On the ordinarity of the maximal real subfield of cyclotomic function fields

by
Daisuke Shiomi (Yamagata)

1. Introduction. Let p be a prime. Let \mathbb{F}_{q} be the field with $q=p^{r}$ elements. For a global function field K over \mathbb{F}_{q}, let J_{K} be the Jacobian of $K \overline{\mathbb{F}}_{q}$, where $\overline{\mathbb{F}}_{q}$ is an algebraic closure of \mathbb{F}_{q}. Let g_{K} be the genus of K. The p-primary subgroup $J_{K}(p)$ of J_{K} satisfies

$$
J_{K}(p) \simeq \bigoplus_{i=1}^{\lambda_{K}} \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

The above integer λ_{K} is called the Hasse-Witt invariant of K, and satisfies $0 \leq \lambda_{K} \leq g_{K}$. In particular, we call K ordinary if $\lambda_{K}=g_{K}$.

Our aim of this paper is to clarify the ordinarity of cyclotomic function fields. We put $k=\mathbb{F}_{q}(T)$ and $A=\mathbb{F}_{q}[T]$. For a monic polynomial $m \in A$, let K_{m} and K_{m}^{+}be the m th cyclotomic function field and its maximal real subfield, respectively. Let g_{m}, g_{m}^{+}be the genuses of K_{m}, K_{m}^{+}, respectively. Let $\lambda_{m}, \lambda_{m}^{+}$be the Hasse-Witt invariants of K_{m}, K_{m}^{+}, respectively. For definitions and properties of cyclotomic function fields, see [Go, Ha , Ro.

First, we state our previous results. In the irreducible case, the author showed the following.

Theorem 1.1 (cf. Sh2]). Assume that $q \neq p$ and $m \in A$ is monic irreducible. Then:
(1) K_{m} is ordinary if and only if $\operatorname{deg} m \leq 1$.
(2) K_{m}^{+}is ordinary if and only if $\operatorname{deg} m \leq 2$.

Next we consider the general case. In [Sh3], by using explicit formulas for λ_{m} in the case of degree two, we showed the following result.

Theorem 1.2 (cf. [Sh3]). Assume that $q \neq p$ and $m \in A$ is monic. Then K_{m} is ordinary if and only if $\operatorname{deg} m=1$.

[^0]In this paper, we consider the plus part. Our main theorem is the following.

Theorem 1.3. Assume that $q \neq p$ and $m \in A$ is monic. Then K_{m}^{+}is ordinary if and only if $\operatorname{deg} m \leq 2$.

Remark 1.4. Theorem 1.3 is not true in the case $q=p$. For example, if we consider $q=3$ and $m=T^{4}+T^{2}+2 \in \mathbb{F}_{3}[T]$, then K_{m}^{+}is ordinary. Many monic irreducible polynomials m such that K_{m}^{+}is ordinary and $\operatorname{deg} m \geq 3$ have been found in the case $q=p$. However, it is not known whether there are infinitely many such polynomials.

This paper is organized as follows. In Section 2, we review some results on zeta functions and Hasse-Witt invariants. In Section 3, we derive explicit formulas for λ_{m}^{+}in the case of degree three, and show that K_{m}^{+}is not ordinary if $r \geq 2$ and $\operatorname{deg} m=3$. In Section 4, we prove Theorem 1.3.

2. Preparations

2.1. Zeta functions. In this subsection, we review some results on zeta functions. For the details, see $[G-R]$ and Ro.

For a global function field K over \mathbb{F}_{q}, we define the zeta function of K by

$$
\zeta(s, K)=\prod_{\mathfrak{p}: \text { prime }}\left(1-\frac{1}{N \mathfrak{p}^{s}}\right)^{-1},
$$

where \mathfrak{p} runs through all primes of K, and $N \mathfrak{p}$ is the number of elements of the residue class field of \mathfrak{p}.

