Elementary Deuring–Heilbronn phenomenon

by

JEFFREY STOPPLE (Santa Barbara, CA)

Introduction. In a long series of papers in *Acta Arithmetica*, János Pintz gave remarkable elementary proofs of theorems concerning \(L(s, \chi) \), with \(\chi \) the Kronecker symbol attached to a fundamental discriminant \(-D\). These include theorems of Hecke, Landau, Siegel, Page, Deuring, and Heilbronn \([8, 13]\). In [11], for example, he gives his version of the Deuring phenomenon \([2]\): under the very strong assumption that the class number satisfies \(h(-D) \leq \log^{3/4} D \), he obtains a zero free region for \(\zeta(s)L(s, \chi) \). As the reviewer in *Math. Reviews* noted, by Siegel’s theorem this can hold for only finitely many \(D \) (with an ineffective constant). Subsequently the Goldfeld–Gross–Zagier theorem shows this can happen for only finitely many \(D \) with an effective constant \([3]\). This is unfortunate, as the proof Pintz gave actually depends on the fact that the exponent of the class group \(C(-D) \) (v. the order) is small.

In [12] he gives an elementary version of (the contrapositive of) the Heilbronn phenomenon \([4]\): a zero off the critical line of an \(L \)-function \(L(s, \chi_k) \) attached to any primitive real character can be used to give lower bounds on \(L(1, \chi) \). The same *Math. Reviews* reviewer called the proof “ingenious and quite brief” \([2]\).

Pintz’s idea is very roughly as follows: With \(\lambda \) denoting the Liouville function, the convolution \(1* \lambda \) is the characteristic function of squares. Thus for \(\rho \) a hypothetical zero of \(L(s, \chi_k) \) with \(\text{Re}(\rho) > 1/2 \), one can consider finite sums of the form

\[
\sum_{n<X} \frac{\chi_k(n)}{n^\rho} 1* \lambda(n).
\]

2010 Mathematics Subject Classification: Primary 11M20; Secondary 11M26.

Key words and phrases: Landau–Siegel zero, Deuring–Heilbronn phenomenon.

\(^{(1)} \) In fact there are 61 such fundamental discriminants, all with \(-1555 \leq -D \).

\(^{(2)} \) See also [6, 7, §4.2] for an elementary proof by Motohashi which is based on the Selberg sieve.
Since $\chi_k(m^2) = 1$ or 0, one can compare this sum to a partial sum of $\zeta(2\rho)$, and obtain a lower bound. Pintz decomposes the sum into two pieces, carefully chosen so that $L(\rho, \chi) = 0$ shows one piece is not too big, and therefore the other piece is not too small. But if $L(1, \chi)$ were small due to the existence of a Landau–Siegel zero, χ would be a good approximation to λ, and (he can show) this second term would necessarily be small.

In this paper we adapt the method of [12] to apply to $\zeta(s)$, and thus give an elementary demonstration of the Deuring phenomenon. Because $\zeta(s)$ does not converge even conditionally in the critical strip, we assume first that D is even, and consider instead

$$\phi(s) = (2^{1-s} - 1)\zeta(s) = \sum_n \frac{(-1)^n}{n^s}.$$

Suppose $\rho = \beta + i\gamma$ is a zero of $\zeta(s)$ off the critical line. Let $\delta/2\pi$ be the fractional part of $\log 2 \cdot \gamma/2\pi$ so that for integer n,

$$\log 2 \cdot \gamma = 2\pi n + \delta, \quad -\pi < \delta \leq \pi, \quad 2^{-i\gamma} = \exp(-i\delta).$$

Theorem 1. If $\beta > 7/8$ and $|\delta| > \pi/100$, then for any real primitive character χ modulo $D \equiv 0 \mod 4$, $D > 10^9$, we have the lower bound

$$L(1, \chi) > \frac{1}{5400 \cdot U^{12(1-\beta)} \log^3 U},$$

where $U = |\rho| D^{1/4} \log D$.

The proof actually gives some kind of nontrivial bound as long as $\beta > 5/6$. We assume $\beta > 7/8$ simply to get a precise constant in the theorem.

