Transcendence of the Artin-Mazur zeta function for polynomial maps of $\mathbb{A}^{1}\left(\overline{\mathbb{F}}_{p}\right)$

by
Andrew Bridy (Madison, WI)

1. Definitions and preliminaries. In the study of dynamical systems the Artin-Mazur zeta function is the generating function for counting periodic points. For any set X and map $f: X \rightarrow X$ it is a formal power series defined by

$$
\begin{equation*}
\zeta_{f}(X ; t)=\exp \left(\sum_{n=1}^{\infty} \#\left(\operatorname{Fix}\left(f^{n}\right)\right) \frac{t^{n}}{n}\right) \tag{1}
\end{equation*}
$$

We use the convention that f^{n} means f composed with itself n times, and that $\operatorname{Fix}\left(f^{n}\right)$ denotes the set of fixed points of f^{n}. For $\zeta_{f}(X ; t)$ to make sense as a formal power series we assume that $\#\left(\operatorname{Fix}\left(f^{n}\right)\right)<\infty$ for all n. The zeta function is also represented by the product formula

$$
\zeta_{f}(X ; t)=\prod_{x \in \operatorname{Per}(f, X)}\left(1-t^{p(x)}\right)^{-1}
$$

where $\operatorname{Per}(f, X)$ is the set of periodic points of f in X and $p(x)$ is the least positive n such that $f^{n}(x)=x$. This function was introduced by Artin and Mazur in the case where X is a manifold and $f: X \rightarrow X$ is a diffeomorphism [AM]. In this context $\zeta_{f}(X ; t)$ is proved to be a rational function for certain classes of diffeomorphisms (e.g. $[\mathcal{G},[\mathbf{M}$). This shows that in these cases the growth of $\#\left(\operatorname{Fix}\left(f^{n}\right)\right)$ is determined by the finitely many zeros and poles of ζ_{f}. From this point onward we make the definition

$$
a_{n}=\#\left(\operatorname{Fix}\left(f^{n}\right)\right)
$$

for economy of notation.
We are interested in the rationality of the zeta function in an algebraic context, motivated by the following example.

[^0]Example. Let X be a variety over \mathbb{F}_{p} and let $f: X \rightarrow X$ be the Frobenius map, i.e. the p th power map on coordinates. Then $\operatorname{Fix}\left(f^{n}\right)$ is exactly the set of $\mathbb{F}_{p^{n}}$-valued points of X. Therefore $\zeta_{f}(X ; t)$ is the HasseWeil zeta function of X, and is rational by Dwork's theorem [D].

We study a simple, yet interesting case: fix a prime p and let $X=\mathbb{A}_{\mathbb{F}_{p}}^{1}$, the affine line over \mathbb{F}_{p}. Let $f \in \overline{\mathbb{F}}_{p}[x]$, let $d=\operatorname{deg} f$, and assume that $d \geq 2$. Consider the dynamical system defined by f as a self-map of $\mathbb{A}^{1}\left(\overline{\mathbb{F}}_{p}\right)$. The points in $\operatorname{Fix}\left(f^{n}\right)$ are the roots in $\overline{\mathbb{F}}_{p}$ of the degree d^{n} polynomial $f^{n}(x)-x$ counted without multiplicity, so $a_{n} \leq d^{n}$. If we consider $\zeta_{f}(t)$ as a function of a complex variable t, it converges to a holomorphic function on \mathbb{C} in a disc around the origin of radius d^{-1} (however, it is not clear that d^{-1} is the largest radius of convergence). Our motivating question is:

Question 1. For which $f \in \overline{\mathbb{F}}_{p}[x]$ is $\zeta_{f}\left(\overline{\mathbb{F}}_{p} ; t\right)$ a rational function?
If we count periodic points with multiplicity, then $a_{n}=d^{n}$ for all n and Question 1 becomes completely trivial by the calculation

$$
\begin{equation*}
\zeta_{f}\left(\overline{\mathbb{F}}_{p} ; t\right)=\exp \left(\sum_{n=1}^{\infty} \frac{d^{n} t^{n}}{n}\right)=\exp (-\log (1-d t))=\frac{1}{1-d t} \tag{2}
\end{equation*}
$$

so we count each periodic point only once. A partial answer to our question is given by the following two theorems, which show that for some simple choices of f, ζ_{f} is not only irrational, but also not algebraic over $\mathbb{Q}(t)$.

