Transcendence of the Artin–Mazur zeta function for polynomial maps of $\mathbb{A}^1(\overline{\mathbb{F}}_p)$

by

ANDREW BRIDY (Madison, WI)

1. Definitions and preliminaries. In the study of dynamical systems the Artin–Mazur zeta function is the generating function for counting periodic points. For any set X and map $f: X \to X$ it is a formal power series defined by

(1)
$$\zeta_f(X;t) = \exp\left(\sum_{n=1}^{\infty} \#(\operatorname{Fix}(f^n))\frac{t^n}{n}\right).$$

We use the convention that f^n means f composed with itself n times, and that $\operatorname{Fix}(f^n)$ denotes the set of fixed points of f^n . For $\zeta_f(X;t)$ to make sense as a formal power series we assume that $\#(\operatorname{Fix}(f^n)) < \infty$ for all n. The zeta function is also represented by the product formula

$$\zeta_f(X;t) = \prod_{x \in \operatorname{Per}(f,X)} (1 - t^{p(x)})^{-1}$$

where $\operatorname{Per}(f, X)$ is the set of periodic points of f in X and p(x) is the least positive n such that $f^n(x) = x$. This function was introduced by Artin and Mazur in the case where X is a manifold and $f : X \to X$ is a diffeomorphism [AM]. In this context $\zeta_f(X;t)$ is proved to be a rational function for certain classes of diffeomorphisms (e.g. [G, M]). This shows that in these cases the growth of $\#(\operatorname{Fix}(f^n))$ is determined by the finitely many zeros and poles of ζ_f . From this point onward we make the definition

$$a_n = \#(\operatorname{Fix}(f^n))$$

for economy of notation.

We are interested in the rationality of the zeta function in an algebraic context, motivated by the following example.

2010 Mathematics Subject Classification: Primary 37P05; Secondary 11B85. Key words and phrases: arithmetic dynamics, automatic sequences, finite fields.

A. Bridy

EXAMPLE. Let X be a variety over \mathbb{F}_p and let $f : X \to X$ be the Frobenius map, i.e. the *p*th power map on coordinates. Then $\operatorname{Fix}(f^n)$ is exactly the set of \mathbb{F}_{p^n} -valued points of X. Therefore $\zeta_f(X;t)$ is the Hasse–Weil zeta function of X, and is rational by Dwork's theorem [D].

We study a simple, yet interesting case: fix a prime p and let $X = \mathbb{A}_{\mathbb{F}_p}^1$, the affine line over \mathbb{F}_p . Let $f \in \overline{\mathbb{F}}_p[x]$, let $d = \deg f$, and assume that $d \geq 2$. Consider the dynamical system defined by f as a self-map of $\mathbb{A}^1(\overline{\mathbb{F}}_p)$. The points in $\operatorname{Fix}(f^n)$ are the roots in $\overline{\mathbb{F}}_p$ of the degree d^n polynomial $f^n(x) - x$ counted without multiplicity, so $a_n \leq d^n$. If we consider $\zeta_f(t)$ as a function of a complex variable t, it converges to a holomorphic function on \mathbb{C} in a disc around the origin of radius d^{-1} (however, it is not clear that d^{-1} is the largest radius of convergence). Our motivating question is:

QUESTION 1. For which $f \in \overline{\mathbb{F}}_p[x]$ is $\zeta_f(\overline{\mathbb{F}}_p;t)$ a rational function?

If we count periodic points with multiplicity, then $a_n = d^n$ for all n and Question 1 becomes completely trivial by the calculation

(2)
$$\zeta_f(\overline{\mathbb{F}}_p; t) = \exp\left(\sum_{n=1}^{\infty} \frac{d^n t^n}{n}\right) = \exp(-\log(1 - dt)) = \frac{1}{1 - dt},$$

so we count each periodic point only once. A partial answer to our question is given by the following two theorems, which show that for some simple choices of f, ζ_f is not only irrational, but also not algebraic over $\mathbb{Q}(t)$.