In the last section we discuss general D, adapting the proof with Ramanujan sums $c_q(n)$ for a fixed prime $q | D$.

Arithmetic function preliminaries. Generalizing Liouville’s λ function, we begin by defining $\lambda_{\text{odd}}(n)$ via

$$\lambda_{\text{odd}}(n) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \lambda(n) & \text{if } n \text{ is odd.} \end{cases}$$

So

$$\sum_{n=1}^\infty \frac{\lambda_{\text{odd}}(n)}{n^s} = \frac{\zeta(2s)}{\zeta(s)} (1 + 2^{-s}),$$

and the convolution $1 * \lambda_{\text{odd}}(n)$ satisfies

$$1 * \lambda_{\text{odd}}(n) = \begin{cases} 1 & \text{if } n = m^2 \text{ or } n = 2m^2, \\ 0 & \text{otherwise.} \end{cases}$$

With $\tau(n)$ the divisor function and $\nu(n)$ the number of distinct primes dividing n, we have

$$1 * \lambda(n) = \sum_{d|n} 2^{\nu(d)} \lambda(d) \tau(n/d).$$
(One needs to verify this only for \(n = p^k \) as both sides are multiplicative.) We generalize this by defining \(\tau_{\text{odd}}(n) \) to be the number of odd divisors of \(n \), so that

\[
1 \ast \lambda_{\text{odd}}(n) = \sum_{d|n} 2^{\nu(d)} \lambda_{\text{odd}}(d) \tau_{\text{odd}}(n/d).
\]

(For \(n \) odd this follows from \(\lambda_{\text{odd}}(d) = \lambda(d) \) and \(\tau_{\text{odd}}(n/d) = \tau(n/d) \), while for \(n = 2^k \) both sides are equal to 1.)

Following Pintz we define, relative to the quadratic character \(\chi \mod D \), sets

\[
A_j = \{ u : p \mid u \Rightarrow \chi(p) = j \} \quad \text{for } j = -1, 0, 1,
\]

\[
C = \{ c = ab : a \in A_1, b \in A_0 \}.
\]

We are assuming that \(2 \in A_0 \), so integers in \(A_{-1} \) and \(A_1 \) are odd. We factor an arbitrary \(n \) as

\[
n = abm = cm, \quad \text{where } a \in A_1, b \in A_0, m \in A_{-1}, c \in C.
\]

We then see that

- for \(a \in A_1 \), \(1 \ast \chi(a) = \tau(a) = \tau_{\text{odd}}(a) \),
- for \(b \in A_0 \), \(1 \ast \chi(b) = 1 \),
- for \(m \in A_{-1} \), \(1 \ast \chi(m) = 1 \ast \lambda(m) = 1 \ast \lambda_{\text{odd}}(m) \).

Using this and multiplicativity, for \(n = abm = cm \) as above we see that

\[
(1) \quad 1 \ast \lambda_{\text{odd}}(n) = 1 \ast \lambda_{\text{odd}}(a) \cdot 1 \ast \lambda_{\text{odd}}(b) \cdot 1 \ast \lambda_{\text{odd}}(m)
\]

\[
= \left(\sum_{a'|a} 2^{\nu(a')} \lambda_{\text{odd}}(a') \cdot 1 \ast \chi(a/a') \right) \left(\sum_{b'|b} \lambda_{\text{odd}}(b') \cdot 1 \ast \chi(b/b') \right) \cdot 1 \ast \chi(m)
\]

\[
= \sum_{c'|c} 2^{\nu(a')} \lambda_{\text{odd}}(c') \cdot 1 \ast \chi(n/c').
\]

Lower bounds

Lemma 2.

\[
\frac{1}{25} \cdot \frac{\zeta(4\beta)}{\zeta(2\beta)} U^{6-12\beta} \leq \left| \sum_{n \leq U^{12}} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right|.
\]