Theorem 1. If $f \in \overline{\mathbb{F}}_{p}\left[x^{p}\right]$, then $\zeta_{f}\left(\overline{\mathbb{F}}_{p}, t\right) \in \mathbb{Q}(t)$. In particular, if $p \mid m$, then $\zeta_{x^{m}}\left(\overline{\mathbb{F}}_{p} ; t\right) \in \mathbb{Q}(t)$. If $p \nmid m$, then $\zeta_{x^{m}}\left(\overline{\mathbb{F}}_{p} ; t\right)$ is transcendental over $\mathbb{Q}(t)$.

TheOrem 2. If $a \in \mathbb{F}_{p^{m}}^{\times}$, with p odd and m any positive integer, then $\zeta_{x^{p^{m}}+a x}\left(\overline{\mathbb{F}}_{p} ; t\right)$ is transcendental over $\mathbb{Q}(t)$.

Our strategy of proof depends heavily on the following two theorems. Their proofs, as well as a good introduction to the theory of finite automata and automatic sequences, can be found in $A S$.

Theorem 3 (Christol). The formal power series $\sum_{n=0}^{\infty} b_{n} t^{n}$ in the ring $\mathbb{F}_{p}[[t]]$ is algebraic over $\mathbb{F}_{p}(t)$ iff its coefficient sequence $\left\{b_{n}\right\}$ is p-automatic.

Theorem 4 (Cobham). For p, q multiplicatively independent positive integers (i.e. $\log p / \log q \notin \mathbb{Q})$, the sequence $\left\{b_{n}\right\}$ is both p-automatic and q-automatic iff it is eventually periodic.

The following is an easy corollary to Christol's theorem which we will use repeatedly AS, Theorem 12.6.1].

Corollary 5. If $\sum_{n=0}^{\infty} b_{n} t^{n} \in \mathbb{Z}[[t]]$ is algebraic over $\mathbb{Q}(t)$, then the reduction of $\left\{b_{n}\right\}$ modulo p is p-automatic for every prime p.

We note that Corollary 5 will be applied to the logarithmic derivative $\zeta_{f}^{\prime} / \zeta_{f}=\sum_{n=1}^{\infty} a_{n} t^{n-1}$, rather than to ζ_{f}.

Throughout this paper we use v_{p} to mean the usual p-adic valuation, that is, $v_{p}(a / b)=\operatorname{ord}_{p}(b)-\operatorname{ord}_{p}(a)$. We use $(n)_{p}$ as in [AS] to signify the base- p representation of the integer n, and we denote the multiplicative order of a modulo n by $o(a, n)$, assuming that a and n are coprime integers.
2. Proof of Theorem 1. Let $f(x) \in \overline{\mathbb{F}}_{p}\left[x^{p}\right]$, so that $f^{\prime}(x)=0$ identically. Then $f^{n}(x)-x$ has derivative $\left(f^{n}(x)-x\right)^{\prime}=-1$, so it has distinct roots over $\overline{\mathbb{F}}_{p}$. Therefore $a_{n}=(\operatorname{deg} f)^{n}$ and $\zeta_{f}\left(\overline{\mathbb{F}}_{p}, t\right)$ is rational as in (2).

Now suppose $f(x)=x^{m}$ where $p \nmid m$. Assume by way of contradiction that ζ_{f} is algebraic over $\mathbb{Q}(t)$. The derivative $\zeta_{f}^{\prime}=d \zeta_{f} / d t$ is algebraic, which can be shown by writing the polynomial equation that ζ_{f} satisfies and applying implicit differentiation. Hence $\zeta_{f}^{\prime} / \zeta_{f}$ is algebraic. We have

$$
\zeta_{f}^{\prime} / \zeta_{f}=\left(\log \zeta_{f}\right)^{\prime}=\sum_{n=1}^{\infty} a_{n} t^{n-1}
$$

so in particular $\zeta_{f}^{\prime} / \zeta_{f} \in \mathbb{Z}[[t]]$. By Corollary 5 , for every prime q the reduced sequence $\left\{a_{n}\right\} \bmod q$ is q-automatic.

