The square-free kernel of \(x^{2^n} - a^{2^n}\)

by

PAULO RIBENBOIM (Kingston, Ont.)

Dedicated to my long-time friend and collaborator Wayne McDaniel, at the occasion of his retirement

1. Introduction

A. Statement of the results. We investigate the number \(\nu(x^{2^n} - a^{2^n})\) of odd prime factors of the square-free kernel of numbers \(x^{2^n} - a^{2^n}\), where \(x > a \geq 1\) and \(n \geq 2\). The main theorem states that (under a certain assumption) for each \(a \geq 1\) the set \(T_a = \{(x, n) \mid n \geq 2, \ x > a \text{ and the square-free kernel of } x^{2^n} - a^{2^n} \text{ has } n - 1 \text{ odd prime factors}\}\) is finite and effectively computable.

In the final section, we show with several examples how to determine explicitly the sets \(T_a\), namely \(T_1, T_2, T_3, T_4, T_5, T_6, T_{10}\). As an illustration of the results obtained,

\[
\nu(3^{2^n} - 1) \geq n \quad \text{for all } n \geq 4,
\]

\[
\nu(7^{2^n} - 1) \geq n \quad \text{for all } n \geq 4,
\]

\[
\nu(99^{2^n} - 1) \geq n \quad \text{for all } n \geq 3,
\]

and if \(x \neq 3, 7, 99\) then

\[
\nu(x^{2^n} - 1) \geq n \quad \text{for all } n \geq 2.
\]

The proofs rely on properties of binary linearly recurring sequences and more specifically on a special case of the main theorem in Ribenboim [7].

Now we gather the concepts and facts used in this paper.

B. Binary linearly recurring sequences. Let \(P > 0, \ Q \neq 0\) be integers such that \(\gcd(P, Q) = 1\) and \(D = P^2 - 4Q \neq 0\).

Let \(U_0 = 0, \ U_1 = 1, \ V_0 = 2, \ V_1 = P\) and for \(n \geq 2:\)

\[
U_n = PU_{n-1} - QU_{n-2}, \quad V_n = PV_{n-1} - QV_{n-2}.
\]

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11A05, 11B39.
We also define $U_{-n} = -U_n/Q^n$, $V_{-n} = V_n/Q^n$ (for $n > 0$); then the above formulas still hold.

$U = (U_n)_{n}$, $V = (V_n)_{n}$ are called binary linearly recurring sequences of first kind, respectively of second kind, with parameters (P, Q). We also use the notation $U_n(P, Q)$, $V_n(P, Q)$.

For an expository account of the theory of binary linearly recurring sequences, see Chapter 1 of Ribenboim [6]. Here we limit ourselves to mention explicitly the facts which are used in what follows.

If $P = 2$, $Q = -1$ the numbers U_n, V_n are the Pell numbers of first kind, respectively of second kind. These numbers are (for $n \geq 0$):

$$U_n : \quad 0 \quad 1 \quad 2 \quad 5 \quad 12 \quad 29 \quad 70 \quad 169 \ldots$$
$$V_n : \quad 2 \quad 2 \quad 6 \quad 14 \quad 34 \quad 82 \quad 198 \quad 478 \ldots$$

Then U_n is even if and only if n is even, $2 \mid V_n$ but $4 \nmid V_n$ for all n.

The symbol \Box denotes any non-zero integer which is a square.

Concerning square and double square Pell numbers, we quote the following important result of Ljunggren [1] (see also Ribenboim [5]); in particular, the proof of (a) is difficult.

(1.1) For Pell numbers:

(a) $U_n = \Box$ if and only if $n = 1, 7$;
(b) $U_n = 2\Box$ if and only if $n = 2$;
(c) $V_n \neq \Box$ for all n;
(d) $V_n = 2\Box$ if and only if $n = 0, 1$.