Proof. We have

\[
\left| \sum_{n \leq U^{12}} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right|
\]

\[
\geq \left| \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right| - \left| \sum_{U^{12} < n} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right|.
\]
Now
\[\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} = \sum_{m=1}^{\infty} \frac{(-1)^{m^2}}{m^{2\rho}} + \sum_{m=1}^{\infty} \frac{(-1)^{2m^2}}{2^\rho m^{2\rho}}. \]

Observe that \((-1)^{m^2} = (-1)^m\), and of course \((-1)^{2m^2} = 1\). This gives
\[(2^{1-2\rho} - 1)\zeta(2\rho) + 2^{-\rho}\zeta(2\rho) = (1 + 2^{-\rho})(2^{1-\rho} - 1)\zeta(2\rho). \]

We compare Euler products to see
\[\frac{1}{|\zeta(2\rho)|} < \frac{\zeta(2\beta)}{\zeta(4\beta)}, \quad \text{or} \quad |\zeta(2\rho)| > \frac{\zeta(4\beta)}{\zeta(2\beta)}. \]

Finally a calculation in Mathematica shows that
\[|(1 + 2^{-\rho})(2^{1-\rho} - 1)| > \frac{1}{25} \]
as long as \(|\delta| > \pi/100\). This gives the main term of the lemma.

Meanwhile
\[\left| \sum_{U^{12} < n} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right| \leq \left| \sum_{U^6 < m} \frac{(-1)^m}{m^{2\rho}} \right| + \left| \frac{1}{2^\rho} \sum_{U^6 / \sqrt{2} < m} \frac{1}{m^{2\rho}} \right|. \]

The first sum on the right is bounded by \(U^{-12\beta}\), by Abel’s inequality. And the second sum, via Euler summation formula [1, Theorem 3.2(c)], is \(O(U^6 - 12\beta)\). In fact, the proof given there shows the implied constant can be taken as \(1/(\sqrt{2} (2\beta - 1)) < 1\) for \(\beta > 7/8\).

Upper bounds. We now follow Pintz in writing
\[\left| \sum_{n \leq U^{12}} \frac{(-1)^n \cdot 1 \ast \lambda_{\text{odd}}(n)}{n^\rho} \right| = \left| \sum_{n \leq U^{12}} \frac{(-1)^n}{n^\rho} \sum_{c \in C, c \mid n} 2^{\nu(a)} \lambda_{\text{odd}}(c) \cdot 1 \ast \chi(n/c) \right| \]
\[=: S, \]

via (1). We change variables \(n = rc\), and use the fact that for odd \(c\) we have
\[(-1)^{rc} = (-1)^r, \quad \text{and} \quad \lambda_{\text{odd}}(c) = 0 \quad \text{unless} \quad c \text{ is odd}. \]
(The fact that \((-1)^n\) is not a multiplicative function is the reason we have introduced \(\lambda_{\text{odd}}(n)\).) Now
\[S = \left| \sum_{c \leq U^{12}, c \in C} \frac{2^{\nu(a)} \lambda_{\text{odd}}(c)}{c^\rho} \sum_{r \leq U^{12}/c} \frac{(-1)^r}{r^\rho} \cdot 1 \ast \chi(r) \right| \leq \Sigma_1 + \Sigma_2, \]
where

$$
\Sigma_1' = \sum_{c \leq U^6 \atop c \in C} \frac{2^{\nu(a)}}{c^{\beta}} \left| \sum_{r \leq U^{12}/c} \frac{(-1)^r}{r^\rho} \cdot 1 \ast \chi(r) \right|,
$$

$$
\Sigma_2' = \sum_{U^6 < c \leq U^{12}} \frac{2^{\nu(a)}}{c^{\beta}} \sum_{r \leq U^{12}/c} \frac{1 \ast \chi(r)}{r^\beta}.
$$

