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On the number of Arnoux–Rauzy words

by

Filippo Mignosi (Palermo) and Luca Q. Zamboni (Denton, TX)

1. Introduction. Let ω = ω1ω2 . . . be a sequence with values in a finite
alphabet A. The complexity function pω : N→ N assigns to each n the num-
ber of distinct factors (or subwords) of ω of length n. A fundamental result
due to Hedlund and Morse states that a sequence ω is ultimately periodic
if and only if for some n the complexity pω(n) ≤ n. (See [11], [25] and [22,
Chapter 2].) Sequences of complexity p(n) = n + 1 are called Sturmian se-
quences or Sturmian words (see [22, Chapter 3]). The best known example
is the Fibonacci sequence

12112121121121211212112112121121121211212112112121121 . . .

fixed by the morphism 1 7→ 12 and 2 7→ 1. It is well known that all Sturmian
words can be realized geometrically by an irrational rotation on the circle
(see [11, 25]). More precisely, every Sturmian word is obtained by coding
the symbolic orbit of a point x on the circle (of circumference one) under
a rotation by an irrational angle α where the circle is partitioned into two
complementary intervals, one of length α and the other of length 1−α. And
conversely every such coding gives rise to a Sturmian word. The irrational
number α is called the slope.

Let Stn denote the cardinality of the set of all Sturmian words u of
length n, that is, the set of words u of length n in {0, 1} which are a factor
of some Sturmian sequence in {0, 1}N. In [24], Mignosi gave a proof of an
explicit formula for Stn in terms of the Euler phi function ϕ(n), conjectured
by Dulucq and Gouyou-Beauchamps [13] (see also Corollary 4). A combina-
torial proof of this formula was given by de Luca and Mignosi in [23] (see
also [22, Chapter 3]). In this paper we describe a multidimensional general-
ization of the Euler phi function which counts the number of Arnoux–Rauzy
words of each length.
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Definition 1. Let Ak = {1, . . . , k} with k ≥ 2. A sequence ω in the
alphabet Ak is called an Arnoux–Rauzy sequence if it satisfies the following
three conditions:

• ω is recurrent,
• the complexity function pω(m) equals (k − 1)m+ 1,
• for each m there is exactly one right special and one left special factor

of ω of length m.

Recall that a factor u of ω is called right special (resp. left special) if u
is a prefix (resp. suffix) of at least two words of length |u| + 1 which are
factors of ω. A word which is both right and left special is called bispecial.
Arnoux–Rauzy sequences are a natural generalization of Sturmian words;
Sturmian words correspond to taking k = 2 in the above definition. For
k = 3 the combinatorial conditions listed in Definition 1 distinguish them
from other sequences of complexity 2n+ 1 such as those obtained by coding
trajectories of 3-interval exchange transformations [16, 17, 18], or those of
Chacon type, i.e., topologically isomorphic to the subshift generated by the
Chacon sequence [6, 15]. Perhaps the best known example on three letters is
the so-called Tribonacci sequence defined as the fixed point of the morphism
τ(1) = 12, τ(2) = 13 and τ(3) = 1. In [26] Rauzy showed that the subshift
generated by τ is isomorphic (in measure) to an exchange of three fractal
domains in R2 which generate a tiling of the plane.

Arnoux and Rauzy [2] showed that each Arnoux–Rauzy sequence may
be geometrically realized by an exchange of 2k intervals on the circle, and
is uniquely ergodic. It was further believed, as in the case of Tribonacci and
the Rauzy fractal, that each Arnoux–Rauzy sequence is measure isomorphic
to a rotation on the torus, i.e., is obtained by a symbolic coding of the tra-
jectories of points under a rotation on the k-dimensional torus with respect
to a natural partition. This was recently disproved by Cassaigne–Ferenczi–
Zamboni in [4] where the authors exhibited an Arnoux–Rauzy sequence ω
on a 3-letter alphabet {0, 1, 2} which is totally unbalanced in the following
sense: for each n > 0 there exist two factors of ω of equal length, with one
having at least n more occurrences of the letter 0 than the other. It follows
that the cylinder [0] is not a bounded remainder set (in the sense of Kesten
[21]) and hence via an unpublished result of Rauzy later generalized by Fer-
enczi [14], either ω is not a natural coding of a rotation in Rn modulo a
lattice, or the A–R sequence ω(0), obtained by coding ω according to first
returns to 0, is not a natural coding of a rotation in Rn modulo a lattice.