C. Pell equations. Let $F > 1$ be a square-free integer, and $\varepsilon = c + d\sqrt{F}$ be the fundamental unit of the ring $\mathbb{Z}[\sqrt{F}]$, so $1 < \varepsilon$. Let $Q = N(\varepsilon) = c^2 - d^2F = \pm 1$ be the norm of ε. We consider the equations

$$x^2 - Fy^2 = \pm 1.$$

(1.2) Solutions of $x^2 - Fy^2 = 1$. The solutions (x, y) with $x + y\sqrt{F} > 0$ are given by (x_n, y_n), where

$$x_n + y_n\sqrt{F} = \varepsilon^n \begin{cases} \text{for all } n \text{ if } Q = 1, \\ \text{for all even } n \text{ if } Q = -1. \end{cases}$$

(1.3) Solutions of $x^2 - Fy^2 = -1$. The solutions (x, y) with $x + y\sqrt{F} > 0$ are given by (x_n, y_n), where $x_n + y_n\sqrt{F} = \varepsilon^n$ and $Q = -1$, n odd. If $Q = 1$ there are no solutions.

It is possible to express (x_n, y_n) by means of terms of a binary linearly recurring sequence.

Let $\varepsilon = c + d\sqrt{F}$ as before, let $P = 2c$, $Q = N(\varepsilon) = \pm 1$ and consider the sequences U, V with parameters (P, Q). We note that V_n is even for all n. Then:
\begin{align*}
(1.4) \quad x_n = V_n/2, \quad y_n = dU_n \text{ for all } n.
\end{align*}

We shall require the following result (part (a) was first proved by Ljunggren [2] and a simpler proof was given by Samuel [8]; in the same paper, Samuel proved also (b)):

(1.5) Let \(x > 1 \) and let \(p \) be any prime.

(a) If \(x^4 - 1 = p\square \) then \((x, p) = (3, 5) \) or \((99, 29) \).
(b) If \(x^4 - 1 = 2p\square \) then \((x, p) = (7, 3) \).

In Ribenboim [7] we considered families of systems of two Pell equations. Let \(F > 1 \) and \(G > 0 \) be square-free integers, let \(f, g \) be non-zero integers. We denote by \((F, f \mid G, g) \) the family of systems—one for each prime \(p \)—of Pell equations

\((F, f \mid G, g) \quad \begin{cases} x^2 - f = F\square, \\ x^2 - g = Gp\square. \end{cases} \)

We proved a theorem for certain families of the above kind. Here we shall only need the following special case:

(1.6) For each \(b \geq 1 \) the set of solutions \((x, b) \) of each family below is finite and effectively computable: \((2, b^2 \mid 1, -b^2) \), \((2, -b^2 \mid 1, b^2) \), \((2, b^2 \mid 2, -b^2) \), \((2, -b^2 \mid 2, b^2) \).

\section{2. The main theorem.} For every \(m \geq 1 \) let \(\nu(m) \) denote the number of odd prime factors of the square-free kernel of \(m \). So \(\nu(m) = 0 \) if and only if \(m = \square \) or \(m = 2\square \). And \(\nu(m) = 1 \) if and only if \(m = p\square \) or \(m = 2p\square \), where \(p \) is any odd prime. It is immediate that if \(\gcd(m, n) = 1 \) or \(2 \), then \(\nu(mn) = \nu(m) + \nu(n) \).

For all \(a \geq 1 \) and \(n \geq 1 \) we define the set

\[S_{a, n} = \{ x \mid x > a \text{ and } \nu(x^{2^n} - a^{2^n}) = n - 1 \}. \]

In particular, \(S_{a, 1} = \{ x \mid x > a \text{ and } x^2 - a^2 = \square \text{ or } 2\square \} \).

