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1. Introduction. Unimodular lattices have focused interest for a long
time. One of the most fascinating properties of a unimodular lattice Λ is
that its theta series

θΛ(τ) :=
∑

x∈Λ
q(x·x),(1)

where τ ∈ h, the complex upper half plane, and q := eπiτ , has an invariance
property under the transformation τ 7→ −1/τ . If the lattice is moreover
even, then its theta series is invariant under the action of the full modular
group SL(2,Z), which leads to the upper bound for the minimum of the
lattice:

min(Λ) ≤ 2[n/24] + 2(2)

where n is the dimension of the lattice. The first case where this bound is
not known to be tight is n = 72.

It is much more difficult to obtain a good bound for the minimum of an
odd unimodular lattice, although these lattices are expected to be not so
good as the even ones, as is observed in small dimensions. The theta series
of such a lattice is only invariant under the congruence subgroup Γ0(4) and
the bound derived from this invariance is min(Λ) ≤ 2[n/8] + 2, which is
not sharp. Only recently, E. Rains and N. J. A. Sloane have proved that
(2) holds also for the odd lattices, apart from the exceptional case n = 23
([6]). Their proof makes use of the theta series of the shadow of the lattice.
J. H. Conway and N. J. A. Sloane have given in [3] the exact bound for
the minimum of a unimodular lattice of dimension n ≤ 33. In particular
they show that there cannot exist a minimum 4 lattice of dimension 33. We
extend here this result:
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Theorem 1. There is no unimodular lattice of minimum 4 and dimen-
sion 34 or 35.

Unimodular lattices of minimum 4 are known in dimensions 36, 38, 39,
40 (see [5]); the only remaining case is n = 37.

Seeking for a contradiction, we shall first compute the theta series of
a putative lattice Λ of minimum 4 and of its shadow S. Then we shall
compute the number of vectors of the lattice with prescribed scalar product
with a fixed minimal vector of S. This amounts to the computation of certain
coefficients of some Jacobi theta series associated to the lattice and therefore
we shall make use of spherical theta series θΛ,P where P is a harmonic
polynomial.

The paper is organized as follows: Section 2 recalls results on the shadows
of unimodular lattices. Section 3 introduces a 40-dimensional even unimod-
ular lattice associated to Λ. Section 4 introduces theta series with spherical
coefficients and Section 5 derives equations on the above mentioned num-
bers. Section 6 ends the proof of Theorem 1.

2. Shadows. Let Λ be an odd unimodular lattice. The shadow S of Λ is
S := (Λ0)∗ \ Λ, where Λ0 denotes the even sublattice of Λ. The theta series
of Λ has the following expression:

θΛ(τ) =
[n/8]∑

j=0

aj∆8(q)jθ3(q)n−8j(3)

and the theta series of the shadow S is

θS(τ) =
[n/8]∑

j=0

(−1)j

16j
ajθ4(q2)8jθ2(q)n−8j,(4)

where q := eπiτ , ∆8(q) = q
∏∞
m=1(1− q2m−1)8(1− q4m)8, and θ2, θ3, θ4 are

the usual Jacobi theta series (see [2, Chap. 4, §4]).
For the rest of the paper, Λ is an odd unimodular lattice of minimum 4

and dimension n ≥ 34. We denote by m the minimum of the shadow S of Λ
and by sm the number of vectors s ∈ S with s · s = m.

If A is any set of vectors, Ar is the set of vectors a ∈ A with a · a = r.
We start with the computation of the theta series. For n = 34, 35, the

condition that the minimum of the lattice is at least 4 determines the values
of a1, a2, a3. If x ∈ S, then 2x ∈ Λ so the minimum of S must be at least 2.
This condition forces a4 = 0. We find the following theta series:

For n = 34,

θΛ = 1 + 60180q4 + . . . , θS = 204q5/2 + 758200q9/2 + . . .(5)
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For n = 35,

θΛ = 1 + 51030q4 + . . . , θS = 420q11/4 + 1704780q19/4 + . . .(6)

We now fix a vector s ∈ Sm. If s′ is another minimal vector in S, not
equal to ±s, then

s · s′ ≡ s · s mod 1
2Z because s− s′ ∈ Λ,

and
|s · s′| ≤ m− 2 because (s± s′)2 ≥ 4.

