The square-free kernel of $x^{2^n} - a^{2^n}$

by

PAULO RIBENBOIM (Kingston, Ont.)

Dedicated to my long-time friend and collaborator Wayne McDaniel, at the occasion of his retirement

1. Introduction

A. Statement of the results. We investigate the number $\nu(x^{2^n}-a^{2^n})$ of odd prime factors of the square-free kernel of numbers $x^{2^n}-a^{2^n}$, where $x>a\geq 1$ and $n\geq 2$. The main theorem states that (under a certain assumption) for each $a\geq 1$ the set $T_a=\{(x,n)\mid n\geq 2,\ x>a \text{ and the square-free kernel of } x^{2^n}-a^{2^n} \text{ has } n-1 \text{ odd prime factors} \}$ is finite and effectively computable.

In the final section, we show with several examples how to determine explicitly the sets T_a , namely $T_1, T_2, T_3, T_4, T_5, T_6, T_{10}$. As an illustration of the results obtained,

$$\nu(3^{2^n} - 1) \ge n$$
 for all $n \ge 4$,
 $\nu(7^{2^n} - 1) \ge n$ for all $n \ge 4$,

$$\nu(99^{2^n} - 1) > n$$
 for all $n > 3$,

and if $x \neq 3, 7, 99$ then

$$\nu(x^{2^n}-1) \ge n$$
 for all $n \ge 2$.

The proofs rely on properties of binary linearly recurring sequences and more specifically on a special case of the main theorem in Ribenboim [7].

Now we gather the concepts and facts used in this paper.

B. Binary linearly recurring sequences. Let P > 0, $Q \neq 0$ be integers such that gcd(P,Q) = 1 and $D = P^2 - 4Q \neq 0$.

Let
$$U_0 = 0$$
, $U_1 = 1$, $V_0 = 2$, $V_1 = P$ and for $n \ge 2$:

$$U_n = PU_{n-1} - QU_{n-2}, \quad V_n = PV_{n-1} - QV_{n-2}.$$

We also define $U_{-n} = -U_n/Q^n$, $V_{-n} = V_n/Q^n$ (for n > 0); then the above formulas still hold.

 $\mathcal{U} = (U_n)_n$, $\mathcal{V} = (V_n)_n$ are called binary linearly recurring sequences of first kind, respectively of second kind, with parameters (P,Q). We also use the notation $U_n(P,Q)$, $V_n(P,Q)$.

For an expository account of the theory of binary linearly recurring sequences, see Chapter 1 of Ribenboim [6]. Here we limit ourselves to mention explicitly the facts which are used in what follows.

If P = 2, Q = -1 the numbers U_n , V_n are the Pell numbers of first kind, respectively of second kind. These numbers are (for $n \ge 0$):

 $U_n: 0 1 2 5 12 29 70 169...,$ $V_n: 2 2 6 14 34 82 198 478...$

Then U_n is even if and only if n is even, $2 \mid V_n$ but $4 \nmid V_n$ for all n.

The symbol \square denotes any non-zero integer which is a square.

Concerning square and double square Pell numbers, we quote the following important result of Ljunggren [1] (see also Ribenboim [5]); in particular, the proof of (a) is difficult.

- (1.1) For Pell numbers:
- (a) $U_n = \square$ if and only if n = 1, 7;
- (b) $U_n = 2\square$ if and only if n = 2;
- (c) $V_n \neq \square$ for all n;
- (d) $V_n = 2\square$ if and only if n = 0, 1.
- C. Pell equations. Let F>1 be a square-free integer, and $\varepsilon=c+d\sqrt{F}$ be the fundamental unit of the ring $\mathbb{Z}[\sqrt{F}]$, so $1<\varepsilon$. Let $Q=N(\varepsilon)=c^2-d^2F$ = ± 1 be the norm of ε . We consider the equations

$$x^2 - Fy^2 = \pm 1.$$

(1.2) Solutions of $x^2 - Fy^2 = 1$. The solutions (x, y) with $x + y\sqrt{F} > 0$ are given by (x_n, y_n) , where

$$x_n + y_n \sqrt{F} = \varepsilon^n \begin{cases} \text{ for all } n \text{ if } Q = 1, \\ \text{ for all even } n \text{ if } Q = -1. \end{cases}$$

(1.3) Solutions of $x^2 - Fy^2 = -1$. The solutions (x, y) with $x + y\sqrt{F} > 0$ are given by (x_n, y_n) , where $x_n + y_n\sqrt{F} = \varepsilon^n$ and Q = -1, n odd. If Q = 1 there are no solutions.