Arnoux–Rauzy sequences have been extensively studied from many dif-
ferent points of view in connection with dynamical systems (see [1, 2, 7, 8,
20]), number theory (see [7, 9, 19, 20, 27, 29, 30]) and combinatorics (see [4,
5, 7, 12, 20, 27]).
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2. Counting words. We fix k ≥ 2 and let AR∞ = AR∞(k) be the
set of all Arnoux–Rauzy sequences on the alphabet Ak. We denote by AR
the set of all Arnoux–Rauzy words, that is, the set of all words u (including
the empty word) such that u is a factor of some Arnoux–Rauzy sequence
x ∈ AR∞. For each n ≥ 0 we let ARn be the set of all u ∈ AR of length n.

For each a ∈ Ak define the morphism τa on Ak by τa(a) = a and τa(b) =
ab for all b ∈ Ak different from a. Then it is proved in [2] (see also [27])
that each Arnoux–Rauzy sequence ω is in the shift orbit closure of a unique
sequence of the form

ω∗ = lim
j→∞

τi1 ◦ . . . ◦ τij (1)

where the sequence of indices (ij) (called the coding sequence) takes values in
Ak. Moreover each a ∈ Ak occurs in the coding sequence an infinite number
of times. The sequence ω∗ is called a characteristic Arnoux–Rauzy sequence.

Lemma 1. Let u ∈ AR and suppose that for some b, c ∈ Ak distinct , ub
and uc are in AR. Then there exists an Arnoux–Rauzy sequence ω ∈ AR∞
which contains as factors the k words u1, u2, . . . , uk. In other words if u is
a right special factor of AR then u is a right special factor of some Arnoux–
Rauzy sequence ω.

Proof. We proceed by induction on the length of u. The result is clearly
true if u is empty, or if |u| = 1. Writing u = av with a ∈ Ak and |v| ≥ 1,
we make the inductive hypothesis that the result of the lemma holds for all
words of length smaller than |u|. Thus avb and avc are each in AR. Without
loss of generality we can assume 1 is the last letter of v.

Case 1: a = 1. If av is of the form av = 1n, then for each Arnoux–
Rauzy sequence ω, the Arnoux–Rauzy sequence τn1 (ω) contains the k words
1n+1, 1n2, 1n3, . . . , 1nk. Next suppose that av is not of the form 1n. If b and
c are each different from 1, then we can write avb = 1vb = τ1(v′b) and avc =
1vc = τ1(v′c) for some v′ with v′b, v′c ∈ AR and |v′| < |u|. By the inductive
hypothesis there exists an Arnoux–Rauzy sequence ω which contains both
v′b and v′c as factors. It follows that the Arnoux–Rauzy sequence τ1(ω)
contains both avb and avc as factors. Hence av is a right special factor of
τ1(ω).

Next assume that one of b or c (say b) is equal to 1. Then avb = 1v1 =
1v′11 and avc = 1vc = 1v′1c for some v′ in AR. Thus we can write 1v′1 =
τ1(v′′1) and 1v′1c = τ1(v′′c) for some v′′ with v′′1, v′′c ∈ AR and |v′′| <
|u|. By the inductive hypothesis there exists an Arnoux–Rauzy sequence
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ω which contains both v′′1 and v′′c as factors. Thus τ1(ω) contains both
1v′1 = τ1(v′′1) and 1v′1c = τ1(v′′c). As τ1 of each letter begins with 1, it
follows that 1v′11 is also a factor of τ1(ω). Hence 1v′1 = av is a right special
factor of τ1(ω).

Case 2: a 6= 1. In this case it is easy to see that 1avb and 1avc are both
in AR. Applying the arguments of Case 1 we deduce that 1av is a right
special factor of some Arnoux–Rauzy sequence ω. Hence so is av.

