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Transcendence of the Artin–Mazur zeta function for
polynomial maps of A1(Fp)

by

Andrew Bridy (Madison, WI)

1. Definitions and preliminaries. In the study of dynamical systems
the Artin–Mazur zeta function is the generating function for counting peri-
odic points. For any set X and map f : X → X it is a formal power series
defined by

(1) ζf (X; t) = exp

( ∞∑
n=1

#(Fix(fn))
tn

n

)
.

We use the convention that fn means f composed with itself n times, and
that Fix(fn) denotes the set of fixed points of fn. For ζf (X; t) to make sense
as a formal power series we assume that #(Fix(fn)) <∞ for all n. The zeta
function is also represented by the product formula

ζf (X; t) =
∏

x∈Per(f,X)

(1− tp(x))−1

where Per(f,X) is the set of periodic points of f in X and p(x) is the least
positive n such that fn(x) = x. This function was introduced by Artin and
Mazur in the case where X is a manifold and f : X → X is a diffeomor-
phism [AM]. In this context ζf (X; t) is proved to be a rational function for
certain classes of diffeomorphisms (e.g. [G, M]). This shows that in these
cases the growth of #(Fix(fn)) is determined by the finitely many zeros
and poles of ζf . From this point onward we make the definition

an = #(Fix(fn))

for economy of notation.

We are interested in the rationality of the zeta function in an algebraic
context, motivated by the following example.
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Example. Let X be a variety over Fp and let f : X → X be the
Frobenius map, i.e. the pth power map on coordinates. Then Fix(fn) is
exactly the set of Fpn-valued points of X. Therefore ζf (X; t) is the Hasse–
Weil zeta function of X, and is rational by Dwork’s theorem [D].

We study a simple, yet interesting case: fix a prime p and let X = A1
Fp

,

the affine line over Fp. Let f ∈ Fp[x], let d = deg f , and assume that d ≥ 2.
Consider the dynamical system defined by f as a self-map of A1(Fp). The
points in Fix(fn) are the roots in Fp of the degree dn polynomial fn(x)− x
counted without multiplicity, so an ≤ dn. If we consider ζf (t) as a function
of a complex variable t, it converges to a holomorphic function on C in a
disc around the origin of radius d−1 (however, it is not clear that d−1 is the
largest radius of convergence). Our motivating question is:

Question 1. For which f ∈ Fp[x] is ζf (Fp; t) a rational function?

If we count periodic points with multiplicity, then an = dn for all n and
Question 1 becomes completely trivial by the calculation

(2) ζf (Fp; t) = exp

( ∞∑
n=1

dntn

n

)
= exp(− log(1− dt)) =

1

1− dt
,

so we count each periodic point only once. A partial answer to our question
is given by the following two theorems, which show that for some simple
choices of f , ζf is not only irrational, but also not algebraic over Q(t).

Theorem 1. If f ∈ Fp[x
p], then ζf (Fp, t) ∈ Q(t). In particular, if p |m,

then ζxm(Fp; t) ∈ Q(t). If p - m, then ζxm(Fp; t) is transcendental over Q(t).

Theorem 2. If a ∈ F×pm, with p odd and m any positive integer, then

ζxpm+ax(Fp; t) is transcendental over Q(t).

Our strategy of proof depends heavily on the following two theorems.
Their proofs, as well as a good introduction to the theory of finite automata
and automatic sequences, can be found in [AS].

Theorem 3 (Christol). The formal power series
∑∞

n=0 bnt
n in the ring

Fp[[t]] is algebraic over Fp(t) iff its coefficient sequence {bn} is p-automatic.

Theorem 4 (Cobham). For p, q multiplicatively independent positive
integers (i.e. log p/log q /∈ Q), the sequence {bn} is both p-automatic and
q-automatic iff it is eventually periodic.

The following is an easy corollary to Christol’s theorem which we will
use repeatedly [AS, Theorem 12.6.1].

Corollary 5. If
∑∞

n=0 bnt
n ∈ Z[[t]] is algebraic over Q(t), then the

reduction of {bn} modulo p is p-automatic for every prime p.
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We note that Corollary 5 will be applied to the logarithmic derivative
ζ ′f/ζf =

∑∞
n=1 ant

n−1, rather than to ζf .
Throughout this paper we use vp to mean the usual p-adic valuation, that

is, vp(a/b) = ordp(b)− ordp(a). We use (n)p as in [AS] to signify the base-p
representation of the integer n, and we denote the multiplicative order of a
modulo n by o(a, n), assuming that a and n are coprime integers.