First we count the roots of $f^{n}(x)-x=x^{m^{n}}-x=x\left(x^{m^{n}-1}-1\right)$ in $\overline{\mathbb{F}}_{p}$. There is one root at zero, and we write $m^{n}-1=p^{a} b$, where $p \nmid b$, so

$$
x^{m^{n}-1}-1=x^{p^{a} b}-1=\left(x^{b}-1\right)^{p^{a}}
$$

The polynomial $x^{b}-1$ has derivative $b x^{b-1}$, and $\left(x^{b}-1, b x^{b-1}\right)=1$, so $x^{b}-1$ has exactly b roots in $\overline{\mathbb{F}}_{p}$, as does $x^{m^{n}}-1$. Therefore

$$
\begin{equation*}
a_{n}=1+\frac{m^{n}-1}{p^{v_{p}\left(m^{n}-1\right)}} . \tag{3}
\end{equation*}
$$

Now we need to reduce modulo some carefully chosen prime q. There are two cases to consider, depending on whether $p=2$.

CASE 1. If $p=2$, let q be a prime dividing $m, q \neq 2$. There is such a prime because $m>1$ and $2 \nmid m$. Let $r=2^{-1}$ in \mathbb{F}_{q}. Reducing modulo q,

$$
\begin{equation*}
a_{n}=1+\frac{m^{n}-1}{2^{v_{2}\left(m^{n}-1\right)}} \equiv 1-r^{v_{2}\left(m^{n}-1\right)}(\bmod q) \tag{4}
\end{equation*}
$$

The subsequence $\left\{a_{2 n}\right\}$ reduced modulo q is q-automatic because subsequences of automatic sequences indexed by arithmetic progressions are automatic [AS, Theorem 6.8.1]. We define the sequence $\left\{b_{n}\right\}$ as

$$
b_{n}=-\left(a_{2 n}-1\right)
$$

Then $\left\{b_{n}\right\}$ is q-automatic, because subtracting 1 and multiplying by -1 simply permute the elements of \mathbb{F}_{q}. We have $b_{n}=r^{v_{2}\left(m^{2 n}-1\right)}$ by (4). To proceed, we need the following proposition.

Proposition 6.

(i) For any $n, m \in \mathbb{N}$, m odd,

$$
v_{2}\left(m^{2 n}-1\right)=v_{2}(n)+v_{2}\left(m^{2}-1\right) .
$$

(ii) If p is an odd prime and $n, m \in \mathbb{N}$, $p \nmid m$, then

$$
v_{p}\left(m^{(p-1) n}-1\right)=v_{p}(n)+v_{p}\left(m^{p-1}-1\right) .
$$

Proof. The proof is an elementary consequence of the structure of the unit group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$(see for example $\mathbb{\square}$), and is omitted.

By Proposition 6 ,

$$
\begin{equation*}
b_{n}=r^{v_{2}(n)+v_{2}\left(m^{2}-1\right)} . \tag{5}
\end{equation*}
$$

Let $d=o(r, q)$, the multiplicative order of r in \mathbb{F}_{q}, and note that $d>1$ because $r \neq 1$. We see that b_{n} is a function of $v_{2}(n)$ reduced modulo d, and $v_{2}(n)$ is simply the number of leading zeros of $(n)_{2}$ (if we read the least significant digit first).

Lemma 7. If β_{n} is a function of the equivalence class $\bmod d$ of $v_{p}(n)$, then the sequence $\left\{\beta_{n}\right\}$ is p-automatic.

Proof. We can build a finite automaton (with output) whose output depends on the equivalence class modulo d of the number of initial zeros of a string, as in Figure 1 for $d=4$. There are d states arranged in a circle

Fig. 1. State q_{0} is initial. States q_{i} and r_{i} are reached after processing $i \bmod 4$ leading zeros.
(the q_{i} in the figure), reading a zero moves from one of these states to the next, and reading any other symbol moves to a final state (the r_{i}) marked with the corresponding output. Therefore $\left\{\beta_{n}\right\}$ is p-automatic.

By Lemma 7, $\left\{b_{n}\right\}$ is 2-automatic. It is also q-automatic, so by Cobham's theorem, $\left\{b_{n}\right\}$ is eventually periodic of period k. For some large n, we have $b_{n k}=b_{n k+k}=b_{n k+2 k}=\cdots=b_{(n+a) k}$ for any positive integer a. This means that $b_{N k}=b_{n k}$ for all $N>n$. By (5),

$$
r^{v_{2}(N k)+v_{2}\left(m^{2}-1\right)}=r^{v_{2}(n k)+v_{2}\left(m^{2}-1\right)}
$$

which means $v_{2}(N k) \equiv v_{2}(n k)(\bmod d)$ and so $v_{2}(N) \equiv v_{2}(n)(\bmod d)$ for all $N>n$. This is a contradiction, as $d>1$.