Using the inequalities

$$2^{\nu(a)} \leq 1 \ast \chi(c) \leq \tau_{\text{odd}}(c) \leq \tau(c), \quad 1 \ast \chi(r) \leq \tau(r),$$

and dropping the condition $c \in C$ in the outer sums, we see that

$$\Sigma_1' \leq \Sigma_1 = \sum_{n \leq U^6} \frac{\tau(n)}{n^{\beta}} \left| \sum_{r \leq U^{12}/n} \frac{(-1)^r}{r^\rho} \cdot 1 \ast \chi(r) \right|,
$$

$$\Sigma_2' \leq \Sigma_2 = \sum_{U^6 < n \leq U^{12}} \frac{1 \ast \chi(n)}{n^{\beta}} \sum_{r \leq U^{12}/n} \frac{\tau(r)}{r^\beta}.$$

Remark. The main idea of the proof is to use the fact that $\zeta(\rho) = 0$ to show that Σ_1 cannot be too big. This then implies that Σ_2 cannot be too small, from which we can bound $L(1, \chi)$ from below.

Lemma 3. We estimate the inner sum in Σ_1 as

$$\left| \sum_{r \leq y} \frac{(-1)^r}{r^\rho} \sum_{d | r} \chi(d) \right| < \frac{2}{3} \cdot y^{1/2-\beta} |\rho| D^{1/4} \log D \log(y/\sqrt{D}).$$

Proof. We write $(-1)^r = (-1)^{ld}$. Since we are assuming D is even, $\chi(d) = 0$ unless d is odd and so $(-1)^{ld} = (-1)^l$. This gives

$$\left| \sum_{r \leq y} \frac{(-1)^r}{r^\rho} \sum_{d | r} \chi(d) \right| = \left| \sum_{d \leq y} \frac{\chi(d)}{d^\rho} \sum_{l \leq y/d} \frac{(-1)^l}{l^\rho} \right| \leq \left| \sum_{d \leq z} \frac{\chi(d)}{d^\rho} \sum_{l \leq y/d} \frac{(-1)^l}{l^\rho} \right| + \left| \sum_{l \leq y/z} \frac{(-1)^l}{l^\rho} \sum_{d < y/z} \frac{\chi(d)}{d^\rho} \right|.$$

The parameter z will be chosen later to make these two terms approximately the same size. Summation by parts \[1, \text{Theorem 4.2}\] gives

$$\phi(s) = \sum_{l=1}^{y/d} \frac{(-1)^l}{l^s} - \frac{S(y/d)}{(y/d)^s} + s \int_{y/d}^{\infty} \frac{S(x) - S(y/d)}{x^{s+1}} \, dx,$$

where $S(x) = \sum_{n \leq x} (-1)^n$ is -1 or 0. Set $s = \rho$ and use $\phi(\rho) = 0$; we bound
the integral getting
\[\left| s \int_{y/d}^{\infty} \frac{S(x) - S(y/d)}{x^{s+1}} \, dx \right| \leq \frac{|\rho|}{\beta(y/d)^\beta}, \quad \left| S(y/d) \right| \leq \frac{1}{(y/d)^\beta}. \]

So we claim
\[\left| \sum_{l=1}^{y/d} \frac{(-1)^l}{l^p} \right| \leq \frac{|\rho|}{\beta(y/d)^\beta}, \]
since \(1 < 1/\beta\) and \(3\) shows that \(10^{12} < |\rho|\).

Thus we can estimate the first term in the previous sum:
\[\left| \sum_{d \leq z} \frac{\chi(d)}{d^p} \sum_{l \leq y/d} \frac{(-1)^l}{l^p} \right| \leq \sum_{d \leq z} \frac{1}{d^\beta} \cdot \frac{|\rho|}{\beta(y/d)^\beta} = \frac{z|\rho|}{y^\beta \beta}. \]