It is possible to express (x_n, y_n) by means of terms of a binary linearly recurring sequence.

Let $\varepsilon = c + d\sqrt{F}$ as before, let P = 2c, $Q = N(\varepsilon) = \pm 1$ and consider the sequences \mathcal{U} , \mathcal{V} with parameters (P,Q). We note that V_n is even for all n. Then:

(1.4)
$$x_n = V_n/2, y_n = dU_n \text{ for all } n.$$

We shall require the following result (part (a) was first proved by Ljunggren [2] and a simpler proof was given by Samuel [8]; in the same paper, Samuel proved also (b)):

- (1.5) Let x > 1 and let p be any prime.
- (a) If $x^4 1 = p \square$ then (x, p) = (3, 5) or (99, 29).
- (b) If $x^4 1 = 2p\square$ then (x, p) = (7, 3).

In Ribenboim [7] we considered families of systems of two Pell equations. Let F>1 and G>0 be square-free integers, let $f,\,g$ be non-zero integers. We denote by $(F,f\,|\,G,g)$ the family of systems—one for each prime p—of Pell equations

$$\begin{cases} x^2 - f = F \square, \\ x^2 - g = Gp \square. \end{cases}$$

We proved a theorem for certain families of the above kind. Here we shall only need the following special case:

- (1.6) For each $b \ge 1$ the set of solutions (x,b) of each family below is finite and effectively computable: $(2,b^2\,|\,1,-b^2),\,(2,-b^2\,|\,1,b^2),\,(2,b^2\,|\,2,-b^2),\,(2,-b^2\,|\,2,b^2).$
- **2. The main theorem.** For every $m \ge 1$ let $\nu(m)$ denote the number of odd prime factors of the square-free kernel of m. So $\nu(m) = 0$ if and only if $m = \square$ or $m = 2\square$. And $\nu(m) = 1$ if and only if $m = p\square$ or $m = 2p\square$, where p is any odd prime. It is immediate that if $\gcd(m,n) = 1$ or 2, then $\nu(mn) = \nu(m) + \nu(n)$.

For all a > 1 and n > 1 we define the set

$$S_{a,n} = \{x \mid x > a \text{ and } \nu(x^{2^n} - a^{2^n}) = n - 1\}.$$

In particular, $S_{a,1} = \{x \mid x > a \text{ and } x^2 - a^2 = \square \text{ or } 2\square\}.$

We introduce the following notation. Let $x > a \ge 1$ and $n \ge 1$; we define the integers u_n , v_n (which depend on x, a) as follows:

$$u_n = x^{2^n} - a^{2^n}, \quad v_n = x^{2^n} + a^{2^n}.$$

It is easy to verify the following properties. If gcd(x, a) = 1 then $gcd(u_n, v_m) = 1$ or 2 (for all n, m), $gcd(v_n, v_m) = 1$ or 2 (for all $n \neq m$) and $u_n = u_{n-1}v_{n-1}$ for all $n \geq 2$. The integers u_n , v_n may be also defined with the help of a binary linearly recurring sequence. Let P = x + a, Q = xa; then gcd(P, Q) = 1 and

$$u_n = (x - a) \cdot U_{2^n}(P, Q), \quad v_n = V_{2^n}(P, Q).$$

We shall need the following facts.

- (2.1) LEMMA. Let $x > a \ge 1$ and $n \ge 2$.
- 1) $\nu(x^{2^n} + a^{2^n}) \neq 0$.
- 2) $\nu(x^{2^n} a^{2^n}) > n 2.$

Proof. 1) We show that $x^{2^n}+a^{2^n}\neq\Box$, $2\Box$. As $n\geq 2$, we have $x^{2^n}+a^{2^n}=(x^{2^{n-2}})^4+(a^{2^{n-2}})^4\neq\Box$ by the classical result of Fermat (see for example Ribenboim [4]). Similarly, if $x^{2^n}+a^{2^n}=(x^{2^{n-2}})^4+(a^{2^{n-2}})^4=2\Box$ then again $x^{2^{n-2}}=a^{2^{n-2}}$, so x=a (see Ribenboim [4]) and this has been excluded.