THEOREM 1. If $f \in \overline{\mathbb{F}}_p[x^p]$, then $\zeta_f(\overline{\mathbb{F}}_p, t) \in \mathbb{Q}(t)$. In particular, if $p \mid m$, then $\zeta_{x^m}(\overline{\mathbb{F}}_p; t) \in \mathbb{Q}(t)$. If $p \nmid m$, then $\zeta_{x^m}(\overline{\mathbb{F}}_p; t)$ is transcendental over $\mathbb{Q}(t)$.

THEOREM 2. If $a \in \mathbb{F}_{p^m}^{\times}$, with p odd and m any positive integer, then $\zeta_{x^{p^m}+ax}(\overline{\mathbb{F}}_p;t)$ is transcendental over $\mathbb{Q}(t)$.

Our strategy of proof depends heavily on the following two theorems. Their proofs, as well as a good introduction to the theory of finite automata and automatic sequences, can be found in [AS].

THEOREM 3 (Christol). The formal power series $\sum_{n=0}^{\infty} b_n t^n$ in the ring $\mathbb{F}_p[[t]]$ is algebraic over $\mathbb{F}_p(t)$ iff its coefficient sequence $\{b_n\}$ is p-automatic.

THEOREM 4 (Cobham). For p, q multiplicatively independent positive integers (i.e. $\log p/\log q \notin \mathbb{Q}$), the sequence $\{b_n\}$ is both p-automatic and q-automatic iff it is eventually periodic.

The following is an easy corollary to Christol's theorem which we will use repeatedly [AS, Theorem 12.6.1].

COROLLARY 5. If $\sum_{n=0}^{\infty} b_n t^n \in \mathbb{Z}[[t]]$ is algebraic over $\mathbb{Q}(t)$, then the reduction of $\{b_n\}$ modulo p is p-automatic for every prime p.

We note that Corollary 5 will be applied to the logarithmic derivative $\zeta'_f/\zeta_f = \sum_{n=1}^{\infty} a_n t^{n-1}$, rather than to ζ_f . Throughout this paper we use v_p to mean the usual *p*-adic valuation, that

Throughout this paper we use v_p to mean the usual *p*-adic valuation, that is, $v_p(a/b) = \operatorname{ord}_p(b) - \operatorname{ord}_p(a)$. We use $(n)_p$ as in [AS] to signify the base-*p* representation of the integer *n*, and we denote the multiplicative order of *a* modulo *n* by o(a, n), assuming that *a* and *n* are coprime integers.

2. Proof of Theorem 1. Let $f(x) \in \overline{\mathbb{F}}_p[x^p]$, so that f'(x) = 0 identically. Then $f^n(x) - x$ has derivative $(f^n(x) - x)' = -1$, so it has distinct roots over $\overline{\mathbb{F}}_p$. Therefore $a_n = (\deg f)^n$ and $\zeta_f(\overline{\mathbb{F}}_p, t)$ is rational as in (2).

Now suppose $f(x) = x^m$ where $p \nmid m$. Assume by way of contradiction that ζ_f is algebraic over $\mathbb{Q}(t)$. The derivative $\zeta'_f = d\zeta_f/dt$ is algebraic, which can be shown by writing the polynomial equation that ζ_f satisfies and applying implicit differentiation. Hence ζ'_f/ζ_f is algebraic. We have

$$\zeta_f'/\zeta_f = (\log \zeta_f)' = \sum_{n=1}^{\infty} a_n t^{n-1}$$

so in particular $\zeta'_f/\zeta_f \in \mathbb{Z}[[t]]$. By Corollary 5, for every prime q the reduced sequence $\{a_n\} \mod q$ is q-automatic.