Another summation by parts gives
\[\sum_{z < d \leq y/l} \frac{\chi(d)}{d^p} = S_D(y/l)(y/l)^s - S_D(z) z^s + s \int_{z}^{y/l} \frac{S_D(x) - S_D(\sqrt{y})}{x^{s+1}} \, dx, \]
where \(S_D(x) = \sum_{n \leq x} \chi(n)\). By the Pólya–Vinogradov inequality \(1\) Theorem 8.21, \(|S_D(x)| < \sqrt{D} \log D\). Neglecting the boundary terms as before, we bound the integral as
\[\left| \sum_{z < d \leq y/l} \frac{\chi(d)}{d^p} \right| \leq \frac{|\rho|\sqrt{D} \log D}{\beta z^\beta}, \]
and so bound the second sum above as
\[\left| \sum_{l \leq y/z} \frac{(-1)^l}{l^p} \sum_{z < d \leq y/l} \frac{\chi(d)}{d^p} \right| \leq \sum_{l \leq y/z} \frac{|\rho|\sqrt{D} \log D}{\beta l^\beta z^\beta} = \frac{|\rho|\sqrt{D} \log D}{\beta} \sum_{l \leq y/z} \frac{1}{l^\beta z^\beta}. \]

Now
\[\sum_{l \leq y/z} \frac{1}{l^\beta z^\beta} = \frac{y^{1-\beta}}{z} \sum_{l \leq y/z} \frac{1}{l^\beta (y/z)^{1-\beta}} < \frac{y^{1-\beta}}{z} \sum_{l \leq y/z} \frac{1}{l^\beta} \cdot \frac{1}{l^{1-\beta}} \sim \frac{y^{1-\beta} \log(y/z)}{z}, \]
where the inequality follows since \(l < y/z\). This gives, for the second sum, the bound
\[\frac{|\rho|\sqrt{D} \log D}{\beta} \cdot \frac{y^{1-\beta} \log(y/z)}{z}. \]

Comparing the two estimates, we see they are approximately the same size when
\[\frac{z}{y^\beta} = \frac{\sqrt{D} y^{1-\beta}}{z}, \quad \text{or} \quad z = D^{1/4} y^{1/2}. \]
Combining the two sum estimates, and with
\[\frac{1}{\beta} < \frac{6}{5} \quad \text{and} \quad 1 < \frac{\log(y/\sqrt{D}) \log D}{18}, \]
we have
\[
\frac{y^{1/2-\beta}|\rho|D^{1/4}}{\beta} + \frac{y^{1/2-\beta}|\rho| \log(y/\sqrt{D})D^{1/4} \log D}{2\beta}
\]
\[< \frac{6}{5} \left(\frac{1}{18} + \frac{1}{2} \right) y^{1/2-\beta} \log(y/\sqrt{D})|\rho|D^{1/4} \log D \]
\[= \frac{2}{3} y^{1/2-\beta} \log(y/\sqrt{D})|\rho|D^{1/4} \log D. \]

Lower bounds again. Applying Lemma 3 with \(y = U^{12}/n \), so \(U^6 < y < U^{12} \), we get
\[
\Sigma_1 < 8U^{6-12\beta} \log U|\rho|D^{1/4} \log D \sum_{n \leq U^6} \frac{\tau(n)}{\sqrt{n}} = 8U^{7-12\beta} \log U \sum_{n \leq U^6} \frac{\tau(n)}{\sqrt{n}}.
\]

With an estimate by the standard ‘method of the hyperbola’ (e.g. [5] (2.9), p. 37), we get
\[
\sum_{n \leq X} \frac{\tau(n)}{\sqrt{n}} = X^{1/2}(2 \log X + 4C - 4) + O(1).
\]
Thus
\[
\Sigma_1 < 96U^{10-12\beta} \log^2 U,
\]
and so, for \(\beta > 5/6 \), \(\Sigma_1 \) is small. In fact, from
\[
\frac{1}{25} \cdot \frac{\zeta(4\beta)}{\zeta(2\beta)} - U^{6-12\beta} \leq \Sigma_1 + \Sigma_2,
\]
Mathematica tells us \(1/50 < \Sigma_2 \) when \(\beta > 7/8 \) and \(U > 10^{16} \). (We are assuming \(D > 10^9 \), and Gourdon [3] has verified the Riemann Hypothesis for the first \(10^{13} \) zeros. Therefore our hypothetical \(\rho \) satisfies \(|\rho| > 2.4 \cdot 10^{12} \), so necessarily \(U = |\rho|D^{1/4} \log D > 10^{16} \).)