2) We may assume without loss of generality that $\gcd(x,a)=1$. Indeed, if $\gcd(x,a)=e$, let x=ze, a=be, hence $x^{2^n}-a^{2^n}=e^{2^n}(z^{2^n}-b^{2^n})$ and $\nu(x^{2^n}-a^{2^n})=\nu(z^{2^n}-b^{2^n})$.

We prove the statement by induction on n. Let n=2. By the classical theorem of Fermat (see [4]), $x^4-a^4\neq\Box$. Next we show that $x^4-a^4\neq2\Box$. We quote the following theorem of Euler: If $u^4-v^4=2w^2$ then u=v, w=0. For a proof, see Ribenboim [3], Proposition A14.5. Therefore if $x>a\geq 1$ then $x^4-a^4\neq2\Box$.

Now, let $n \ge 3$ and assume that the statement is true for n-1. We have $x^{2^n} - a^{2^n} = u_n = u_{n-1}v_{n-1}$ with $\gcd(u_{n-1}, v_{n-1}) = 1$ or 2, since $\gcd(x, a) = 1$. So $\nu(u_n) = \nu(u_{n-1}v_{n-1}) = \nu(u_{n-1}) + \nu(v_n) > n-3+1 = n-2$.

We introduce some sets. For all $a \ge 1$, $n \ge 1$ and for all e dividing a, let

$$S_{a,n}(e) = \{ x \in S_{a,n} \mid \gcd(x,a) = e \}.$$

If e, e' divide a and $e \neq e'$ then $S_{a,n}(e) \cap S_{a,n}(e') = \emptyset$ and $S_{a,n} = \bigcup_{e|a} S_{a,n}(e)$. If $x \in S_{a,n}(e)$, let x = ze and a = be. Then z > b, gcd(z,b) = 1 and $\nu(e^{2^n}(z^{2^n} - b^{2^n})) = n - 1$, so $\nu(z^{2^n} - b^{2^n}) = n - 1$, so $z \in S_{b,n}(1)$. The mapping $x \mapsto z$ is a bijection between $S_{a,n}(e)$ and $S_{b,n}(1)$; moreover the mapping is effectively computable.

Let $a \geq 1$. The set $S_{a,1}$ is infinite. Indeed, let $\varepsilon = 1 + \sqrt{2}$ be the fundamental unit of $\mathbb{Z}[\sqrt{2}]$, and for every even $m \geq 1$, let $z_m + u_m \sqrt{2} = (1 + \sqrt{2})^m$. Hence $z_m^2 - 2u_m^2 = 1$, so if $x_m = az_m$ then $x_m^2 - a^2 = 2\square$. So $x_m \in S_{a,1}$, showing that this set is infinite.

For $n \geq 2$ we have:

- (2.2) Theorem. 1) $S_{a,2} \supseteq S_{a,3} \supseteq \dots$
- 2) $S_{a,2}$ is a finite effectively computable set.

Proof. 1) Let $n \geq 3$; we show that $S_{a,n} \subseteq S_{a,n-1}$. It suffices to show that, for every $e \mid a, S_{a,n}(e) \subseteq S_{a,n-1}(e)$, or equivalently, for every b dividing $a, S_{b,n}(1) \subseteq S_{b,n-1}(1)$.

Let $z \in S_{b,n}(1)$, so z > b, $\gcd(z,b) = 1$ and $\nu(z^{2^n} - b^{2^n}) = n - 1$. Let $d = \gcd(z^{2^{n-1}} - b^{2^{n-1}}, z^{2^{n-1}} + b^{2^{n-1}})$, so $d \mid 2b^{2^{n-1}}$; but $\gcd(z,b) = 1$, hence

d=1 or 2. We may write

$$\begin{cases} z^{2^{n-1}} - b^{2^{n-1}} = k, \\ z^{2^{n-1}} + b^{2^{n-1}} = h, \end{cases}$$

with gcd(k,h) = 1 or 2, $n-1 = \nu(kh) = \nu(k) + \nu(h)$. By (2.1), $\nu(h) \ge 1$, so $\nu(k) \le n-2$. By (2.1), $\nu(k) > n-3$, hence $\nu(k) = n-2$, showing that $z \in S_{b,n-1}(1)$.

2) To show that $S_{a,2}$ is finite and effectively computable, it suffices to show that for every $e \mid a, S_{a,2}(e)$ is finite and effectively computable, or equivalently, for every $b \mid a$, the set $S_{b,2}(1)$ is finite and effectively computable.