We introduce the following notation. Let \(x > a \geq 1 \) and \(n \geq 1 \); we define the integers \(u_n, v_n \) (which depend on \(x, a \)) as follows:

\[u_n = x^{2^n} - a^{2^n}, \quad v_n = x^{2^n} + a^{2^n}. \]

It is easy to verify the following properties. If \(\gcd(x, a) = 1 \) then \(\gcd(u_n, v_m) = 1 \) or \(2 \) (for all \(n, m \)), \(\gcd(v_n, v_m) = 1 \) or \(2 \) (for all \(n \neq m \)) and \(u_n = u_{n-1}v_{n-1} \) for all \(n \geq 2 \). The integers \(u_n, v_n \) may be also defined with the help of a binary linearly recurring sequence. Let \(P = x + a, Q = xa \); then \(\gcd(P, Q) = 1 \) and

\[u_n = (x - a) \cdot U_{2^n}(P, Q), \quad v_n = V_{2^n}(P, Q). \]

We shall need the following facts.
(2.1) Lemma. Let \(x > a \geq 1 \) and \(n \geq 2 \).

1) \(\nu(x^{2n} + a^{2n}) \neq 0 \).
2) \(\nu(x^{2n} - a^{2n}) > n - 2 \).

Proof. 1) We show that \(x^{2n} + a^{2n} \neq 2, 2^{2} \). As \(n \geq 2 \), we have \(x^{2n} + a^{2n} = (x^{2n-2})^4 + (a^{2n-2})^4 \neq 2 \) by the classical result of Fermat (see for example Ribenboim [4]). Similarly, if \(x^{2n} + a^{2n} = (x^{2n-2})^4 + (a^{2n-2})^4 = 2 \) then again \(x^{2n-2} = a^{2n-2} \), so \(x = a \) (see Ribenboim [4]) and this has been excluded.

2) We may assume without loss of generality that \(\gcd(x, a) = 1 \). Indeed, if \(\gcd(x, a) = e \), let \(x = ze, a = be \), hence \(x^{2n} - a^{2n} = e^{2n}(z^{2n} - b^{2n}) \) and \(\nu(x^{2n} - a^{2n}) = \nu(z^{2n} - b^{2n}) \).

We prove the statement by induction on \(n \). Let \(n = 2 \). By the classical theorem of Fermat (see [4]), \(x^4 - a^4 \neq 2 \). Next we show that \(x^4 - a^4 \neq 2 \).

We quote the following theorem of Euler: If \(u^4 - v^4 = 2w^2 \) then \(u = v, w = 0 \). For a proof, see Ribenboim [3], Proposition A14.5. Therefore if \(x > a \geq 1 \) then \(x^4 - a^4 \neq 2 \).

Now, let \(n \geq 3 \) and assume that the statement is true for \(n - 1 \). We have \(x^{2n} - a^{2n} = u_n = u_{n-1}v_{n-1} \) with \(\gcd(u_{n-1}, v_{n-1}) = 1 \) or 2, since \(\gcd(x, a) = 1 \). So \(\nu(u_n) = \nu(u_{n-1}v_{n-1}) = \nu(v_{n-1}) + \nu(v_n) > n - 3 + 1 = n - 2 \).

We introduce some sets. For all \(a \geq 1 \), \(n \geq 1 \) and for all \(e \) dividing \(a \), let

\[
S_{a,n}(e) = \{ x \in S_{a,n} \mid \gcd(x, a) = e \}.
\]

If \(e, e' \) divide \(a \) and \(e \neq e' \) then \(S_{a,n}(e) \cap S_{a,n}(e') = \emptyset \) and \(S_{a,n} = \bigcup_{e \mid a} S_{a,n}(e) \).

If \(x \in S_{a,n}(e) \), let \(x = ze \) and \(a = be \). Then \(z > b \), \(\gcd(z, b) = 1 \) and \(\nu(e^{2n}(z^{2n} - b^{2n})) = n - 1 \), so \(\nu(z^{2n} - b^{2n}) = n - 1 \), so \(z \in S_{b,n}(1) \). The mapping \(x \mapsto z \) is a bijection between \(S_{a,n}(e) \) and \(S_{b,n}(1) \); moreover the mapping is effectively computable.