Theorem 2.1 (cf. [Ro, Theorem 5.9]). There exist $Z_{K}(u) \in \mathbb{Z}[u]$ of degree $2 g_{K}$ with $Z_{K}(0)=1$ such that

$$
\zeta(s, K)=\frac{Z_{K}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} .
$$

It is well-known that λ_{K} can be expressed in terms of $Z_{K}(u)$ as follows.
Proposition 2.2 (cf. [R0, Proposition 11.20]). Let $\bar{Z}_{K}(u) \in \mathbb{F}_{p}[u]$ be the reduction of $Z_{K}(u)$ modulo p. Then

$$
\lambda_{K}=\operatorname{deg} \bar{Z}_{K}(u) .
$$

We write

$$
Z_{K}(u)=\prod_{i=1}^{2 g_{K}}\left(1-\pi_{i} u\right)
$$

Let L be a number field containing $\mathbb{Q}\left(\pi_{1}, \ldots, \pi_{2 g_{K}}\right)$. Let \mathcal{P} be a prime of L above p, and let $\operatorname{ord}_{\mathcal{P}}$ be the valuation of \mathcal{P} satisfying $\operatorname{ord}_{\mathcal{P}}\left(L^{\times}\right)=\mathbb{Z}$.

Proposition 2.3. In the above notation,

$$
K \text { is ordinary } \Leftrightarrow \operatorname{ord}_{\mathcal{P}}\left(\pi_{i}\right) \in \operatorname{ord}_{\mathcal{P}}(q) \mathbb{Z}\left(i=1, \ldots, 2 g_{K}\right)
$$

Proof. The polynomial $Z_{K}(u)$ can be written as follows:

$$
Z_{K}(u)=\prod_{i=1}^{g_{K}}\left(1-\pi_{i} u\right)\left(1-\pi_{i+g_{K}} u\right)
$$

where $\pi_{i} \pi_{i+g_{K}}=q$. Therefore

$$
\operatorname{deg}\left(\left(1-\pi_{i} u\right)\left(1-\pi_{i+g_{K}} u\right) \bmod \mathcal{P}\right) \leq 1
$$

Hence, by Proposition 2.2,

$$
\lambda_{K}=g_{K} \Leftrightarrow \operatorname{ord}_{\mathcal{P}}\left(\pi_{i}\right)=0 \text { or } \operatorname{ord}_{\mathcal{P}}\left(\pi_{i+g_{K}}\right)=0\left(i=1, \ldots, g_{K}\right)
$$

This yields Proposition 2.3 ,
Next we focus on the cyclotomic function field case. Let $m \in A$ be a monic polynomial of degree d. Let $\zeta\left(s, K_{m}\right), \zeta\left(s, K_{m}^{+}\right)$be the zeta functions of K_{m}, K_{m}^{+}, respectively. By Theorem 2.1, there exist polynomials $Z_{m}(u)$ and $Z_{m}^{(+)}(u)$ such that

$$
\zeta\left(s, K_{m}\right)=\frac{Z_{m}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}, \quad \zeta\left(s, K_{m}^{+}\right)=\frac{Z_{m}^{(+)}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

Let X_{m} be the group of Dirichlet characters modulo m. For $\chi \in X_{m}$, let f_{χ} be the conductor of χ. We call χ real if $\chi\left(\mathbb{F}_{q}^{\times}\right)=1$, and imaginary otherwise. Let X_{m}^{+}be the set of all real characters of X_{m}. Then

$$
\begin{align*}
& \zeta\left(s, K_{m}\right)=\left\{\prod_{\chi \in X_{m}} L(s, \chi)\right\}\left(1-q^{-s}\right)^{-\left[K_{m}^{+}: k\right]}, \tag{2.1}\\
& \zeta\left(s, K_{m}^{+}\right)=\left\{\prod_{\chi \in X_{m}^{+}} L(s, \chi)\right\}\left(1-q^{-s}\right)^{-\left[K_{m}^{+}: k\right]} . \tag{2.2}
\end{align*}
$$

The L-function $L(s, \chi)$ is defined by

$$
L(s, \chi)=\sum_{a: \text { monic }} \frac{\chi(a)}{N(a)^{s}}
$$

where a runs through all monic polynomials of A, and $N(a)=q^{\operatorname{deg} a}$. Here, we view χ as a primitive character when we write $L(s, \chi)$. Let χ_{0} be the trivial character. Then $L(s, \chi)$ can be described as follows:

$$
L(s, \chi)= \begin{cases}1 /\left(1-q^{1-s}\right) & \text { if } \chi=\chi_{0} \tag{2.3}\\ \sum_{i=0}^{d-1} s_{i}(\chi) q^{-s i} & \text { otherwise }\end{cases}
$$

where $s_{i}(\chi)=\sum_{a: \text { monic, } \operatorname{deg}(a)=i} \chi(a)$. We set

