil\) elements \(a_1, \ldots, a_m\) in \(S\). We set
\[
A = \{a_1, \ldots, a_m\} \quad \text{and} \quad B = \{a - a_1, \ldots, a - a_m\}.
\]
Now, if \(a_i = a - a_j\) for some pair \(i, j\) with \(i \neq j\), then \(a = a_i + a_j \in \Sigma_2(S)\); on the other hand the condition \(a_i = a - a_i\) cannot be satisfied because \(a \notin H_G\). We can suppose therefore that \(A \cap B = \emptyset\). Then
\[
|A \cup B| = |A| + |B| = 2|\left\lfloor \frac{n}{2} \right\rfloor| \geq n
\]
implies that \(A \cup B = G\). Hence the remaining element of \(S \setminus A\) must be contained in \(B\). This proves that \(a \in \Sigma_2(S)\), i.e. \(G \setminus H_G \subseteq \Sigma_2(S)\).

References

Additive bases with two elements

Dipartimento di Matematica
Università della Calabria
87036 Arcavacata di Rende (Cosenza)
Italy
E-mail: chiaseo@unical.it

Received on 3.8.2000
and in revised form on 18.12.2000