First we count the roots of $f^n(x) - x = x^{m^n} - x = x(x^{m^n-1} - 1)$ in $\overline{\mathbb{F}}_p$. There is one root at zero, and we write $m^n - 1 = p^a b$, where $p \nmid b$, so

$$x^{m^{n}-1} - 1 = x^{p^{a}b} - 1 = (x^{b} - 1)^{p^{a}}.$$

The polynomial $x^{b} - 1$ has derivative bx^{b-1} , and $(x^{b} - 1, bx^{b-1}) = 1$, so $x^{b} - 1$ has exactly b roots in $\overline{\mathbb{F}}_{p}$, as does $x^{m^{n}} - 1$. Therefore

(3)
$$a_n = 1 + \frac{m^n - 1}{p^{v_p(m^n - 1)}}.$$

Now we need to reduce modulo some carefully chosen prime q. There are two cases to consider, depending on whether p = 2.

CASE 1. If p = 2, let q be a prime dividing $m, q \neq 2$. There is such a prime because m > 1 and $2 \nmid m$. Let $r = 2^{-1}$ in \mathbb{F}_q . Reducing modulo q,

(4)
$$a_n = 1 + \frac{m^n - 1}{2^{v_2(m^n - 1)}} \equiv 1 - r^{v_2(m^n - 1)} \pmod{q}.$$

The subsequence $\{a_{2n}\}$ reduced modulo q is q-automatic because subsequences of automatic sequences indexed by arithmetic progressions are automatic [AS, Theorem 6.8.1]. We define the sequence $\{b_n\}$ as

$$b_n = -(a_{2n} - 1).$$

Then $\{b_n\}$ is q-automatic, because subtracting 1 and multiplying by -1 simply permute the elements of \mathbb{F}_q . We have $b_n = r^{v_2(m^{2n}-1)}$ by (4). To proceed, we need the following proposition.

PROPOSITION 6.

(i) For any $n, m \in \mathbb{N}$, m odd,

 $v_2(m^{2n}-1) = v_2(n) + v_2(m^2-1).$

(ii) If p is an odd prime and $n, m \in \mathbb{N}, p \nmid m$, then

$$v_p(m^{(p-1)n} - 1) = v_p(n) + v_p(m^{p-1} - 1).$$

Proof. The proof is an elementary consequence of the structure of the unit group $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ (see for example [L]), and is omitted.

By Proposition 6,

(5)
$$b_n = r^{v_2(n) + v_2(m^2 - 1)}.$$

Let d = o(r, q), the multiplicative order of r in \mathbb{F}_q , and note that d > 1because $r \neq 1$. We see that b_n is a function of $v_2(n)$ reduced modulo d, and $v_2(n)$ is simply the number of leading zeros of $(n)_2$ (if we read the least significant digit first).

LEMMA 7. If β_n is a function of the equivalence class mod d of $v_p(n)$, then the sequence $\{\beta_n\}$ is p-automatic.

Proof. We can build a finite automaton (with output) whose output depends on the equivalence class modulo d of the number of initial zeros of a string, as in Figure 1 for d = 4. There are d states arranged in a circle

Fig. 1. State q_0 is initial. States q_i and r_i are reached after processing $i \mod 4$ leading zeros.

(the q_i in the figure), reading a zero moves from one of these states to the next, and reading any other symbol moves to a final state (the r_i) marked with the corresponding output. Therefore $\{\beta_n\}$ is *p*-automatic.

296

By Lemma 7, $\{b_n\}$ is 2-automatic. It is also *q*-automatic, so by Cobham's theorem, $\{b_n\}$ is eventually periodic of period *k*. For some large *n*, we have $b_{nk} = b_{nk+k} = b_{nk+2k} = \cdots = b_{(n+a)k}$ for any positive integer *a*. This means that $b_{Nk} = b_{nk}$ for all N > n. By (5),

$$r^{v_2(Nk)+v_2(m^2-1)} = r^{v_2(nk)+v_2(m^2-1)}$$

which means $v_2(Nk) \equiv v_2(nk) \pmod{d}$ and so $v_2(N) \equiv v_2(n) \pmod{d}$ for all N > n. This is a contradiction, as d > 1.