$$
\Phi_{\chi}(u)= \begin{cases}\left(\sum_{i=0}^{d-1} s_{i}(\chi) u^{i}\right) /(1-u) & \text { if } \chi \in X_{m}^{+} \backslash\left\{\chi_{0}\right\} \\ \sum_{i=0}^{d-1} s_{i}(\chi) u^{i} & \text { if } \chi \in X_{m}^{-}\end{cases}
$$

where $X_{m}^{-}=X_{m} \backslash X_{m}^{+}$. Assume that χ is a non-trivial real character. Then

$$
\sum_{i=0}^{d-1} s_{i}(\chi)=0
$$

Therefore

$$
\Phi_{\chi}(u)=\sum_{i=0}^{d-2} s_{i}^{+}(\chi) u^{i}, \quad \text { where } \quad s_{i}^{+}(\chi)=\sum_{j=0}^{i} s_{j}(\chi)
$$

Proposition 2.4.

$$
Z_{m}(u)=\prod_{\substack{\chi \in X_{m} \\ \chi \neq \chi_{0}}} \Phi_{\chi}(u), \quad Z_{m}^{(+)}(u)=\prod_{\substack{\chi \in X_{m}^{+} \\ \chi \neq \chi_{0}}} \Phi_{\chi}(u)
$$

Proof. This follows from Theorem 2.1 and equalities (2.1)-2.3).
Remark 2.5. For later use, we consider some special cases. If χ is a non-trivial real character with $\operatorname{deg} f_{\chi} \leq 2$, then $\Phi_{\chi}(u)=1$. Hence we have the following results.

If $\operatorname{deg} m=3$, then

$$
\begin{equation*}
Z_{m}^{(+)}(u)=\prod_{\substack{\chi \in X_{m}^{+} \\ f_{\chi}=m}}\left(1+s_{1}^{+}(\chi) u\right) \tag{2.4}
\end{equation*}
$$

If $m=Q_{1} Q_{2}$ where Q_{1}, Q_{2} are distinct monic irreducible polynomials of degree two, then

$$
\begin{equation*}
Z_{m}^{(+)}(u)=\prod_{\substack{\chi \in X_{m}^{+} \\ f_{\chi}=m}}\left(1+s_{1}^{+}(\chi) u+s_{2}^{+}(\chi) u^{2}\right) \tag{2.5}
\end{equation*}
$$

Proposition 2.6. Let $m_{1}, m_{2} \in A$ be monic polynomials with $m_{1} \mid m_{2}$.
(1) If $K_{m_{2}}$ is ordinary, then $K_{m_{1}}$ is ordinary.
(2) If $K_{m_{2}}^{+}$is ordinary, then $K_{m_{1}}^{+}$is ordinary.

Proof. By Proposition 2.4, we see that $Z_{m_{1}}(u) \mid Z_{m_{2}}(u)$ and $Z_{m_{1}}^{(+)}(u) \mid$ $Z_{m_{2}}^{(+)}(u)$. Hence Proposition 2.6 follows from Proposition 2.3 .
2.2. The Hasse-Witt invariant. Let $m \in A$ be a monic irreducible polynomial of degree d. For $0 \leq i \leq d-1$, we set

$$
s_{i}(n)=\sum_{a \in A_{i}} a^{n}, \quad s_{i}^{+}(n)=\sum_{j=0}^{i} s_{j}(n),
$$

where A_{i} is the set of monic polynomials in A of degree i. For $1 \leq n \leq q^{d}-2$, we define $B_{n}(u) \in A[u]$ by

$$
B_{n}(u)= \begin{cases}\sum_{i=0}^{d-2} s_{i}^{+}(n) u^{i} & \text { if } n \equiv 0 \bmod q-1, \tag{2.6}\\ \sum_{i=0}^{d-1} s_{i}(n) u^{i} & \text { if } n \not \equiv 0 \bmod q-1 .\end{cases}
$$

In a previous work, the author showed that λ_{m} and λ_{m}^{+}can be expressed via $B_{n}(u)$. In this subsection, we review these results. For more details, see Sh2].

Let us denote the p-adic field by \mathbb{Q}_{p}. Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}, an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p}, and an embedding $\sigma: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}$. Via this embedding, we regard $\overline{\mathbb{Q}} \subseteq \overline{\mathbb{Q}}_{p}$. Let ord ${ }_{p}$ be the p-adic valuation of $\overline{\mathbb{Q}}_{p}$ with $\operatorname{ord}_{p}(p)=1$. We set

$$
M=\mathbb{Q}_{p}(W)
$$

where W is the group of $\left(q^{d}-1\right)$ th roots of unity. Let \mathcal{O}_{M} be the valuation ring of M. Since M / \mathbb{Q}_{p} is unramified, the residue class field $\mathcal{F}_{M}=\mathcal{O}_{M} / p \mathcal{O}_{M}$ consists of q^{d} elements.