2. Proof of Theorem 1. Let f(x) ∈ Fp[x
p], so that f ′(x) = 0 identi-

cally. Then fn(x) − x has derivative (fn(x) − x)′ = −1, so it has distinct
roots over Fp. Therefore an = (deg f)n and ζf (Fp, t) is rational as in (2).

Now suppose f(x) = xm where p - m. Assume by way of contradic-
tion that ζf is algebraic over Q(t). The derivative ζ ′f = dζf/dt is algebraic,
which can be shown by writing the polynomial equation that ζf satisfies and
applying implicit differentiation. Hence ζ ′f/ζf is algebraic. We have

ζ ′f/ζf = (log ζf )′ =

∞∑
n=1

ant
n−1,

so in particular ζ ′f/ζf ∈ Z[[t]]. By Corollary 5, for every prime q the reduced
sequence {an} mod q is q-automatic.

First we count the roots of fn(x)− x = xm
n − x = x(xm

n−1 − 1) in Fp.
There is one root at zero, and we write mn − 1 = pab, where p - b, so

xm
n−1 − 1 = xp

ab − 1 = (xb − 1)p
a
.

The polynomial xb−1 has derivative bxb−1, and (xb−1, bxb−1) = 1, so xb−1
has exactly b roots in Fp, as does xm

n − 1. Therefore

(3) an = 1 +
mn − 1

pvp(m
n−1) .

Now we need to reduce modulo some carefully chosen prime q. There are
two cases to consider, depending on whether p = 2.

Case 1. If p = 2, let q be a prime dividing m, q 6= 2. There is such a
prime because m > 1 and 2 - m. Let r = 2−1 in Fq. Reducing modulo q,

(4) an = 1 +
mn − 1

2v2(mn−1) ≡ 1− rv2(mn−1) (mod q).

The subsequence {a2n} reduced modulo q is q-automatic because subse-
quences of automatic sequences indexed by arithmetic progressions are au-
tomatic [AS, Theorem 6.8.1]. We define the sequence {bn} as

bn = −(a2n − 1).

Then {bn} is q-automatic, because subtracting 1 and multiplying by −1

simply permute the elements of Fq. We have bn = rv2(m
2n−1) by (4). To

proceed, we need the following proposition.
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Proposition 6.

(i) For any n,m ∈ N, m odd,

v2(m
2n − 1) = v2(n) + v2(m

2 − 1).

(ii) If p is an odd prime and n,m ∈ N, p - m, then

vp(m
(p−1)n − 1) = vp(n) + vp(m

p−1 − 1).

Proof. The proof is an elementary consequence of the structure of the
unit group (Z/pnZ)× (see for example [L]), and is omitted.

By Proposition 6,

(5) bn = rv2(n)+v2(m2−1).

Let d = o(r, q), the multiplicative order of r in Fq, and note that d > 1
because r 6= 1. We see that bn is a function of v2(n) reduced modulo d, and
v2(n) is simply the number of leading zeros of (n)2 (if we read the least
significant digit first).

Lemma 7. If βn is a function of the equivalence class mod d of vp(n),
then the sequence {βn} is p-automatic.

Proof. We can build a finite automaton (with output) whose output
depends on the equivalence class modulo d of the number of initial zeros of
a string, as in Figure 1 for d = 4. There are d states arranged in a circle

q0

q1

q2

q3

r0

r1

r2

r3

0 0

00

1

1

1

1

0, 1

0, 1

0, 1

0, 1

1

Fig. 1. State q0 is initial. States qi and ri are reached after processing i mod 4 leading
zeros.

(the qi in the figure), reading a zero moves from one of these states to the
next, and reading any other symbol moves to a final state (the ri) marked
with the corresponding output. Therefore {βn} is p-automatic.
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By Lemma 7, {bn} is 2-automatic. It is also q-automatic, so by Cobham’s
theorem, {bn} is eventually periodic of period k. For some large n, we have
bnk = bnk+k = bnk+2k = · · · = b(n+a)k for any positive integer a. This means
that bNk = bnk for all N > n. By (5),

rv2(Nk)+v2(m2−1) = rv2(nk)+v2(m2−1)

which means v2(Nk) ≡ v2(nk) (mod d) and so v2(N) ≡ v2(n) (mod d) for
all N > n. This is a contradiction, as d > 1.