CASE 2. If $p>2$, we pick some prime $q>m^{p-1}$ such that $q \not \equiv 1$ $(\bmod p)$ (for example we can choose $q \equiv 2(\bmod p)$ by Dirichlet's theorem on primes in arithmetic progressions). Clearly $q \nmid m$, so $m^{q-1} \equiv 1(\bmod q)$. Let $r=p^{-1}$ in \mathbb{F}_{q}. The sequence $\left\{a_{n}\right\}$ is as in (3). We take the subsequence $a_{(p-1)((q-1) n+1)}$ and reduce it modulo q. The reduced subsequence is q-automatic. We compute

$$
\begin{aligned}
a_{(p-1)((q-1) n+1)} & =1+\frac{m^{(p-1)((q-1) n+1)}-1}{p^{v_{p}\left(m^{(p-1)((q-1) n+1)}-1\right)}}=1+\frac{\left(m^{q-1}\right)^{(p-1) n} m^{p-1}-1}{p^{v_{p}\left(m^{(p-1)((q-1) n+1)}-1\right)}} \\
& \equiv 1+\left(m^{p-1}-1\right) r^{v_{p}\left(m^{(p-1)((q-1) n+1)}-1\right)}(\bmod q)
\end{aligned}
$$

As $m^{p-1}-1<q$ we can invert $m^{p-1}-1$ modulo q. If we subtract 1 and multiply by $\left(m^{p-1}-1\right)^{-1}$ as in Case 1 , we get

$$
b_{n}=r^{v_{p}\left(m^{(p-1)((q-1) n+1)}-1\right)}
$$

which is q-automatic.
By Proposition 6, $b_{n}=r^{v_{p}((q-1) n+1)+v_{p}\left(m^{p-1}-1\right)}$. Let $d=o(r, q)$, noting that $d>1$. Let

$$
Y=\left\{n \in \mathbb{N}: v_{p}((q-1) n+1) \equiv 0(\bmod d)\right\}
$$

Then Y is the fiber of $\left\{b_{n}\right\}$ over $r^{v_{p}\left(m^{p-1}-1\right)}$ and is therefore a q-automatic set (i.e. its characteristic sequence is q-automatic). We argue that Y is p automatic.

Consider a finite-state transducer T on strings over $\{0, \ldots, p-1\}$ such that $T\left((n)_{p}\right)=((q-1) n+1)_{p}$. On strings with no leading zeros, T is one-to-one. Let L be the set of base- p strings $(n)_{p}$ such that $n \in Y$. Then

$$
T(L)=\left\{(n)_{p}: n \equiv 1(\bmod q-1) \text { and } v_{p}(n) \equiv 0(\bmod d)\right\}
$$

We observe that $T(L)$ is a regular language, as both of its defining conditions can be recognized by a finite automaton (for the second condition, this follows from Lemma 7). Therefore $T^{-1}(T(L))=L$ is regular, that is, the characteristic sequence of Y is p-automatic. We use Cobham's theorem again to conclude that the characteristic sequence of Y is eventually periodic.

Let $\left\{y_{n}\right\}$ be the characteristic sequence of Y :

$$
y_{n}= \begin{cases}1, & n \in Y \\ 0, & n \notin Y\end{cases}
$$

and let k be its (eventual) period. Write k as $k=M p^{N}$, where $p \nmid M$ (it is possible that $N=0)$. As $q \not \equiv 1(\bmod p), q-1$ is invertible modulo p-powers, so we can solve the following equation for n :

$$
\begin{equation*}
(q-1) n \equiv-1+p^{d N}\left(\bmod p^{d N+2}\right) \tag{6}
\end{equation*}
$$

Any n that solves this equation satisfies $v_{p}((q-1) n+1)=d N$ and so $y_{n}=1$. Choose a large enough solution n so that $\left\{y_{n}\right\}$ is periodic at n. We can solve the following equation for a, and choose such an a to be positive:

$$
\begin{equation*}
(q-1) a M \equiv p^{(d-1) N}(p-1)\left(\bmod p^{d N+2}\right) \tag{7}
\end{equation*}
$$

Multiplying (7) by p^{N} gives

$$
\begin{equation*}
(q-1) a k \equiv p^{d N+1}-p^{d N}\left(\bmod p^{d N+2}\right) \tag{8}
\end{equation*}
$$

Adding (6) and (8) gives

$$
(q-1)(n+a k) \equiv-1+p^{d N+1}\left(\bmod p^{d N+2}\right)
$$

from which we conclude $v_{p}((q-1)(n+a k)+1)=d N+1$. So $y_{n+a k}=0$. But $y_{n}=y_{n+a k}$ by periodicity, which is a contradiction.
3. Proof of Theorem 2. Let $f(x)=x^{p^{m}}+a x$ for $a \in \mathbb{F}_{p^{m}}^{\times}, p$ odd. First we compute $f^{n}(x)$.