Let $\mathcal{R}_{m}=A / m A$. Then the cardinality of \mathcal{R}_{m} is q^{d}. Hence \mathcal{R}_{m} is isomorphic to \mathcal{F}_{M}. Fix an isomorphism $\phi: \mathcal{R}_{m} \rightarrow \mathcal{F}_{M}$. This map induces a group isomorphism $\phi_{\#}: \mathcal{R}_{m}^{\times} \rightarrow \mathcal{F}_{M}^{\times}$, and a ring isomorphism $\phi_{*}: \mathcal{R}_{m}[u] \rightarrow \mathcal{F}_{M}[u]$. Since the cardinality of W is prime to p, we have the isomorphism

$$
\tau: W \rightarrow \mathcal{F}_{M}^{\times}\left(\zeta \mapsto \zeta \bmod p \mathcal{O}_{M}\right)
$$

Put $\omega=\tau^{-1} \circ \phi_{\#}$. Then ω is a generator of X_{m}. We see that $\omega^{n} \in X_{m}^{+}$if and only if $n \equiv 0 \bmod q-1$. Notice that

$$
\begin{equation*}
\phi\left(a^{n} \bmod m A\right) \equiv \omega^{n}(a \bmod m A) \bmod p \mathcal{O}_{M} \tag{2.7}
\end{equation*}
$$

for $a \in A$. Hence

$$
\phi_{*}\left(\bar{B}_{n}(u)\right)=\bar{\Phi}_{\omega^{n}}(u)
$$

where $\bar{\Phi}_{\omega^{n}}(u)=\Phi_{\omega^{n}}(u) \bmod p \mathcal{O}_{M}$ and $\bar{B}_{n}(u)=B_{n}(u) \bmod m$. From Proposition 2.4, we obtain the following results.

Proposition 2.7.

$$
\phi_{*}\left(\prod_{n=1}^{q^{d}-2} \bar{B}_{n}(u)\right)=\bar{Z}_{m}(u), \quad \phi_{*}\left(\prod_{\substack{n=1 \\ n \equiv 0 \bmod q-1}}^{q^{d}-2} \bar{B}_{n}(u)\right)=\bar{Z}_{m}^{(+)}(u) .
$$

Therefore, by Proposition 2.2, we have the following relations between the Hasse-Witt invariant and $B_{n}(u)$.

Corollary 2.8.

$$
\lambda_{m}=\sum_{n=1}^{q^{d}-2} \operatorname{deg} \bar{B}_{n}(u), \quad \lambda_{m}^{+}=\sum_{\substack{n=1 \\ n \equiv 0 \bmod q-1}}^{q^{d}-2} \operatorname{deg} \bar{B}_{n}(u)
$$

3. Explicit formulas for λ_{m}^{+}in the case of degree three. In this section, we derive explicit formulas for λ_{m}^{+}in the case of degree three. As an application, we show that K_{m}^{+}is not ordinary if $q \neq p$ and $\operatorname{deg} m=3$.

Theorem 3.1. Assume that $m \in A$ is monic and $q=p^{r}$. Let $m=$ $Q_{1}^{n_{1}} \cdots Q_{t}^{n_{t}}$ be the irreducible decomposition of m. Let $d_{i}=\operatorname{deg} Q_{i}$.
(1) If $\operatorname{deg} m \leq 2$, then $\lambda_{m}^{+}=0$.
(2) If $\operatorname{deg} m=3$, then

$$
\lambda_{m}^{+}= \begin{cases}0 & \text { if } m=Q_{1}^{3} \text { and } d_{1}=1 \tag{I}\\ 0 & \text { if } m=Q_{1}^{2} Q_{2} \text { and } d_{1}=d_{2}=1 \\ (p(p+1) / 2)^{r}-3 q+3 & \text { if } m=Q_{1} Q_{2} Q_{3} \text { and } d_{1}=d_{2}=d_{3}=1 \\ (p(p+1) / 2)^{r}-q-1 & \text { if } m=Q_{1} Q_{2}, d_{1}=2, \text { and } d_{2}=1 \\ (p(p+1) / 2)^{r} & \text { if } m=Q_{1} \text { and } d_{1}=3\end{cases}
$$

Remark 3.2. Assume that $\operatorname{deg} m \leq 2$. By the Kida-Murabayashi formula, we have $g_{m}^{+}=0$ (cf. [K-M, Corollary 1]). Hence $\lambda_{m}^{+}=0$. This proves Theorem 3.1(1).