CASE 2. If p > 2, we pick some prime $q > m^{p-1}$ such that $q \neq 1$ (mod p) (for example we can choose $q \equiv 2 \pmod{p}$ by Dirichlet's theorem on primes in arithmetic progressions). Clearly $q \nmid m$, so $m^{q-1} \equiv 1 \pmod{q}$. Let $r = p^{-1}$ in \mathbb{F}_q . The sequence $\{a_n\}$ is as in (3). We take the subsequence $a_{(p-1)((q-1)n+1)}$ and reduce it modulo q. The reduced subsequence is q-automatic. We compute

$$a_{(p-1)((q-1)n+1)} = 1 + \frac{m^{(p-1)((q-1)n+1)} - 1}{p^{v_p(m^{(p-1)((q-1)n+1)} - 1)}} = 1 + \frac{(m^{q-1})^{(p-1)n}m^{p-1} - 1}{p^{v_p(m^{(p-1)((q-1)n+1)} - 1)}}$$
$$\equiv 1 + (m^{p-1} - 1)r^{v_p(m^{(p-1)((q-1)n+1)} - 1)} \pmod{q}.$$

As $m^{p-1} - 1 < q$ we can invert $m^{p-1} - 1$ modulo q. If we subtract 1 and multiply by $(m^{p-1} - 1)^{-1}$ as in Case 1, we get

$$b_n = r^{v_p(m^{(p-1)((q-1)n+1)}-1)}.$$

which is q-automatic.

By Proposition 6, $b_n = r^{v_p((q-1)n+1)+v_p(m^{p-1}-1)}$. Let d = o(r,q), noting that d > 1. Let

$$Y = \{ n \in \mathbb{N} : v_p((q-1)n+1) \equiv 0 \pmod{d} \}.$$

Then Y is the fiber of $\{b_n\}$ over $r^{v_p(m^{p-1}-1)}$ and is therefore a q-automatic set (i.e. its characteristic sequence is q-automatic). We argue that Y is p-automatic.

Consider a finite-state transducer T on strings over $\{0, \ldots, p-1\}$ such that $T((n)_p) = ((q-1)n+1)_p$. On strings with no leading zeros, T is one-to-one. Let L be the set of base-p strings $(n)_p$ such that $n \in Y$. Then

$$T(L) = \{(n)_p : n \equiv 1 \pmod{q-1} \text{ and } v_p(n) \equiv 0 \pmod{d} \}.$$

We observe that T(L) is a regular language, as both of its defining conditions can be recognized by a finite automaton (for the second condition, this follows from Lemma 7). Therefore $T^{-1}(T(L)) = L$ is regular, that is, the characteristic sequence of Y is p-automatic. We use Cobham's theorem again to conclude that the characteristic sequence of Y is eventually periodic. A. Bridy

Let $\{y_n\}$ be the characteristic sequence of Y:

$$y_n = \begin{cases} 1, & n \in Y, \\ 0, & n \notin Y, \end{cases}$$

and let k be its (eventual) period. Write k as $k = Mp^N$, where $p \nmid M$ (it is possible that N = 0). As $q \not\equiv 1 \pmod{p}$, q-1 is invertible modulo p-powers, so we can solve the following equation for n:

(6)
$$(q-1)n \equiv -1 + p^{dN} \pmod{p^{dN+2}}$$

Any *n* that solves this equation satisfies $v_p((q-1)n+1) = dN$ and so $y_n = 1$. Choose a large enough solution *n* so that $\{y_n\}$ is periodic at *n*. We can solve the following equation for *a*, and choose such an *a* to be positive:

(7)
$$(q-1)aM \equiv p^{(d-1)N}(p-1) \pmod{p^{dN+2}}$$

Multiplying (7) by p^N gives

(8)
$$(q-1)ak \equiv p^{dN+1} - p^{dN} \pmod{p^{dN+2}}.$$

Adding (6) and (8) gives

$$(q-1)(n+ak) \equiv -1 + p^{dN+1} \pmod{p^{dN+2}},$$

from which we conclude $v_p((q-1)(n+ak)+1) = dN+1$. So $y_{n+ak} = 0$. But $y_n = y_{n+ak}$ by periodicity, which is a contradiction.