Now $z \in S_{b,2}(1)$ if and only if z > b, $\gcd(z,b) = 1$ and $\nu(z^4 - b^4) = 1$ and this means that $z^4 - b^4 = p \square$ or $2p \square$, for some odd prime p. We have $\gcd(z^2 - b^2, z^2 + b^2) = 1$ or 2, because $\gcd(z,b) = 1$. Then the following cases may happen:

$$\begin{cases} z^2 - b^2 = \Box & p\Box & 2\Box & 2p\Box \\ z^2 + b^2 = p\Box & \Box & 2p\Box & 2\Box \\ & & & & & & \\ 1) & (2) & (3) & (4) \end{cases}$$
 when $z^4 - b^4 = p\Box$,
$$\begin{cases} z^2 - b^2 = \Box & 2\Box & p\Box & 2p\Box \\ z^2 + b^2 = 2p\Box & p\Box & 2\Box & \Box \\ & & & & & \\ 5) & (6) & (7) & (8) \end{cases}$$
 when $z^4 - b^4 = 2p\Box$.

In cases (1), (2), (5) and (8), z belongs to a finite and effectively computable set. By (1.6), the families $(2, \pm b^2 \mid 2, \mp b^2)$ and $(2, \pm b^2 \mid 1, \mp b^2)$ have a finite effectively computable set of solutions (z, p). So, in cases (3), (4), (6) and (7), z belongs to a finite and effectively computable set. This shows that $S_{b,2}(1)$ is finite and effectively computable.

Consider the following statement about the pair of integers (b, z):

(H_{b,z}) If $z > b \ge 1$, $\gcd(z,b) = 1$ and $\nu(z^4 - b^4) = 1$, there exists an effectively computable $h \ge 2$ (depending on z,b) such that $\nu(z^{2^h} + b^{2^h}) > 1$.

No proof is known for this statement but, of course it holds in every numerical example computed thus far.

(2.3) THEOREM. Assume that the statement $(H_{b,z})$ holds for $z > b \ge 1$ with gcd(z,b) = 1 and $\nu(z^4 - b^4) = 1$. Let $h \ge 2$ be the smallest integer such that $\nu(z^{2^h} + b^{2^h}) > 1$. Then $z \notin S_{b,j}(1)$ for all $j \ge h + 1$.

Proof. With the notation introduced, we have $\nu(u_2) = \nu(z^4 - b^4) = 1$, and

$$z^{2^{j}} - b^{2^{j}} = u_{j} = v_{j-1}v_{j-2}\dots v_{h+1}v_{h}v_{h-1}\dots v_{2}u_{2}.$$

As already stated, $gcd(u_2, v_i) = 1$ or 2 (for all i) and $gcd(v_i, v_l) = 1, 2$ for $i \neq l$. So

$$\nu(u_i) = \nu(v_{i-1}) + \ldots + \nu(v_{h+1}) + \nu(v_h) + \ldots + \nu(v_2) + \nu(u_2).$$

By (2.1) and the hypothesis, $\nu(u_j) \ge (j-1-h) + 2 + (h-2) + 1 = j$, so $z \notin S_{b,j}(1)$.

If a > 1 let

$$T_a = \{(x, n) \mid n \ge 2, \ x \in S_{a,n}\}.$$

For every e dividing a, let

$$T_a(e) = \{(x, n) \in T_a \mid \gcd(x, a) = e\}.$$

If $e \mid a, b = a/e$, z = x/e and $(x, n) \in T_a(e)$ then $(z, n) \in T_b(1)$. The mapping $(x, n) \mapsto (z, n)$ is a bijection between $T_a(e)$ and $T_b(1)$.

(2.4) THEOREM. Let $a \geq 1$ and assume that $(H_{b,z})$ holds for every b dividing a and z > b. Then T_a is a finite and effectively computable set.

Proof. It suffices to show that for every e dividing a, the set $T_a(e)$ is finite and effectively computable. By the above remark it suffices to show that for every b dividing a, the set $T_b(1)$ is finite and effectively computable. By (2.2) the set $S_{b,2}(1)$ is finite and effectively computable. By (2.3) and the hypothesis, for every $z_0 \in S_{b,2}(1)$ there exists an effectively computable integer $h \geq 2$ (depending on b and b0) such that if b0 if b1, so the set

$$T_b(1)|z_0 = \{(z,n) \in T_b(1) \mid z = z_0\}$$

is finite and effectively computable, hence

$$T_b(1) = \bigcup_{z_0 \in S_{b,2}(1)} T_b(1)|z_0|$$

is also finite and effectively computable.