REmark 3.3. Cases (I) and (II) follow from more general results (cf. [Sh1, Theorem 1.1]):
(I) $\lambda_{Q_{1}^{n}}^{+}=0$ if $d_{1}=1$ and $n \geq 0$,
(II) $\lambda_{Q_{1}^{n} Q_{2}}^{+}=0$ if $d_{1}=d_{2}=1$ and $n \geq 0$.

We give a sketch of the proof of (I) for the reader's convenience. By the Kida-Murabayashi formula, we have $g_{Q_{1}}^{+}=0$. Hence $\lambda_{Q_{1}}^{+}=0$. We notice that $K_{Q_{1}^{n}}^{+} / K_{Q_{1}}^{+}$is a Galois p-extension. Therefore, by applying the DeuringShafarevich formula in $K_{Q_{1}^{n}}^{+} / K_{Q_{1}}^{+}$, we obtain $\lambda_{Q_{1}^{n}}^{+}=q^{n} \lambda_{Q_{1}}^{+}$. Hence $\lambda_{Q_{1}^{n}}^{+}=0$.

By the same argument, we deduce (II).
REMARK 3.4. If $\operatorname{deg} m \geq 4$, then λ_{m}^{+}is not determined only from the irreducible decomposition of m. For example, consider $q=3, m_{1}=T^{4}+$ $T+2$, and $m_{2}=T^{4}+T^{2}+2$. Then $m_{1}, m_{2} \in \mathbb{F}_{3}[T]$ are both irreducible monic polynomials of degree four. However, $\lambda_{m_{1}}^{+}=38$ and $\lambda_{m_{2}}^{+}=39$.

By the Kida-Murabayashi formula, we can calculate g_{m}^{+}as follows:
$g_{m}^{+}= \begin{cases}q(q-1) / 2 & \text { if } m=Q_{1}^{3} \text { and } d_{1}=1, \\ (q-2)(q-1) / 2 & \text { if } m=Q_{1}^{2} Q_{2} \text { and } d_{1}=d_{2}=1, \\ q(q+1) / 2-3 q+3 & \text { if } m=Q_{1} Q_{2} Q_{3} \text { and } d_{1}=d_{2}=d_{3}=1, \\ q(q+1) / 2-q-1 & \text { if } m=Q_{1} Q_{2}, d_{1}=2, \text { and } d_{2}=1, \\ q(q+1) / 2 & \text { if } m=Q_{1} \text { and } d_{1}=3 .\end{cases}$
By comparing g_{m}^{+}and λ_{m}^{+}, we obtain the following result.
Corollary 3.5. Assume that $q \neq p$ and $\operatorname{deg} m=3$. Then K_{m}^{+}is not ordinary.

REmark 3.6. The above corollary does not hold for $q=p$. For example, by comparing g_{m}^{+}and λ_{m}^{+}, we see that K_{m}^{+}is ordinary in cases (III)-(V) if $q=p$.
3.1. Case (III). Let $m=(T-\alpha)(T-\beta)(T-\gamma)$ where $\alpha, \beta, \gamma \in \mathbb{F}_{q}$ are distinct. Then we have the isomorphism

$$
(A / m A)^{\times} \rightarrow\left(\mathbb{F}_{q}^{\times}\right)^{3}(a(T) \bmod m \mapsto(a(\alpha), a(\beta), a(\gamma)))
$$

Hence any character $\chi:(A / m A)^{\times} \rightarrow \mathbb{C}^{\times}$can be given by

$$
a(T) \bmod m \mapsto \chi_{1}(a(\alpha)) \chi_{2}(a(\beta)) \chi_{3}(a(\gamma))
$$

where $\chi_{1}, \chi_{2}, \chi_{3}$ are characters of \mathbb{F}_{q}^{\times}. We see that $\chi_{3}^{-1}=\chi_{1} \chi_{2}$ if χ is real. Hence we have the following one-to-one correspondence:

$$
\left\{\chi \in X_{m}^{+}: f_{\chi}=m\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(\chi_{1}, \chi_{2}\right) \in\left(\widehat{\mathbb{F}_{q}^{\times}}\right)^{2}: \begin{array}{l}
\chi_{1}, \chi_{2}, \chi_{1} \chi_{2} \tag{3.1}\\
\text { are non-trivial }
\end{array}\right\}
$$