Let \(a \geq 1 \). The set \(S_{a,1} \) is infinite. Indeed, let \(\varepsilon = 1 + \sqrt{2} \) be the fundamental unit of \(\mathbb{Z}[\sqrt{2}] \), and for every even \(m \geq 1 \), let \(z_m + u_m\sqrt{2} = (1 + \sqrt{2})^m \).

Hence \(z_m^2 - 2u_m^2 = 1 \), so if \(x_m = az_m \) then \(x_m^2 - a^2 = 2 \). So \(x_m \in S_{a,1} \), showing that this set is infinite.

For \(n \geq 2 \) we have:

(2.2) Theorem. 1) \(S_{a,2} \supseteq S_{a,3} \supseteq \ldots \)
2) \(S_{a,2} \) is a finite effectively computable set.

Proof. 1) Let \(n \geq 3 \); we show that \(S_{a,n} \subseteq S_{a,n-1} \). It suffices to show that, for every \(e \mid a \), \(S_{a,n}(e) \subseteq S_{a,n-1}(e) \), or equivalently, for every \(b \) dividing \(a \), \(S_{b,n}(1) \subseteq S_{b,n-1}(1) \).

Let \(z \in S_{b,n}(1) \), so \(z > b \), \(\gcd(z, b) = 1 \) and \(\nu(z^{2n} - b^{2n}) = n - 1 \). Let \(d = \gcd(z^{2n-1} - b^{2n-1}, z^{2n-1} + b^{2n-1}) \), so \(d \mid 2b^{2n-1} \); but \(\gcd(z, b) = 1 \), hence...
The square-free kernel of $x^{2^n} - a^{2^n}$

$d = 1$ or 2. We may write

$$\begin{cases}
z^{2n-1} - b^{2n-1} = k, \\
z^{2n-1} + b^{2n-1} = h,
\end{cases}$$

with gcd(k, h) = 1 or 2, $n - 1 = \nu(kh) = \nu(k) + \nu(h)$. By (2.1), \(\nu(h) \geq 1 \), so \(\nu(k) \leq n - 2 \). By (2.1), \(\nu(k) > n - 3 \), hence \(\nu(k) = n - 2 \), showing that \(z \in S_{b,n-1}(1) \).

2) To show that \(S_{a,2} \) is finite and effectively computable, it suffices to show that for every \(e \mid a \), \(S_{a,2}(e) \) is finite and effectively computable, or equivalently, for every \(b \mid a \), the set \(S_{b,2}(1) \) is finite and effectively computable.

Now \(z \in S_{b,2}(1) \) if and only if \(z > b \), gcd(z, b) = 1 and \(\nu(z^4 - b^4) = 1 \) and this means that \(z^4 - b^4 = p\square \) or \(2p\square \), for some odd prime \(p \). We have gcd($z^2 - b^2, z^2 + b^2$) = 1 or 2, because gcd(z, b) = 1. Then the following cases may happen:

$$\begin{align*}
\begin{cases}
z^2 - b^2 = \square & p\square \quad 2\square \quad 2p\square & \text{when } z^4 - b^4 = p\square, \\
\end{cases} \\
\begin{cases}
z^2 + b^2 = p\square & \square \quad 2p\square \quad 2\square & \text{when } z^4 - b^4 = 2p\square.
\end{cases}
\end{align*}$$

In cases (1), (2), (5) and (8), \(z \) belongs to a finite and effectively computable set. By (1.6), the families \(2, \pm b^2 \mid 2, \mp b^2 \) and \(2, \pm b^2 \mid 1, \mp b^2 \) have a finite effectively computable set of solutions \((z, p) \). So, in cases (3), (4), (6) and (7), \(z \) belongs to a finite and effectively computable set. This shows that \(S_{b,2}(1) \) is finite and effectively computable.