3. Explicit computations. For specific values of $a \geq 1$, it is possible to determine explicitly the finite effectively computable set T_a . This determination requires the actual solution of certain families of systems of Pell equations. We recall that if $a \geq 1$ then

$$T_a = \{(x, n) \mid n \ge 2, \ x > a, \ \nu(x^{2^n} - a^{2^n}) = n - 1\}.$$

The following easy remark will be useful: If $(x, n) \in T_a$ then $(mx, n) \in T_{ma}$.

(3.1) Let
$$a = 1$$
. Then $T_1 = \{(3,2), (3,3), (7,2), (7,3), (99,2)\}.$

Proof. We determine explicitly $S_{1,2} = \{x \mid x > 1, \ \nu(x^4 - 1) = 1\}$. If $x^4 - 1 = p \square$ for some odd prime p, then by (1.5), (x, p) = (3, 5) or (99, 29).

If $x^4 - 1 = 2p\Box$ for some odd prime p, then by (1.5), (x, p) = (7, 3). This shows that $S_{1,2} = \{3, 7, 99\}$.

Now

$$3^4 + 1 = 82 = 2 \times 41,$$
 so $\nu(3^4 + 1) = 1,$
 $3^8 + 1 = 2 \times 17 \times 193,$ so $\nu(3^8 + 1) = 2,$
 $7^4 + 1 = 2 \times 1201,$ so $\nu(7^4 + 1) = 1,$
 $7^8 + 1 = 2 \times 17 \times 169553,$ so $\nu(7^8 + 1) = 2,$
 $99^4 + 1 = 2 \times 2617 \times 18353,$ so $\nu(99^4 + 1) = 2.$

Thus $(3,2),(3,3) \in T_1$, $(3,j) \notin T_1$ for all $j \geq 4$; $(7,2),(7,3) \in T_1$, $(7,j) \notin T_1$ for all $j \geq 4$; $(99,2) \in T_1$, $(99,j) \notin T_1$ for all $j \geq 3$.

$$(3.2) T_2 = \{(6,2), (6,3), (14,2), (14,3), (198,2)\}.$$

Proof. Let x>2 be such that $x^4-2^4=p\square$ or $2p\square$, for some odd prime p.

First case: x is even. Let x = 2z. Then $2^4(z^4 - 1) = p\square$ or $2p\square$, hence $z^4 - 1 = p\square$ or $2p\square$. As stated in (3.1), z = 3,99 or 7, hence x = 6,198 or 14. We have $6^4 + 2^4 = 2^4(3^4 + 1)$ so

$$\nu(6^4 + 2^4) = \nu(3^4 + 1) = 1;$$

similarly

$$\nu(6^8 + 2^8) = \nu(3^8 + 1) = 2.$$

In the same manner

$$\nu(14^4 + 2^4) = \nu(7^4 + 1) = 1, \quad \nu(14^8 + 2^8) = \nu(7^8 + 1) = 2,$$

 $\nu(198^4 + 2^4) = \nu(99^4 + 1) = 2.$

Altogether, only $(6,2), (6,3), (14,2), (14,3), (198,2) \in T_2$.

Second case: x is odd. So $gcd(x^2 - 4, x^2 + 4) = 1$. Since $x^4 - 2^4$ is odd we have $x^4 - 2^4 \neq 2p\square$ and there are only the following cases:

$$\begin{cases} x^2 - 4 = \Box & p\Box \\ x^2 + 4 = p\Box & \Box \\ & (1) & (2) \end{cases}$$

Subcase (1): there exists $t \neq 0$ such that $x^2 - t^2 = 4$, which is clearly impossible.

Subcase (2): there exists t such that $t^2-x^2=4$, which is again impossible. \blacksquare

(3.3)
$$T_3 = \{(9,2), (9,3), (21,2), (21,3), (297,2), (4,2), (4,3), (5,2), (5,3), (5,4)\}.$$

Proof. Let x>3 be such that $x^4-3^4=p\square$ or $2p\square$, for some odd prime p.