Hence
s · s′ ∈ {±(m− [2m]/2), . . . ,±(m− 5/2),±(m− 2)}.

We get

s · s′ ∈
{
{0,±1/2} for n = 34,
{±1/4,±3/4} for n = 35.

Let x ∈ Λ4. Since (s ± x)2 ≥ m and s · x is an integer, s · x ∈ {0,±1,±2}.
We define

(7)

pi(s) := card{x ∈ Λ | x2 = 4, s · x = ±i}, i = 0, 1, 2,

mi(s) := card{s′ ∈ S | s′2 = m, s · s′ = ±i},
i = m− [2m]/2, . . . ,m− 2,

Our first task is to compute these numbers for n = 34, 35. It will turn
out that they do not depend on the choice of s. In order to determine them,
we need five equations; two trivial equations come from the knowledge of
θΛ:

(8)

∑
pi(s) = card(Λ4),

∑
mi(s) = card(Sm)− 2.

Some more equations will come from theta series with spherical coef-
ficients. In order to avoid the use of half integral weight modular forms
we do not consider the ones associated directly to Λ but we introduce a
40-dimensional even unimodular lattice constructed from Λ.

3. A certain 40-dimensional even unimodular lattice. An even
unimodular lattice Γ is obtained by gluing the lattice Λ0 (Λ is assumed
to be odd, unimodular, of minimum 4 and dimension n < 39) with the
root lattice D40−n (if n = 39 one should take instead

√
2A1). Then the

discriminant groups Λ∗0/Λ0 ∼= D∗40−n/D40−n are isomorphic to Z/4Z if n is
odd and to Z/2Z×Z/2Z if n is even. In order to write down this isomorphism
explicitly, we again denote by s and x some fixed minimal vectors of S and
Λ\Λ0 respectively. Let φ : (Λ0)∗/Λ0 → (D40−n)∗/D40−n be the isomorphism
defined by φ(s) = (1/2, . . . , 1/2) and φ(x) = (1, 0, . . . , 0). Then, for all
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u ∈ (Λ0)∗/Λ0, φ(u) · φ(u) ≡ −u · u mod 2Z (because 2s is a characteristic
vector for Λ, we have 4s · s ≡ n mod 8). Let

Γ := {(u, φ(u)) ∈ (Λ0)∗ ⊥ (D40−n)∗}.(9)

Clearly, the lattice Γ is an even unimodular lattice of dimension 40. Its root
lattice is D40−n. Its vectors of norm 4 are of three types: the ones from
D40−n, the ones from Λ0, and the pairs (s′, t) with s′ ∈ S of minimal norm
and t ∈ φ(s′), of minimal norm 10 − n/4. The number of such vectors t is
239−n.

4. Theta series with spherical coefficients. In this section we re-
call some basic facts about harmonic polynomials and theta series with
spherical coefficients associated to even unimodular lattices. We refer to
[1], [2, Chapter 18], [4], [7], [8]. The harmonic polynomials are the polyno-
mials in R[x1, . . . , xn] which are homogeneous and satisfy LP = 0 where
L =

∑
∂2/∂x2

i is the Laplace operator. It is a classical result that the for-
mula

Pk,α(x) = Gk((x · α), ((x · x)(α · α))1/2),(10)

where Gk(t, 1) is the Gegenbauer polynomial of degree k and parameter
n/2− 1, defines a harmonic polynomial. For example

P2,α(x) = (x · α)2 − 1
n

(α · α)(x · x).(11)

We shall also need the polynomial P6,α(x) relative to dimension 40:

P6,α(x) = (x · α)6 − 5
16

(x · α)4(α · α)(x · x)(12)

+
15
736

(x · α)2(α · α)2(x · x)2 − 5
32384

(α · α)3(x · x)3.