Case 2. If p > 2, we pick some prime q > mp−1 such that q 6≡ 1
(mod p) (for example we can choose q ≡ 2 (mod p) by Dirichlet’s theorem
on primes in arithmetic progressions). Clearly q - m, so mq−1 ≡ 1 (mod q).
Let r = p−1 in Fq. The sequence {an} is as in (3). We take the subse-
quence a(p−1)((q−1)n+1) and reduce it modulo q. The reduced subsequence is
q-automatic. We compute

a(p−1)((q−1)n+1) = 1 +
m(p−1)((q−1)n+1) − 1

pvp(m
(p−1)((q−1)n+1)−1)

= 1 +
(mq−1)(p−1)nmp−1 − 1

pvp(m
(p−1)((q−1)n+1)−1)

≡ 1 + (mp−1 − 1)rvp(m
(p−1)((q−1)n+1)−1) (mod q).

As mp−1 − 1 < q we can invert mp−1 − 1 modulo q. If we subtract 1 and
multiply by (mp−1 − 1)−1 as in Case 1, we get

bn = rvp(m
(p−1)((q−1)n+1)−1),

which is q-automatic.

By Proposition 6, bn = rvp((q−1)n+1)+vp(mp−1−1). Let d = o(r, q), noting
that d > 1. Let

Y = {n ∈ N : vp((q − 1)n+ 1) ≡ 0 (mod d)}.

Then Y is the fiber of {bn} over rvp(m
p−1−1) and is therefore a q-automatic

set (i.e. its characteristic sequence is q-automatic). We argue that Y is p-
automatic.

Consider a finite-state transducer T on strings over {0, . . . , p − 1} such
that T ((n)p) = ((q − 1)n + 1)p. On strings with no leading zeros, T is
one-to-one. Let L be the set of base-p strings (n)p such that n ∈ Y . Then

T (L) = {(n)p : n ≡ 1 (mod q − 1) and vp(n) ≡ 0 (mod d)}.

We observe that T (L) is a regular language, as both of its defining conditions
can be recognized by a finite automaton (for the second condition, this
follows from Lemma 7). Therefore T−1(T (L)) = L is regular, that is, the
characteristic sequence of Y is p-automatic. We use Cobham’s theorem again
to conclude that the characteristic sequence of Y is eventually periodic.
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Let {yn} be the characteristic sequence of Y :

yn =

{
1, n ∈ Y ,

0, n /∈ Y ,

and let k be its (eventual) period. Write k as k = MpN , where p - M (it is
possible that N = 0). As q 6≡ 1 (mod p), q−1 is invertible modulo p-powers,
so we can solve the following equation for n:

(6) (q − 1)n ≡ −1 + pdN (mod pdN+2).

Any n that solves this equation satisfies vp((q−1)n+1) = dN and so yn = 1.
Choose a large enough solution n so that {yn} is periodic at n. We can solve
the following equation for a, and choose such an a to be positive:

(7) (q − 1)aM ≡ p(d−1)N (p− 1) (mod pdN+2)

Multiplying (7) by pN gives

(8) (q − 1)ak ≡ pdN+1 − pdN (mod pdN+2).

Adding (6) and (8) gives

(q − 1)(n+ ak) ≡ −1 + pdN+1 (mod pdN+2),

from which we conclude vp((q − 1)(n + ak) + 1) = dN + 1. So yn+ak = 0.
But yn = yn+ak by periodicity, which is a contradiction.

3. Proof of Theorem 2. Let f(x) = xp
m

+ ax for a ∈ F×pm , p odd.
First we compute fn(x).

Proposition 8. fn(x) =
∑n

k=0

(
n
k

)
xp

km
an−k

Proof. Let φ(x) = xp
m

and a(x) = ax, so f = φ + a. Both φ and a are
additive polynomials (they distribute over addition) and they commute, so
the proof is simply the binomial theorem applied to (φ+ a)n.