First case: $3 \mid x$. Let x = 3z. Then $z^4 - 1 = p \square$ or $2p \square$. As already seen, z = 3, 99, 7 so x = 9, 297, 21. We have, as computed in (3.1),

$$\nu(9^4 + 3^4) = \nu(3^4(3^4 + 1)) = 1, \qquad \nu(9^8 + 3^8) = \nu(3^8(3^8 + 1)) = 2$$

and similarly

$$\nu(21^4 + 3^4) = 1, \quad \nu(21^8 + 3^8) = 2, \quad \nu(297^4 + 3^4) = 2.$$

Thus, only (9,2), (9,3), (21,2), (21,3), and (297,2) are in T_3 .

Second case: $\gcd(x,3)=1$. Then $d=\gcd(x^2-3^2,x^2+3^2)=1$ or 2, because $d\mid 18$ but $3\nmid d$.

Case A: d = 1. If $x^4 - 3^4 = p\square$ then

$$\begin{cases} x^2 - 3^2 = \Box & p\Box \\ x^2 + 3^2 = p\Box & \Box \end{cases}$$
(1) (2)

(1) is not possible, while (2) gives (x, p) = (4, 7).

We have $4^4 + 3^4 = 337$, prime, $\nu(4^8 + 3^8) = \nu(17 \times 4241) = 2$. Then only (4,2) and (4,3) are in T_3 .

If $x^4 - 3^4 = 2p\Box$ then x is odd. On the other hand, since d = 1, it follows that x is even, a contradiction.

Case B: d = 2. If $x^4 - 3^4 = p \square$ then

$$\begin{cases} x^2 - 3^2 = 2 \Box & 2p \Box \\ x^2 + 3^2 = 2p \Box & 2\Box \\ & (1) & (2) \end{cases}$$

Both cases are impossible; this is seen modulo 3:

$$1 \equiv x^2 \mp 3^2 = 2 \square \pmod{3}.$$

If $x^4 - 3^4 = 2p\square$ we have one of the following cases:

In (1) we have (x,p)=(5,17). Since $\nu(5^4+3^4)=\nu(2\times 353)=1$, $\nu(5^8+3^8)=\nu(2\times 198593)=1$ and $\nu(5^{16}+3^{16})=\nu(2\times 97\times 786757409)=2$, we have only $(5,2),(5,3),(5,4)\in T_3$.

In (2), x is odd, so $2 \equiv x^2 + 3^2 = p \square \pmod{4}$, which is impossible.

In (3), since $3 \nmid x$ we have $1 \equiv x^2 + 3^2 \equiv 2 \square \pmod{3}$ and this is impossible.

(4) is also impossible.

The reader may wish to show, with the same method:

$$(3.4) \ T_5 = \{(15,2), (15,3), (35,2), (35,3), (495,2), (13,2), (13,3)\}.$$

$$(3.5)$$
 $T_4 = \{(12, 2), (12, 3), (28, 2), (28, 3), (396, 2), (5, 2), (5, 3)\}.$

$$(3.6) T_6 = \{(18,2), (18,3), (42,2), (42,3), (594,2), (8,2), (8,3), (10,2), (10,3), (10,4)\}.$$

$$(3.7) \ T_{10} = \{(30, 2), (30, 3), (70, 2), (70, 3), (990, 2), (26, 2), (26, 3)\}.$$

References

- [1] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad. Oslo 1942, no. 5, 27 pp.
- [2] —, Some remarks on the diophantine equations $x^2 Dy^4 = 1$ and $x^4 Dy^2 = 1$, J. London Math. Soc. 41 (1965), 42–44.
- [3] P. Ribenboim, Catalan's Conjecture, Academic Press, Boston, 1994.
- [4] —, Fermat's Last Theorem for Amateurs, Springer, New York, 1999.
- [5] —, Pell numbers: squares and cubes, Publ. Math. Debrecen 54 (1999), 131–152.
- [6] —, My Numbers, My Friends (Chapter 1: The Fibonacci numbers and the Arctic Ocean), Springer, New York, 2000.
- [7] —, Solving infinite families of systems of Pell equations with binary recurring sequences, preprint, 2001.
- [8] P. Samuel, Résultats élémentaires sur certaines équations diophantiennes, preprint, 2000.

Department of Mathematics and Statistics Queen's University Kingston, Ontario Canada K7L 3N6

Received on
$$20.2.2001$$

and in revised form on $8.6.2001$ (3980)