Consider the following statement about the pair of integers \((b, z)\):

\((H_{b,z})\) If \(z > b \geq 1 \), gcd(z, b) = 1 and \(\nu(z^4 - b^4) = 1 \), there exists an effectively computable \(h \geq 2 \) (depending on \(z, b \)) such that \(\nu(z^{2^h} + b^{2^h}) > 1 \).

No proof is known for this statement but, of course it holds in every numerical example computed thus far.

(2.3) Theorem. Assume that the statement \((H_{b,z})\) holds for \(z > b \geq 1 \) with gcd(z, b) = 1 and \(\nu(z^4 - b^4) = 1 \). Let \(h \geq 2 \) be the smallest integer such that \(\nu(z^{2^h} + b^{2^h}) > 1 \). Then \(z \not\in S_{b,j}(1) \) for all \(j \geq h + 1 \).

Proof. With the notation introduced, we have \(\nu(u_2) = \nu(z^4 - b^4) = 1 \), and

$$z^{2j} - b^{2j} = u_j = v_{j-1}v_{j-2} \ldots v_{h+1}v_hv_{h-1} \ldots v_2u_2.$$
As already stated, \(\gcd(u_2, v_i) = 1 \) or 2 (for all \(i \)) and \(\gcd(v_i, v_l) = 1,2 \) for \(i \neq l \). So
\[
\nu(u_j) = \nu(v_{j-1}) + \ldots + \nu(v_{h+1}) + \nu(v_h) + \ldots + \nu(v_2) + \nu(u_2).
\]
By (2.1) and the hypothesis, \(\nu(u_j) \geq (j - 1 - h) + 2 + (h - 2) + 1 = j \), so \(z \notin S_{b,j}(1) \).

If \(a \geq 1 \) let
\[
T_a = \{(x, n) \mid n \geq 2, \ x \in S_{a,n}\}.
\]
For every \(e \) dividing \(a \), let
\[
T_a(e) = \{(x, n) \in T_a \mid \gcd(x, a) = e\}.
\]
If \(e \mid a, b = a/e, z = x/e \) and \((x, n) \in T_a(e) \) then \((z, n) \in T_b(1) \). The mapping \((x, n) \mapsto (z, n) \) is a bijection between \(T_a(e) \) and \(T_b(1) \).

(2.4) THEOREM. Let \(a \geq 1 \) and assume that \((H_{b,z}) \) holds for every \(b \) dividing \(a \) and \(z > b \). Then \(T_a \) is a finite and effectively computable set.

Proof. It suffices to show that for every \(e \) dividing \(a \), the set \(T_a(e) \) is finite and effectively computable. By the above remark it suffices to show that for every \(b \) dividing \(a \), the set \(T_b(1) \) is finite and effectively computable. By (2.2) the set \(S_{b,2}(1) \) is finite and effectively computable. By (2.3) and the hypothesis, for every \(z_0 \in S_{b,2}(1) \) there exists an effectively computable integer \(h \geq 2 \) (depending on \(b \) and \(z_0 \)) such that if \(z_0 \in S_{b,i}(1) \) then \(i \leq h \). So the set
\[
T_b(1)|z_0 = \{(z, n) \in T_b(1) \mid z = z_0\}
\]
is finite and effectively computable, hence
\[
T_b(1) = \bigcup_{z_0 \in S_{b,2}(1)} T_b(1)|z_0
\]
is also finite and effectively computable.

3. Explicit computations. For specific values of \(a \geq 1 \), it is possible to determine explicitly the finite effectively computable set \(T_a \). This determination requires the actual solution of certain families of systems of Pell equations. We recall that if \(a \geq 1 \) then
\[
T_a = \{(x, n) \mid n \geq 2, \ x > a, \ \nu(x^{2^n} - a^{2^n}) = n - 1\}.
\]
The following easy remark will be useful: If \((x, n) \in T_a \) then \((mx, n) \in T_{ma} \).