A classical result due to Hecke asserts that, if P is a harmonic polynomial
of degree k and if Γ is an even unimodular lattice, then

θΓ,P (τ) :=
∑

x∈Λ
P (x)q(x·x)(13)

defines a modular form for the full modular group SL(2,Z) of weight n/2+k.
The algebra of modular forms for the full modular group is a polynomial
algebra in the elements E4, E6 of respective weights 4 and 6:

(14)

E4(τ) = 1 + 240
∞∑

r=1

σ3(r)q2r = 1 + 240q2 + 240 · 9q4 + . . . ,

E6(τ) = 1− 504
∞∑

r=1

σ5(r)q2r = 1− 504q2 − 504 · 33q4 + . . .
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The cusp form of lowest weight is the weight 12 form

∆12 = (E3
4 − E2

6)/1728 = q2
∞∏

r=1

(1− qr)24.(15)

5. Equations. In this section we derive some equations satisfied by the
numbers pi(s) andmi(s). We take the notations of Section 2 and consider the
lattice Γ constructed in Section 3. We introduce the additional notations:

• l4 is the number of norm 4 vectors in Λ,
• d2, d4 are the numbers of norm 2, respectively norm 4 vectors in D40−n.

Let α belong to the vector space spaced by Λ0, and let fk := θΓ,Pk,α be
defined in the previous section. For all x ∈ Γ2, x ·α = 0 so the coefficient of
q2 in fk is

∑
x∈Γ2

Pk,α(x) = Gk(0, 21/2(α · α)1/2)d2.
Taking account of the three types of norm 4 vectors in Γ , the coefficient

of q4 is
∑

x∈Γ4

Pk,α(x) = Gk(0, 2(α · α)1/2)d4 +
∑

x∈Λ4

Gk((x · α), 2(α · α)1/2)(16)

+ 239−n ∑

s′∈Sm
Gk((s′ · α), 2(α · α)1/2).

If k = 2, the weight of fk is 20+2 = 22 so fk is a multiple of ∆12E4E6 =
q2 − 288q4 + . . . ; the multiplicity factor is exactly

Gk(0, 21/2(α · α)1/2)d2 = −2(α · α)
40

d2.

We now take a minimal vector α = s in S; the equality of the coefficients of
q4 leads, by the expression for G2, to the equation

(17)
∑

x∈Λ4

((x · s)2 − 4m/40) + 239−n ∑

s′∈Sm
((s′ · s)2 − 4m/40)

=
576m

40
d2 +

4m
40
d4,

which leads to the following equation for the pi(s) and mi(s):

(18)
∑

i

i2pi(s) + 239−n∑

i

i2mi(s)

=
72m

5
d2 +

m

10
d4 − 240−nm2 +

m

10
(l4 + 239−nsm).

If k = 4, we do not get a similar equation because the weight is 24
and the corresponding space of cusp forms is two-dimensional spanned by
∆12E

2
6 and ∆2

12. If k = 6 the situation is better because the only cusp form
of weight 26 is, up to a multiplicative factor, ∆12E

2
4E6 = q2− 48q4 + . . . We
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compute this factor from the coefficient of q2. We get

(19)
∑

x∈Λ4

G6((x · α), 2(α · α)1/2) + 239−n ∑

s′∈Sm
G6((s′ · α), 2(α · α)1/2)

= − 5
32384

(−23 · 48d2 − 43d4)(α · α)3.

This equation leads to an equation in the pi(s), mi(s) when α = s belongs
to Sm:

(20)
∑

i

G6(i, 2m1/2)pi(s) + 239−n∑

i

G6(i, 2m1/2)mi(s)

= − 5
32384

(−23 · 48d2 − 43d4)m3 − 240−nG6(m, 2m1/2).