As an immediate consequence of Lemma 1 we have

Corollary 1. Let r(n) denote the number of right special factors of
AR of length n. Then

Card(ARn) = Card(ARn−1) + (k − 1)r(n− 1).

Proof. In fact each right special factor of length n − 1 is a prefix of k
factors of length n.

Lemma 2. Suppose u ∈ AR is a bispecial factor of AR, that is, there
exist letters a 6= b and c 6= d such that au, bu, uc, ud are in AR. Then there
exists an Arnoux–Rauzy sequence ω ∈ AR∞ such that u is a bispecial factor
of ω.

Proof. The proof of Lemma 2 is similar to the proof of Lemma 1: using
the τi the result follows by induction on the length of the words.

Lemma 3. If u is a bispecial factor of an Arnoux–Rauzy sequence, then
for each a ∈ Ak there exists an Arnoux–Rauzy sequence ω such that u is a
bispecial factor of ω and au is a right special factor of ω.

Proof. Let ν = τn1 ◦ τn2 ◦ . . . be a characteristic Arnoux–Rauzy sequence
containing u as its rth bispecial factor, where we order the bispecial fac-
tors of ν according to increasing length. Fix a ∈ Ak and let ω be any
characteristic Arnoux–Rauzy sequence whose S-adic expansion begins with
τn1 ◦τn2 ◦ . . . τnr ◦τa. Then in [27] it is proved that ω has the same first r bis-
pecial factors of ν (the rth bispecial factor of a characteristic Arnoux–Rauzy
sequence is completely determined by the first r terms of its S-adic expan-
sion), and that au is a right special factor of ω (the r + 1st term of the
S-adic expansion of ω determines which of the k factors 1u, 2u, . . . , ku is
right special in ω).

Corollary 2. Let b(n) denote the number of bispecial factors of AR
of length n. Then

r(n) = r(n− 1) + (k − 1)b(n− 1).

Proof. In fact each bispecial factor of length n − 1 is a suffix of k right
special factors of length n.

Combining Corollaries 1 and 2 we have:
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Corollary 3. Fix k and let ARn denote the set of all Arnoux–Rauzy
words of length n on the alphabet Ak = {1, . . . , k}. Let b(n) denote the
number of bispecial words in AR of length n. Then

Card(ARn) = k + (n− 1)k(k − 1) + (k − 1)2
n−2∑

i=1

(n− i− 1)b(i).

Proof. By Corollaries 1 and 2 we have

Card(ARn) = k + (k − 1)
n−1∑

i=1

r(i)

= k + (k − 1)
n−1∑

i=1

(
k + (k − 1)

i−1∑

j=1

b(j)
)

= k + (n− 1)k(k − 1) + (k − 1)2
n−1∑

i=1

i−1∑

j=1

b(j)

= k + (n− 1)k(k − 1) + (k − 1)2
n−2∑

i=1

(n− i− 1)b(i).

As a special case of Corollary 3 we recover the formula for the number
of Sturmian words of length n.

Corollary 4. The number Stn of Sturmian words of length n is

1 +
n∑

i=1

(n− i+ 1)ϕ(i)

where ϕ(i) is the Euler phi function.

Proof. Applying Corollary 3 to the case k = 2 and the fact that b(i) =
ϕ(i+ 2) (see [24] or Corollary 5 ahead) gives

Stn = 2n+
n−2∑

i=1

(n− i− 1)b(i) = 2n+
n∑

j=3

(n− j + 1)ϕ(j)

= 1 +
n∑

j=1

(n− j + 1)ϕ(j)

where the last step follows from the equality ϕ(1) = ϕ(2) = 1.

3. A generalization of the Euler phi function. In the Sturmian case
we have b(n) = ϕ(n + 2). We now give a general arithmetic interpretation
for the quantity b(n) in terms of a multidimensional generalization of the
Euclidean algorithm.