Take $\chi \in X_{m}^{+}$corresponding to $\left(\chi_{1}, \chi_{2}\right)$. Then

$$
\begin{align*}
s_{1}^{+}(\chi) & =1+\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq \alpha, \beta, \gamma}} \chi(T-a) \tag{3.2}\\
& =1+\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq \alpha, \beta, \gamma}} \chi_{1}\left(\frac{a-\alpha}{a-\gamma}\right) \chi_{2}\left(\frac{a-\beta}{a-\gamma}\right) \\
& =\chi_{1}(1-\tau) \chi_{2}(1-1 / \tau) J\left(\chi_{1}, \chi_{2}\right)
\end{align*}
$$

where $\tau=(\alpha-\gamma) /(\beta-\gamma)$ and $J\left(\chi_{1}, \chi_{2}\right)$ is the Jacobi sum defined by

$$
J\left(\chi_{1}, \chi_{2}\right)=\sum_{\substack{a \in \mathbb{F}_{q} \\ a \neq 0,1}} \chi_{1}(a) \chi_{2}(1-a)
$$

Let $K=\mathbb{Q}\left(e^{2 \pi i /(q-1)}\right)$ and \mathcal{O}_{K} the ring of integers of K. Let \mathfrak{p} be a prime ideal of \mathcal{O}_{K} above p. Since r is the relative degree of p in K / \mathbb{Q} (recall
that $q=p^{r}$), we see that \mathbb{F}_{q} is isomorphic to $\mathcal{O}_{K} / \mathfrak{p}$. Fix an isomorphism $\theta: \mathbb{F}_{q} \rightarrow \mathcal{O}_{K} / \mathfrak{p}$. We define an isomorphism ϕ by

$$
\phi: W \rightarrow\left(\mathcal{O}_{K} / \mathfrak{p}\right)^{\times}(\zeta \mapsto \zeta \bmod \mathfrak{p})
$$

where W is the group of $(q-1)$ th roots of unity. We define $\chi_{\mathfrak{p}}$ by

$$
\chi_{\mathfrak{p}}: \mathbb{F}_{q}^{\times} \rightarrow W\left(x \mapsto \phi^{-1}(\theta(x))\right)
$$

Then $\chi_{\mathfrak{p}}$ is a generator of $\widehat{\mathbb{F}_{q}^{\times}}$. Therefore, by 3.1 , we have the following one-to-one correspondence:

$$
\left\{\chi \in X_{m}^{+}: f_{\chi}=m\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right): \begin{array}{l}
1 \leq n_{1}, n_{2} \leq q-2 \\
n_{1}+n_{2} \not \equiv 0 \bmod q-1
\end{array}\right\}
$$

Take $\chi \in X_{m}^{+}$corresponding to $\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)$. By (3.2), we have

$$
s_{1}^{+}(\chi) \notin \mathfrak{p} \Leftrightarrow \operatorname{ord}_{\mathfrak{p}}\left(J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)\right)=0
$$

By 2.4 and Proposition 2.2 ,

$$
\lambda_{m}^{+}=\#\left\{\left(n_{1}, n_{2}\right) \in[1, q-2]^{2}: \begin{array}{l}
n_{1}+n_{2} \not \equiv 0 \bmod q-1 \\
\operatorname{ord}_{\mathfrak{p}}\left(J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)\right)=0
\end{array}\right\}
$$

where $[1, q-2]=\{1, \ldots, q-2\}$.
Next we investigate the value of $\operatorname{ord}_{\mathfrak{p}}\left(J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)\right)$. For $n \in \mathbb{Z}$, we define $L(n) \in \mathbb{Z}$ as follows:

$$
0 \leq L(n)<q-1, \quad L(n) \equiv n \bmod q-1
$$

Consider the p-adic expansion

$$
L(n)=a_{0}(n)+a_{1}(n) p+\cdots+a_{r-1}(n) p^{r-1} \quad\left(0 \leq a_{i}(n)<p\right)
$$