The equation (19) holds for all α in the n-dimensional space spanned by
Λ, so we can also view it as a polynomial identity in the coordinates of α
and apply the Laplace operator corresponding to this space. This leads to a
degree 4 identity.

Let Ln denote the Laplace operator in the n variables of α. We use the
following identity, valid for all y ∈ RΛ ([7]):

(21) Ln((α · α)l(α · y)k)

= 2l(2l + 2k + n− 2)(α · α)l−1(α · y)k + k(k − 1)(y · y)(α · α)l(α · y)k−2,

and obtain an expression for Ln(G6((y · α), 2(α · α)1/2)):

(22) Ln(G6((y · α), 2(α · α)1/2))

=
(

30(y · y)− 5
2

(8 + n)
)

(y · α)4

+
(
− 15(y · y) +

30
23

(6 + n)
)

(α · α)(y · α)2

+
(

15
23

(y · y)− 15
253

(4 + n)
)

(α · α)2.

Then we again take α = s and find a fifth equation for the pi(s), mi(s).

6. Proof of Theorem 1

6.1. Dimension 34. The system of five equations found in Section 5
on the unknowns p0(s), p1(s), p2(s), m0(s), m1/2(s) has a unique solution
p0(s) = 42780, p1(s) = 17300, p2(s) = 100, m0(s) = 102, m1/2(s) = 100.

The quotient (Λ0)∗/Λ0 is isomorphic to Z/2Z × Z/2Z. The three sub-
groups of order 2 define three lattices, one is Λ and the remaining two are
dual to each other; we denote them by L and L∗. Clearly two short vectors
s, s′ ∈ Sm are both in L or L∗ if and only if s · s′ = ±1/2.
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Let s ∈ Sm be a fixed vector. Let

X := {s} ∪ {s′ ∈ Sm | s · s′ = 1/2}.(23)

From the computation of m1/2(s) we know that the cardinality of X is
51. Let G be the Gram matrix of this set, where s is chosen to be the first
of the vectors in X.

Lemma 1. G2 = 15
2 G.

Proof. We compute G2: G2[s′, s′′] =
∑

x∈X(s′ · x)(x · s′′). The vectors of
Sm are either in ±X or are perpendicular to X, so

G2[s′, s′′] =
1
2

∑

x∈Sm
(s′ · x)(x · s′′).

From the values found for m0(s) and m1/2(s), one can check that the
set Sm is a 2-design because

∑
s′,s′′∈Sm(s′ · s′′)2 = m2s2

m/n (see [7, Theorem
8.1]). Hence, for all α,

∑

x∈Sm
(α · x)2 =

msm
n

(α · α) = 15(α · α).

Applied to α + β, this identity leads to
∑

x∈Sm(α · x)(x · β) = 15(α · β) for
all α, β, and, when α = s′, β = s′′, to the statement G2 = 15

2 G.

We now consider the graph with vertices X \ {s} and edges the pairs
(s′, s′′) with (s′ · s′′) = −1/2. This graph is regular with valency 22 as can
be checked from the computation of the coefficient (s, s′) in the identity
G2 = 15

2 G. If A is the incidence matrix of this graph and if A′ is the matrix
obtained from A by adding a first row of zeros and a first column of zeros,
we have

G = 2I51 + 1
2J51 − A′(24)

where Ip denotes the identity matrix of size p, and Jp denotes the p × p
matrix with all entries 1. Putting this in the equation G2 = 15

2 G and taking
account of the identity AJ50 = J50A = 22J50, we get

A2 − 7
2A− 11J50 − 11I50 = 0.(25)

Of course, this last identity is not possible for a matrix A with entries 0
or 1 so we deduce the non-existence of the lattice Λ.

6.2. Dimension 35. The system of five equations found in Section 5 on
the unknowns p0(s), p1(s), p2(s), m1/4(s), m3/4(s) has a unique solution
p0(s) = 35289, p1(s) = 15642, p2(s) = 99, m1/4(s) = 319, m3/4(s) = 99. But
these numbers should be even so the lattice Λ does not exist.
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