(3.1) Let \(a = 1 \). Then \(T_1 = \{(3, 2), (3, 3), (7, 2), (7, 3), (99, 2)\} \).

Proof. We determine explicitly \(S_{1,2} = \{x \mid x > 1, \ \nu(x^4 - 1) = 1\} \). If \(x^4 - 1 = p \square \) for some odd prime \(p \), then by (1.5), \((x, p) = (3, 5) \) or \((99, 29) \).

If \(x^4 - 1 = 2p \square \) for some odd prime \(p \), then by (1.5), \((x, p) = (7, 3) \). This shows that \(S_{1,2} = \{3, 7, 99\} \).
Now
\[3^4 + 1 = 82 = 2 \times 41, \quad \text{so } \nu(3^4 + 1) = 1,\]
\[3^8 + 1 = 2 \times 17 \times 193, \quad \text{so } \nu(3^8 + 1) = 2,\]
\[7^4 + 1 = 2 \times 1201, \quad \text{so } \nu(7^4 + 1) = 1,\]
\[7^8 + 1 = 2 \times 17 \times 169553, \quad \text{so } \nu(7^8 + 1) = 2,\]
\[99^4 + 1 = 2 \times 2617 \times 18353, \quad \text{so } \nu(99^4 + 1) = 2.\]

Thus \((3, 2), (3, 3) \in T_1, (3, j) \notin T_1\) for all \(j \geq 4; (7, 2), (7, 3) \in T_1, (7, j) \notin T_1\) for all \(j \geq 4; (99, 2) \in T_1, (99, j) \notin T_1\) for all \(j \geq 3.\]

(3.2) \[T_2 = \{(6, 2), (6, 3), (14, 2), (14, 3), (198, 2)\}.

Proof. Let \(x > 2\) be such that \(x^4 - 2^4 = p\square\) or \(2p\square\), for some odd prime \(p\).

First case: \(x\) is even. Let \(x = 2z\). Then \(2^4(z^4 - 1) = p\square\) or \(2p\square\), hence \(z^4 - 1 = p\square\) or \(2p\square\). As stated in (3.1), \(z = 3, 99\) or \(7\), hence \(x = 6, 198\) or \(14\). We have \(6^4 + 2^4 = 2^4(3^4 + 1)\) so
\[\nu(6^4 + 2^4) = \nu(3^4 + 1) = 1;\]
similarly
\[\nu(6^8 + 2^8) = \nu(3^8 + 1) = 2.\]

In the same manner
\[\nu(14^4 + 2^4) = \nu(7^4 + 1) = 1, \quad \nu(14^8 + 2^8) = \nu(7^8 + 1) = 2,\]
\[\nu(198^4 + 2^4) = \nu(99^4 + 1) = 2.\]
Altogether, only \((6, 2), (6, 3), (14, 2), (14, 3), (198, 2) \in T_2.\)

Second case: \(x\) is odd. So \(\gcd(x^2 - 4, x^2 + 4) = 1.\) Since \(x^4 - 4^4\) is odd we have \(x^4 - 2^4 \neq \not 2p\square\) and there are only the following cases:
\[
\begin{align*}
\begin{array}{c|c}
\text{x}^2 - 4 & \square \\
\text{x}^2 + 4 & \not 2p
\end{array}
\end{align*}
\]

Subcase (1): there exists \(t \neq 0\) such that \(x^2 - t^2 = 4\), which is clearly impossible.

Subcase (2): there exists \(t\) such that \(t^2 - x^2 = 4\), which is again impossible. \(\blacksquare\)

(3.3) \[T_3 = \{(9, 2), (9, 3), (21, 2), (21, 3), (297, 2), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4)\}.