3. Proof of Theorem 2. Let $f(x) = x^{p^m} + ax$ for $a \in \mathbb{F}_{p^m}^{\times}$, p odd. First we compute $f^n(x)$.

PROPOSITION 8. $f^n(x) = \sum_{k=0}^n \binom{n}{k} x^{p^{km}} a^{n-k}$

Proof. Let $\phi(x) = x^{p^m}$ and a(x) = ax, so $f = \phi + a$. Both ϕ and a are additive polynomials (they distribute over addition) and they commute, so the proof is simply the binomial theorem applied to $(\phi + a)^n$.

Assume that ζ_f is algebraic. By Corollary 5, the sequence $\{a_n\}$ reduced modulo q is q-automatic for every prime q, as is the subsequence $\{a_{(p^m-1)n}\}$ by previous remarks. Now we need to compute a_n when $p^m - 1$ divides n.

PROPOSITION 9. If $p^m - 1$ divides n, then $a_n = p^{(n-p^{v_p(n)})m}$.

Proof. The coefficient of x in $f^n(x)$ is a power of $a^{p^m-1} = 1$. Let l be the smallest positive integer such that $\binom{n}{l} \not\equiv 0 \pmod{p}$. Then

$$f^{n}(x) - x = \sum_{k=l}^{n} \binom{n}{k} x^{p^{km}} a^{n-k} = \left(\sum_{k=l}^{n} \binom{n}{k} x^{p^{(k-l)m}} (a^{n-k})^{p^{-l}}\right)^{p^{l}},$$

where raising to the p^{-l} power means applying the inverse of the Frobenius automorphism l times. Let $g(x) = \sum_{k=l}^{n} {n \choose k} x^{p^{(k-l)m}} (a^{n-k})^{p^{-l}}$. The derivative

298

 $g'(x) = (a^{n-l})^{p^{-l}}$ is nonzero, so g(x) has $p^{(n-l)m}$ distinct roots over $\overline{\mathbb{F}}_p$, as does $f^n(x) - x$. So $a_n = p^{(n-l)m}$.

Kummer's classical theorem [K] on binomial coefficients modulo p says that $v_p\binom{n}{l}$ equals the number of borrows involved in subtracting l from n in base p [K]. It is clear that the smallest integer l that results in no borrows in this subtraction is $l = p^{v_p(n)}$, and we are done.

Let q > p be a prime to be determined and let $r = p^{-1}$ in \mathbb{F}_q . The sequence given by $b_n = r^{(p^m-1)nm}$ is eventually periodic and hence q-automatic. Let $c_n = a_{(p^m-1)n}b_n$. By [AS, Corollary 5.4.5] the product of q-automatic sequences over \mathbb{F}_q is q-automatic, so c_n is q-automatic. Therefore

$$c_n = a_{(p^m - 1)n} b_n = p^{((p^m - 1)n - p^{v_p((p^m - 1)n)})m} r^{(p^m - 1)nm}$$
$$= (p^{-1})^{p^{(v_p(p^m - 1) + v_p(n))}m} = (r^m)^{p^{v_p(n)}}.$$

Choose $q > p^{mp}$ such that $q \equiv 2 \pmod{p^m}$. Note that $o(r^m, q)$ divides q-1, so $o(r^m, q) \neq 0 \pmod{p}$ and p is invertible modulo $o(r^m, q)$. The value of c_n depends only on $p^{v_p(n)}$ reduced modulo $o(r^m, q)$, which in turn is a function of $v_p(n) \mod o(p, o(r^m, q))$, so c_n is p-automatic by Lemma 7.