Assume that ζf is algebraic. By Corollary 5, the sequence {an} reduced
modulo q is q-automatic for every prime q, as is the subsequence {a(pm−1)n}
by previous remarks. Now we need to compute an when pm − 1 divides n.

Proposition 9. If pm − 1 divides n, then an = p(n−p
vp(n))m.

Proof. The coefficient of x in fn(x) is a power of ap
m−1 = 1. Let l be

the smallest positive integer such that
(
n
l

)
6≡ 0 (mod p). Then

fn(x)− x =

n∑
k=l

(
n

k

)
xp

km
an−k =

( n∑
k=l

(
n

k

)
xp

(k−l)m
(an−k)p

−l

)pl

,

where raising to the p−l power means applying the inverse of the Frobenius

automorphism l times. Let g(x) =
∑n

k=l

(
n
k

)
xp

(k−l)m
(an−k)p

−l
. The derivative
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g′(x) = (an−l)p
−l

is nonzero, so g(x) has p(n−l)m distinct roots over Fp, as
does fn(x)− x. So an = p(n−l)m.

Kummer’s classical theorem [K] on binomial coefficients modulo p says
that vp(

(
n
l

)
) equals the number of borrows involved in subtracting l from n

in base p [K]. It is clear that the smallest integer l that results in no borrows
in this subtraction is l = pvp(n), and we are done.

Let q > p be a prime to be determined and let r = p−1 in Fq. The se-
quence given by bn=r(p

m−1)nm is eventually periodic and hence q-automatic.
Let cn = a(pm−1)nbn. By [AS, Corollary 5.4.5] the product of q-automatic
sequences over Fq is q-automatic, so cn is q-automatic. Therefore

cn = a(pm−1)nbn = p((p
m−1)n−pvp((p

m−1)n))mr(p
m−1)nm

= (p−1)p
(vp(p

m−1)+vp(n))m = (rm)p
vp(n)

.

Choose q > pmp such that q ≡ 2 (mod pm). Note that o(rm, q) divides q− 1,
so o(rm, q) 6≡ 0 (mod p) and p is invertible modulo o(rm, q). The value of cn
depends only on pvp(n) reduced modulo o(rm, q), which in turn is a function
of vp(n) mod o(p, o(rm, q)), so cn is p-automatic by Lemma 7.

By Cobham’s theorem, cn is eventually periodic, so the set

Y = {n ∈ N : cn = rm} = {n ∈ N : pvp(n) ≡ 1 (mod o(rm, q))}
= {n ∈ N : vp(n) ≡ 0 (mod o(p, o(rm, q)))}

has an eventually periodic characteristic sequence {yn}. Essentially the same
argument as in Case 2 of Theorem 1 shows this is a contradiction when
o(p, o(rm, q)) > 1. We sketch the argument for completeness.

As we chose q > pmp, we have o(rm, q) = o(pm, q) > p, and o(p, o(rm, q))
> 1. Let d = o(p, o(rm, q)), and let k = MpN be the eventual period of Y ,
where p -M . We can solve

n ≡ pdN (mod pdN+2),(9)

aM ≡ p(d−1)N (p− 1) (mod pdN+2)(10)

for large n and positive a, so yn = 1. Adding (9) and pN times (10) gives

n+ ak ≡ pdN+1 (mod pdN+2),

from which we conclude vp(n + ak) = dN + 1, so yn+ak = 0, contradicting
periodicity of {yn}. This contradiction shows that ζf is transcendental.

4. Concluding remarks. The polynomial maps in Theorems 1 and 2
are homomorphisms of the multiplicative and additive groups of Fp, re-
spectively. It should be possible to prove similar theorems for other maps
associated to homomorphisms, e.g. Chebyshev polynomials, general additive
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polynomials, and Lattès maps on P1(Fp). See [S1] for a discussion of special
properties of these maps.

It is more difficult to study the rationality or transcendence of ζf when
the map f has no obvious structure. For example, there is a standard heuris-
tic that the map f(x) = x2 + 1 behaves like a random mapping on a finite
field of odd order (see [B], [P], [S2] and many others). We conclude with the
following tantalizing question without hazarding a guess as to the answer.

Question 2. For p odd and f = x2 + 1, is ζf (Fp, t) in Q(t)?
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