Proof. Let \(x > 3\) be such that \(x^4 - 3^4 = p\square\) or \(2p\square\), for some odd prime \(p\).
First case: $3 \mid x$. Let $x = 3z$. Then $z^4 - 1 = p\Box$ or $2p\Box$. As already seen, $z = 3, 99, 7$ so $x = 9, 297, 21$. We have, as computed in (3.1),
\[
\nu(9^4 + 3^4) = \nu(3^4(3^4 + 1)) = 1, \quad \nu(9^8 + 3^8) = \nu(3^8(3^8 + 1)) = 2
\]
and similarly
\[
\nu(21^4 + 3^4) = 1, \quad \nu(21^8 + 3^8) = 2, \quad \nu(297^4 + 3^4) = 2.
\]
Thus, only $(9, 2), (9, 3), (21, 2), (21, 3),$ and $(297, 2)$ are in T_3.

Second case: $\gcd(x, 3) = 1$. Then $d = \gcd(x^2 - 3^2, x^2 + 3^2) = 1$ or 2, because $d \mid 18$ but $3 \nmid d$.

Case A: $d = 1$. If $x^4 - 3^4 = p\Box$ then
\[
\begin{align*}
x^2 - 3^2 &= \Box \quad \text{or} \quad p\Box \\
x^2 + 3^2 &= 2p\Box \quad \Box
\end{align*}
\]

(1) is not possible, while (2) gives $(x, p) = (4, 7)$.

We have $4^4 + 3^4 = 337$, prime, $\nu(4^8 + 3^8) = \nu(17 \times 4241) = 2$. Then only $(4, 2)$ and $(4, 3)$ are in T_3.

If $x^4 - 3^4 = 2p\Box$ then x is odd. On the other hand, since $d = 1$, it follows that x is even, a contradiction.

Case B: $d = 2$. If $x^4 - 3^4 = p\Box$ then
\[
\begin{align*}
x^2 - 3^2 &= 2\Box \quad 2p\Box \\
x^2 + 3^2 &= 2p\Box \quad 2\Box
\end{align*}
\]

Both cases are impossible; this is seen modulo 3:
\[1 \equiv x^2 \mp 3^2 = 2\Box \pmod{3}.
\]
If $x^4 - 3^4 = 2p\Box$ we have one of the following cases:
\[
\begin{align*}
x^2 - 3^2 &= \Box \quad 2\Box \quad p\Box \quad 2p\Box \\
x^2 + 3^2 &= 2p\Box \quad p\Box \quad 2\Box \quad \Box
\end{align*}
\]

(1) is not possible, while (2) gives $(x, p) = (5, 17)$.

We have $5^4 + 3^4 = 5 \times 198593$, prime, $\nu(5^8 + 3^8) = \nu(2 \times 353) = 1$, $\nu(5^8 + 3^8) = \nu(2 \times 353) = 1$ and $\nu(5^{16} + 3^{16}) = \nu(2 \times 97 \times 786757409) = 2$, we have only $(5, 2), (5, 3), (5, 4) \in T_3$.

In (2), x is odd, so $2 \equiv x^2 + 3^2 = p\Box \pmod{4}$, which is impossible.

In (3), since $3 \nmid x$ we have $1 \equiv x^2 + 3^2 \equiv 2\Box \pmod{3}$ and this is impossible.

(4) is also impossible.

The reader may wish to show, with the same method:

(3.4) $T_5 = \{(15, 2), (15, 3), (35, 2), (35, 3), (495, 2), (13, 2), (13, 3)\}$.
The square-free kernel of $x^{2n} - a^{2n}$

\[
T_4 = \{(12, 2), (12, 3), (28, 2), (28, 3), (396, 2), (5, 2), (5, 3)\}.
\]

\[
T_6 = \{(18, 2), (18, 3), (42, 2), (42, 3), (594, 2), (8, 2), (8, 3), (10, 2), (10, 3), (10, 4)\}.
\]

\[
T_{10} = \{(30, 2), (30, 3), (70, 2), (70, 3), (990, 2), (26, 2), (26, 3)\}.
\]

References