Fix k and let
E = {(x1, . . . , xk) : each xi is a nonnegative integer}.
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For z = (x1, . . . , xk) ∈ E set |z| = ∑k
i=1 xi. Define a function f : E → E as

follows: For z = (x1, . . . , xk) ∈ E fix the least 1 ≤ j ≤ k such that xj ≤ xi
for all 1 ≤ i ≤ k and set

f(z) = (x1 − xj , . . . , xj−1 − xj , xj, xj+1 − xj , . . . , xk − xj).
Clearly for each z ∈ E there exists a (unique) vector f̃(z) ∈ E such that
fn(z) = f̃(z) for all n sufficiently large. For z ∈ E define the generalized
greatest common divisor of z, denoted ggcd(z), by

ggcd(z) = |f̃(z)|.
For instance, f(4, 2, 5) = (2, 2, 3) and f(2, 2, 3) = (2, 0, 1) so that f̃(4, 2, 5) =
(2, 0, 1) and ggcd(4, 2, 5) = 3. For k = 2 it follows immediately from the
definition that ggcd(a, b) = gcd(a, b).

To the best of our knowledge, this algorithm was first defined in [5] (in
the special case k = 3) in connection with a generalization of the Fine–Wilf
theorem to three periods.

Set P = {z = (x1, . . . , xk) ∈ E : ggcd(z) = 1} and P (n) = {z ∈ P :
|z| = n}. Then we have

Theorem 1. Fix k and let AR denote the set of all Arnoux–Rauzy words
on the alphabet Ak = {1, . . . , k}. Let b(n) denote the number of bispecial
words u ∈ AR of length n. Then b(n) = CardP ((k − 1)n+ k).

Proof. Let B(n) denote the set of bispecial words in AR of length n,
so that b(n) = CardB(n). For each n ≥ 1 we construct a bijection ψn :
B(n) → P ((k − 1)n + k) as follows: Let u ∈ B(n); according to Lemma 2,
the word u is a bispecial factor of some Arnoux–Rauzy sequence ω ∈ AR∞.
For each 1 ≤ i ≤ k let v (possibly the empty word) denote the longest
proper prefix of u so that iv is a right special factor of ω. If such a v exists,
set xi = ||u| − |v||. If no such v exists, set xi = |u| + 1. It follows from
the so-called “hat algorithm” given in Section III of [27] that for each i the
quantity xi is independent of the choice of ω. Set ψn(u) = (x1, . . . , xk).

We now show that ψn : B(n)→ P ((k−1)n+k) and is a bijection for each
n. Taking n = 1 we have B(1) = Ak = {1, . . . , k}. Fixing i ∈ B(1) we see by
definition of ψ1 that ψ1(i) is the vector whose ith coordinate is 1 and all other
coordinates are 2, so that |ψ1(i)| = (k − 1)2 + 1 = (k − 1)1 + k as required.
Moreover f(ψ1(i)) = (1, 1, . . . , 1) and f 2(ψ1(i)) = (1, 0, 0, . . . , 0) so that
ggcd(ψ1(i)) = 1. Clearly ψ1 is injective. To see that ψ1 is also surjective, let
z = (x1, . . . , xk) ∈ P ((k−1)2+1). Hence |z| = (k−1)2+1 and ggcd(z) = 1.
These conditions clearly imply that each xi > 0. If all xi ≥ 2 we would
have |z| ≥ 2k, a contradiction. Hence some xi = 1. We claim that all other
coordinates of z are 2. In fact, if xs 6= xt for some choice of s 6= i and
t 6= i, then f̃(z) would have two nonzero coordinates, contradicting the fact
that ggcd(z) = 1. Hence z is a vector whose ith coordinate is 1 and all
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other coordinates are equal to one another. As |z| = (k− 1)2 + 1, the other
coordinates of z must all be 2, whence it follows that z = ψ1(i) as required.

Now let n > 1 and suppose that ψm : B(m) → P ((k − 1)m + k) is a
bijection for all m < n. Let u be a bispecial word of length n. We begin by
showing that ψn(u) = (x1, . . . , xk) as defined above is in P ((k−1)n+k). Fix
an Arnoux–Rauzy sequence ω in which u is a bispecial factor. Let v denote
the longest proper prefix of u which is also bispecial in ω and fix i ∈ Ak so
that iv is a right special factor of ω. Hence xi < xj for all 1 ≤ j ≤ k. Then
by definition of ψn we have xi = ||u| − |v||. Set ψ|v|(v) = (y1, . . . , yk). Thus
yi = xi, in fact u = vv′ where v′ is a suffix of v of length xi (see the hat algo-
rithm in Section III of [27]). Moreover, for j 6= i we have yj = xj−xi. Hence
ψ|v|(v) = f(ψn(u)) = (x1−xi, . . . , xi−1−xi, xi, xi+1−xi, . . . , xk−xi). By the
inductive hypothesis we have ggcd(ψ|v|(v)) = 1 (and hence ggcd(ψn(u)) = 1)
and |ψ|v|(v)| = (k − 1)|v| + k = (k − 1)(|u| − xi) + k, whence |ψn(u)| =∑k