Proposition 8. $f^{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{p^{k m}} a^{n-k}$
Proof. Let $\phi(x)=x^{p^{m}}$ and $a(x)=a x$, so $f=\phi+a$. Both ϕ and a are additive polynomials (they distribute over addition) and they commute, so the proof is simply the binomial theorem applied to $(\phi+a)^{n}$.

Assume that ζ_{f} is algebraic. By Corollary 5, the sequence $\left\{a_{n}\right\}$ reduced modulo q is q-automatic for every prime q, as is the subsequence $\left\{a_{\left(p^{m}-1\right) n}\right\}$ by previous remarks. Now we need to compute a_{n} when $p^{m}-1$ divides n.

Proposition 9. If $p^{m}-1$ divides n, then $a_{n}=p^{\left(n-p^{v_{p}(n)}\right) m}$.
Proof. The coefficient of x in $f^{n}(x)$ is a power of $a^{p^{m}-1}=1$. Let l be the smallest positive integer such that $\binom{n}{l} \not \equiv 0(\bmod p)$. Then

$$
f^{n}(x)-x=\sum_{k=l}^{n}\binom{n}{k} x^{p^{k m}} a^{n-k}=\left(\sum_{k=l}^{n}\binom{n}{k} x^{p^{(k-l) m}}\left(a^{n-k}\right)^{p^{-l}}\right)^{p^{l}}
$$

where raising to the p^{-l} power means applying the inverse of the Frobenius automorphism l times. Let $g(x)=\sum_{k=l}^{n}\binom{n}{k} x^{p^{(k-l) m}}\left(a^{n-k}\right)^{p^{-l}}$. The derivative
$g^{\prime}(x)=\left(a^{n-l}\right)^{p^{-l}}$ is nonzero, so $g(x)$ has $p^{(n-l) m}$ distinct roots over $\overline{\mathbb{F}}_{p}$, as does $f^{n}(x)-x$. So $a_{n}=p^{(n-l) m}$.

Kummer's classical theorem [K] on binomial coefficients modulo p says that $v_{p}\left(\binom{n}{l}\right)$ equals the number of borrows involved in subtracting l from n in base $p[\mathrm{~K}]$. It is clear that the smallest integer l that results in no borrows in this subtraction is $l=p^{v_{p}(n)}$, and we are done.

Let $q>p$ be a prime to be determined and let $r=p^{-1}$ in \mathbb{F}_{q}. The sequence given by $b_{n}=r^{\left(p^{m}-1\right) n m}$ is eventually periodic and hence q-automatic. Let $c_{n}=a_{\left(p^{m}-1\right) n} b_{n}$. By [AS, Corollary 5.4.5] the product of q-automatic sequences over \mathbb{F}_{q} is q-automatic, so c_{n} is q-automatic. Therefore

$$
\begin{aligned}
c_{n} & =a_{\left(p^{m}-1\right) n} b_{n}=p^{\left(\left(p^{m}-1\right) n-p^{v_{p}\left(\left(p^{m}-1\right) n\right)}\right) m_{2}\left(p^{m}-1\right) n m} \\
& =\left(p^{-1}\right)^{\left.p^{\left(v_{p}\left(p^{m}-1\right)+v_{p}(n)\right.}\right) m}=\left(r^{m}\right)^{p^{v_{p}(n)}}
\end{aligned}
$$

Choose $q>p^{m p}$ such that $q \equiv 2\left(\bmod p^{m}\right)$. Note that $o\left(r^{m}, q\right)$ divides $q-1$, so $o\left(r^{m}, q\right) \not \equiv 0(\bmod p)$ and p is invertible modulo $o\left(r^{m}, q\right)$. The value of c_{n} depends only on $p^{v_{p}(n)}$ reduced modulo $o\left(r^{m}, q\right)$, which in turn is a function of $v_{p}(n) \bmod o\left(p, o\left(r^{m}, q\right)\right)$, so c_{n} is p-automatic by Lemma 7 .