We now convert the lower bound for \(\Sigma_2 \) to a lower bound for \(L(1, \chi) \). Recall that
\[
\Sigma_2 = \sum_{U^6 < n \leq U^{12}} \frac{1 \ast \chi(n)}{n^{\beta}} \sum_{r \leq U^{12}/n} \frac{\tau(r)}{r^\beta}.
\]
Writing \(r^{-\beta} = r^{1-\beta}/r \) and using \(r^{1-\beta} < U^{12(1-\beta)}n^{\beta-1} \) we see that
\[
\frac{1}{50} < \Sigma_2 < U^{12(1-\beta)} \sum_{U^6 < n \leq U^{12}} \frac{1 \ast \chi(n)}{n} \sum_{r \leq U^{12}/n} \frac{\tau(r)}{r}.
\]
The ‘method of the hyperbola’ argument shows in \[5\] Ex. 11.2.1 (g) that
\[
\sum_{U^6 \leq n \leq U^{12}} \frac{1 \cdot \chi(n)}{n} = \log(U^6)L(1, \chi) + O(D^{1/4}U^{-3}\log D \log(U^6))
\]
\[
= \log(U^6)L(1, \chi) + O(U^{-2}\log(U^6))
\]
\[
= \log(U^6)(L(1, \chi) + O(U^{-2})).
\]
Meanwhile one more application of this same tool (along with Euler summation) gives
\[
\sum_{r < X} \frac{\tau(r)}{r} = \frac{1}{2} \log^2 X + 2C \log X + O(1).
\]
So
\[
\sum_{r \leq U^{12}/n} \frac{\tau(r)}{r} \sim \frac{1}{2} \log^2(U^{12}/n) < \frac{1}{2} \log^2(U^6),
\]
as \(U^6 < n\). Finally
\[
\frac{1}{50} < \sum_2 < U^{12(1-\beta)} \log(U^6)(L(1, \chi) + O(U^{-2})) \cdot \frac{1}{2} \log^2(U^6)
\]
\[
= 108U^{12(1-\beta)} \log^3 U \left(L(1, \chi) + O(U^{-2})\right).
\]
The implied constant is no worse than 6, and
\[
U^{-2} = \frac{1}{|\rho|^2 \sqrt{D} \log^2 D} < \frac{1}{\sqrt{D}},
\]
so the theorem follows.

The general case. We fix a prime \(q \mid D\) and consider
\[
\sum_{n=1}^{\infty} \frac{c_q(n)}{n^s} = (q^{1-s} - 1)\zeta(s),
\]
where \(c_q(n)\) is the Ramanujan sum
\[
c_q(n) = \sum_{k=1}^{q-1} \exp(2\pi i kn/q) = \begin{cases} -1 & \text{if } (n, q) = 1, \\ q-1 & \text{if } q \mid n. \end{cases}
\]
(Observe that \(c_2(n) = (-1)^n\).) Since \(|\sum_{n<x} c_q(n)| < q\), the Dirichlet series converges conditionally for \(\Re(s) > 0\). The Ramanujan sums are not multiplicative in \(n\), but we have \(c_q(dm) = c_q(m)\) if \((d, q) = 1\). Instead of \(\lambda_{\text{odd}}\) we define a function \(\lambda_q(n) = 0\) if \(q \mid n\). The proof goes through as before. We

\(^{(3)}\) The implied constant in that exercise, combining six big Oh terms with implied constant equal to 1, can be taken to be 6.
find that in Lemma 2 we have
\[\sum_{n=1}^{\infty} c_q(n) \cdot 1 \ast \lambda_q(n) = (1 + q^{-\rho})(1 - q^{1-\rho})\zeta(2\rho), \]
so the trivial zeros along Re(\(s\)) = 1 when \(\gamma = 2\pi n/\log q\) still cause a problem. In fact, the constant 1/25 in Lemma 2 which works for \(q = 2\) is a decreasing function of \(q\) in the general case.

References

Jeffrey Stopple
Mathematics Department
UC Santa Barbara
Santa Barbara, CA 93106, U.S.A.
E-mail: stopple@math.ucsb.edu

Received on 18.1.2012
and in revised form on 2.7.2012