By Cobham's theorem, c_n is eventually periodic, so the set

$$Y = \{n \in \mathbb{N} : c_n = r^m\} = \{n \in \mathbb{N} : p^{v_p(n)} \equiv 1 \pmod{o(r^m, q)}\}\$$

= $\{n \in \mathbb{N} : v_p(n) \equiv 0 \pmod{o(p, o(r^m, q))}\}$

has an eventually periodic characteristic sequence $\{y_n\}$. Essentially the same argument as in Case 2 of Theorem 1 shows this is a contradiction when $o(p, o(r^m, q)) > 1$. We sketch the argument for completeness.

As we chose $q > p^{mp}$, we have $o(r^m, q) = o(p^m, q) > p$, and $o(p, o(r^m, q)) > 1$. Let $d = o(p, o(r^m, q))$, and let $k = Mp^N$ be the eventual period of Y, where $p \nmid M$. We can solve

(9)
$$n \equiv p^{dN} \pmod{p^{dN+2}},$$

(10)
$$aM \equiv p^{(d-1)N}(p-1) \pmod{p^{dN+2}}$$

for large n and positive a, so $y_n = 1$. Adding (9) and p^N times (10) gives $n + ak \equiv p^{dN+1} \pmod{p^{dN+2}}$.

from which we conclude $v_p(n+ak) = dN + 1$, so $y_{n+ak} = 0$, contradicting periodicity of $\{y_n\}$. This contradiction shows that ζ_f is transcendental.

4. Concluding remarks. The polynomial maps in Theorems 1 and 2 are homomorphisms of the multiplicative and additive groups of $\overline{\mathbb{F}}_p$, respectively. It should be possible to prove similar theorems for other maps associated to homomorphisms, e.g. Chebyshev polynomials, general additive

polynomials, and Lattès maps on $\mathbb{P}^1(\overline{\mathbb{F}}_p)$. See [S1] for a discussion of special properties of these maps.

It is more difficult to study the rationality or transcendence of ζ_f when the map f has no obvious structure. For example, there is a standard heuristic that the map $f(x) = x^2 + 1$ behaves like a random mapping on a finite field of odd order (see [B], [P], [S2] and many others). We conclude with the following tantalizing question without hazarding a guess as to the answer.

QUESTION 2. For p odd and $f = x^2 + 1$, is $\zeta_f(\overline{\mathbb{F}}_p, t)$ in $\mathbb{Q}(t)$?

Acknowledgements. This research was partly supported by NSF grant no. CCF-0635355. The author wishes to thank Eric Bach for many helpful suggestions and comments, Jeff Shallit for useful clarifications, and an anonymous referee for helpful remarks on style and presentation.

References

- [AS] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003.
- [AM] M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82–99.
- [B] E. Bach, Toward a theory of Pollard's rho method, Inform. and Comput. 90 (1991), 139–155.
- [D] B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631–648.
- [G] J. Guckenheimer, Axiom A + No Cycles $\Rightarrow \zeta_f(t)$ rational, Bull. Amer. Math. Soc. 76 (1970), 592–594.
- [K] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146.
- W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, Reading, MA, 1977.
- [M] A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220.
- [P] J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–334.
- [S1] J. Silverman, The Arithmetic of Dynamical Systems, Grad. Texts in Math. 241, Springer, 2007.
- [S2] J. Silverman, Variation of periods modulo p in arithmetic dynamics, New York J. Math. 14 (2008), 601–616.

Andrew Bridy

Department of Mathematics University of Wisconsin-Madison Madison, WI 53706, U.S.A. E-mail: bridy@math.wisc.edu

> Received on 2.2.2012 and in revised form on 25.8.2012

(6956)