and put

$$
l(n)=a_{0}(n)+a_{1}(n)+\cdots+a_{r-1}(n)
$$

By the Stickelberger theorem for Jacobi sums, we obtain

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{p}}\left(J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)\right) & =r-\frac{l\left(n_{1}\right)+l\left(n_{2}\right)-l\left(n_{1}+n_{2}\right)}{p-1} \\
& =r-\#\left\{0 \leq i \leq r-1: L\left(n_{1} p^{i}\right)+L\left(n_{2} p^{i}\right)>q-1\right\}
\end{aligned}
$$

for $1 \leq n_{1}, n_{2} \leq q-2$ and $n_{1}+n_{2} \neq q-1$ (cf. B-E-W, Corollary 11.2.4 and Theorem 11.2.9]). Noting that

$$
J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right) J\left(\chi_{\mathfrak{p}}^{q-1-n_{1}}, \chi_{\mathfrak{p}}^{q-1-n_{2}}\right)=q
$$

we have

$$
\begin{aligned}
\lambda_{m}^{+} & =\#\left\{\left(n_{1}, n_{2}\right) \in[1, q-2]^{2}: \begin{array}{l}
n_{1}+n_{2} \not \equiv 0 \bmod q-1 \\
\operatorname{ord}_{\mathfrak{p}}\left(J\left(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}\right)\right)=r
\end{array}\right\} \\
& =\#\left\{\left(n_{1}, n_{2}\right) \in[1, q-2]^{2}: \begin{array}{l}
n_{1}+n_{2} \not \equiv 0 \bmod q-1 \\
l\left(n_{1}\right)+l\left(n_{2}\right)=l\left(n_{1}+n_{2}\right)
\end{array}\right\}
\end{aligned}
$$

We see that

$$
\begin{aligned}
l\left(n_{1}\right)+l\left(n_{2}\right) & =l\left(n_{1}+n_{2}\right) \\
& \Leftrightarrow L\left(n_{1} p^{r-1-i}\right)+L\left(n_{2} p^{r-1-i}\right) \leq q-1(0 \leq i \leq r-1) \\
& \Leftrightarrow a_{i}\left(n_{1}\right)+a_{i}\left(n_{2}\right) \leq p-1(0 \leq i \leq r-1)
\end{aligned}
$$

Hence

$$
\lambda_{m}^{+}=\#\left\{\left(n_{1}, n_{2}\right) \in[1, q-2]^{2}: \begin{array}{l}
n_{1}+n_{2} \not \equiv 0 \bmod q-1 \\
a_{i}\left(n_{1}\right)+a_{i}\left(n_{2}\right) \leq p-1(0 \leq i \leq r-1)
\end{array}\right\}
$$

Now,

$$
\begin{aligned}
& (p(p+1) / 2)^{r} \\
& \quad=\#\left\{\left(n_{1}, n_{2}\right) \in[0, q-1]^{2}: a_{i}\left(n_{1}\right)+a_{i}\left(n_{2}\right) \leq p-1(0 \leq i \leq r-1)\right\} \\
& 3 q-3=\#\left\{\left(n_{1}, n_{2}\right) \in[0, q-1]^{2}: n_{1}=0 \text { or } n_{2}=0 \text { or } n_{1}+n_{2}=q-1\right\}
\end{aligned}
$$

Therefore

$$
\lambda_{m}^{+}=(p(p+1) / 2)^{r}-3 q+3
$$

3.2. Case (IV). Let $m=m_{0}(T-\alpha)$ where $\alpha \in \mathbb{F}_{q}$ and $m_{0} \in A$ is a monic irreducible polynomial of degree two. Then we have the isomorphism

$$
(A / m A)^{\times} \rightarrow\left(A / m_{0} A\right)^{\times} \times \mathbb{F}_{q}^{\times}\left(a(T) \bmod m \mapsto\left(a(T) \bmod m_{0}, a(\alpha)\right)\right)
$$

Hence any character $\chi:(A / m A)^{\times} \rightarrow \mathbb{C}^{\times}$can be given by

$$
a(T) \bmod m \mapsto \chi_{1}\left(a(T) \bmod m_{0}\right) \chi_{2}(a(\alpha))
$$

where χ_{1} is a character of $\left(A / m_{0} A\right)^{\times}$, and χ_{2} is a character of \mathbb{F}_{q}^{\times}. If χ is real, then $\chi_{2}=\left(\left.\chi_{1}\right|_{\mathbb{F}_{q}^{\times}}\right)^{-1}$. Hence we have the following one-to-one correspondence:

$$
\left\{\chi \in X_{m}^{+}: f_{\chi}=m\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\chi_{1} \in X_{m_{0}}^{-}: f_{\chi_{1}}=m_{0}\right\} .
$$