j=1 xj = (k − 1)|u|+ k as required. Hence ψn(B(n)) ⊂ P ((k − 1)n+ k).
If for some u′ ∈ B(n) with u′ 6= u we had ψn(u) = ψn(u′) then ψ|v| (where

v is as above) would fail to be injective on B(|v|). Hence ψn is one-to-one.
To see that ψn is a surjection, let z = (x1, . . . , xk) ∈ P ((k − 1)n+ k). Thus
|z| = (k − 1)n + k and ggcd(z) = 1. As in the case n = 1 these conditions
imply that each xj > 0. Fix i such that xi ≤ xj for all 1 ≤ j ≤ k. We
claim that xi < xj for all j 6= i. In fact, if for some j 6= i we had xj = xi,
then f(z) would have a coordinate equal to zero. Since ggcd(z) = 1 this
would imply that z = (1, 1, . . . , 1), contradicting |z| = (k−1)n+k. Consider
f(z) = (x1−xi, . . . , xi−1−xi, xi, xi+1−xi, . . . , xk−xi). Then ggcd(f(z)) = 1
(since ggcd(z) = 1) and hence f(z) ∈ P ((k−1)(n−xi)+k). By the inductive
hypothesis, since ψn−xi : B(n−xi)→ P ((k−1)(n−xi)+k) is onto, we have
f(z) = ψn−xi(v) for some bispecial word v ∈ AR of length n − xi. Let ω
be any Arnoux–Rauzy sequence containing iv as a right special factor, and
let u be the shortest bispecial factor of ω beginning with vi. Then it follows
from the hat algorithm that u = vv′ where v′ is a suffix of v of length xi
(see Section III of [27]). Hence |u| = n and ψn(u) = (x1, . . . , xk) = z as
required.

As a special case of Theorem 1 we have:

Corollary 5. The number of bispecial Sturmian words of length n is
ϕ(n+ 2), where ϕ denotes the Euler phi function.

Proof. Applying Theorem 1 to the case k = 2 gives b(n) = CardP (n+2).
But

P (n+ 2) = {(a, b) ∈ E | a+ b = n+ 2 and ggcd(a, b) = 1}
= {(a, n+ 2− a) ∈ E | gcd(a, n+ 2− a) = 1}
= {(a, n+ 2− a) ∈ E | gcd(a, n+ 2) = 1},
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hence CardP (n + 2) = Card{a | 1 ≤ a < n + 2 and gcd(a, n + 2) = 1} =
ϕ(n+ 2).

From Theorem 1 and Corollary 3 we deduce:

Corollary 6. Fix k and let ARn denote the set of all Arnoux–Rauzy
words of length n on the alphabet Ak = {1, . . . , k}. Then

Card(ARn) = k+(n−1)k(k−1)+(k−1)2
n−2∑

i=1

(n−i−1) CardP ((k−1)i+k).

Remark 1. In [24], following a suggestion of G. Rauzy, Mignosi estab-
lishes a connection between the number of Sturmian words, Farey numbers,
and the Riemann hypothesis. Another such connection between the Rie-
mann hypothesis, the Euler phi function and the formula in Corollary 4 was
given by Bender, Patashnik, and Rumsey [3] using a result of Codèca [10]. It
would be interesting to find similar connections involving the multidimen-
sional generalization of the Euler phi function described in this paper for
k > 2, two-dimensional Farey numbers in the sense of [2, 29, 30], and deep
results and conjectures in analytical number theory. Also, Rychlik points
out a possible connection between our multidimensional generalization of
the Euler phi function and Gröbner bases [28].
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