By Cobham's theorem, c_{n} is eventually periodic, so the set

$$
\begin{aligned}
Y & =\left\{n \in \mathbb{N}: c_{n}=r^{m}\right\}=\left\{n \in \mathbb{N}: p^{v_{p}(n)} \equiv 1\left(\bmod o\left(r^{m}, q\right)\right)\right\} \\
& =\left\{n \in \mathbb{N}: v_{p}(n) \equiv 0\left(\bmod o\left(p, o\left(r^{m}, q\right)\right)\right)\right\}
\end{aligned}
$$

has an eventually periodic characteristic sequence $\left\{y_{n}\right\}$. Essentially the same argument as in Case 2 of Theorem 1 shows this is a contradiction when $o\left(p, o\left(r^{m}, q\right)\right)>1$. We sketch the argument for completeness.

As we chose $q>p^{m p}$, we have $o\left(r^{m}, q\right)=o\left(p^{m}, q\right)>p$, and $o\left(p, o\left(r^{m}, q\right)\right)$ >1. Let $d=o\left(p, o\left(r^{m}, q\right)\right)$, and let $k=M p^{N}$ be the eventual period of Y, where $p \nmid M$. We can solve

$$
\begin{align*}
n & \equiv p^{d N}\left(\bmod p^{d N+2}\right) \tag{9}\\
a M & \equiv p^{(d-1) N}(p-1)\left(\bmod p^{d N+2}\right) \tag{10}
\end{align*}
$$

for large n and positive a, so $y_{n}=1$. Adding (9) and p^{N} times 10 gives

$$
n+a k \equiv p^{d N+1}\left(\bmod p^{d N+2}\right)
$$

from which we conclude $v_{p}(n+a k)=d N+1$, so $y_{n+a k}=0$, contradicting periodicity of $\left\{y_{n}\right\}$. This contradiction shows that ζ_{f} is transcendental.
4. Concluding remarks. The polynomial maps in Theorems 1 and 2 are homomorphisms of the multiplicative and additive groups of $\overline{\mathbb{F}}_{p}$, respectively. It should be possible to prove similar theorems for other maps associated to homomorphisms, e.g. Chebyshev polynomials, general additive
polynomials, and Lattès maps on $\mathbb{P}^{1}\left(\overline{\mathbb{F}}_{p}\right)$. See [S1] for a discussion of special properties of these maps.

It is more difficult to study the rationality or transcendence of ζ_{f} when the map f has no obvious structure. For example, there is a standard heuristic that the map $f(x)=x^{2}+1$ behaves like a random mapping on a finite field of odd order (see $[\mathrm{B}, \mathrm{P},[\mathrm{S} 2$ and many others). We conclude with the following tantalizing question without hazarding a guess as to the answer.

Question 2. For p odd and $f=x^{2}+1$, is $\zeta_{f}\left(\overline{\mathbb{F}}_{p}, t\right)$ in $\mathbb{Q}(t)$?
Acknowledgements. This research was partly supported by NSF grant no. CCF-0635355. The author wishes to thank Eric Bach for many helpful suggestions and comments, Jeff Shallit for useful clarifications, and an anonymous referee for helpful remarks on style and presentation.

References

[AS] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003.
[AM] M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99.
[B] E. Bach, Toward a theory of Pollard's rho method, Inform. and Comput. 90 (1991), 139-155.
[D] B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631-648.
[G] J. Guckenheimer, Axiom A + No Cycles $\Rightarrow \zeta_{f}(t)$ rational, Bull. Amer. Math. Soc. 76 (1970), 592-594.
[K] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[L] W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, Reading, MA, 1977.
[M] A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215-220.
[P] J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331-334.
[S1] J. Silverman, The Arithmetic of Dynamical Systems, Grad. Texts in Math. 241, Springer, 2007.
[S2] J. Silverman, Variation of periods modulo p in arithmetic dynamics, New York J. Math. 14 (2008), 601-616.

Andrew Bridy
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706, U.S.A.
E-mail: bridy@math.wisc.edu

[^0]: 2010 Mathematics Subject Classification: Primary 37P05; Secondary 11B85.
 Key words and phrases: arithmetic dynamics, automatic sequences, finite fields.