Take $\chi \in X_{m}^{+}$corresponding to $\chi_{1} \in X_{m_{0}}^{-}$. Then

$$
\begin{aligned}
s_{1}^{+}(\chi) & =1+\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq \alpha}} \chi(T-a)=1+\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq \alpha}} \chi_{1}(T-a) \chi_{2}(\alpha-a) \\
& =1+\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq \alpha}} \chi_{1}\left(\frac{T-a}{\alpha-a}\right)
\end{aligned}
$$

Let ω be the generator of $X_{m_{0}}$ defined in Subsection 2.2. Take $n \in\left[1, q^{2}-2\right]$ such that $\chi_{1}=\omega^{n}$. Since χ_{1} is imaginary, we have $n \not \equiv 0 \bmod q-1$. By (2.7), we have

$$
\begin{equation*}
s_{1}^{+}(\chi) \in p \mathcal{O}_{M} \Leftrightarrow 1+\sum_{\substack{a \in \mathbb{F}_{q} \\ a \neq \alpha}}\left(\frac{T-a}{\alpha-a}\right)^{n} \in m_{0} A \tag{3.3}
\end{equation*}
$$

Lemma 3.7. For $1 \leq n \leq q^{2}-2(n \not \equiv 0 \bmod q-1)$, set

$$
f_{n}(T)=1+\sum_{\substack{a \in \mathbb{F}_{q} \\ a \neq \alpha}}\left(\frac{T-a}{\alpha-a}\right)^{n}
$$

Consider the q-adic expansion $n=a(n)+b(n) q(0 \leq a(n), b(n) \leq q-1)$. Then

$$
f_{n}(T) \notin m_{0} A \Leftrightarrow\binom{b(n)}{q-1-a(n)} \not \equiv 0 \bmod p
$$

where $\binom{*}{*}$ is a binomial coefficient.
Proof. We put $g_{n}(T)=T^{n} f_{n}(1 / T+\alpha)$. Then

$$
\text { (i) } g_{n}(T)=\sum_{a \in \mathbb{F}_{q}}(T+a)^{n}, \quad \text { (ii) } f_{n}(T)=(T-\alpha)^{n} g_{n}\left(\frac{1}{T-\alpha}\right)
$$

Gekeler [Ge, Corollary 3.14] established the following equality:

$$
g_{n}(T)= \begin{cases}-\binom{b(n)}{q-1-a(n)}\left(T^{q}-T\right)^{i(n)} & \text { if } a(n)+b(n)>q-1 \\ 0 & \text { if } a(n)+b(n)<q-1\end{cases}
$$

where $i(n)=a(n)+b(n)-(q-1)$. Hence

$$
g_{n}(T) \notin m_{1} A \Leftrightarrow\binom{b(n)}{q-1-a(n)} \not \equiv 0 \bmod p
$$

for any irreducible polynomial m_{1} of degree two. Therefore, by (ii), we obtain Lemma 3.7.

By Proposition 2.2 and Lemma 3.7 and the equalities (2.4) and (3.3), we have

$$
\lambda_{m}^{+}=\#\left\{1 \leq n \leq q^{2}-2:\left(\begin{array}{c}
n \not \equiv 0 \bmod q-1 \tag{3.4}\\
b(n) \\
q-1-a(n)
\end{array}\right) \not \equiv 0 \bmod p\right\}
$$

For $1 \leq n \leq q^{2}-2(n \neq 0 \bmod q-1)$, we write

$$
\begin{aligned}
a(n) & =a_{0}(n)+a_{1}(n) p+\cdots+a_{r-1}(n) p^{r-1} \\
b(n) & =b_{0}(n)+b_{1}(n) p+\cdots+b_{r-1}(n) p^{r-1}
\end{aligned}
$$

where $0 \leq a_{i}(n), b_{i}(n) \leq p-1(i=0,1, \ldots, r-1)$. Noting that

$$
q-1-a(n)=\sum_{i=0}^{r-1}\left(p-1-a_{i}(n)\right) p^{i}
$$

we have

$$
\binom{b(n)}{q-1-a(n)} \equiv \prod_{i=0}^{r-1}\binom{b_{i}(n)}{p-1-a_{i}(n)} \bmod p
$$

Hence

$$
\binom{b(n)}{q-1-a(n)} \not \equiv 0 \bmod p \Leftrightarrow a_{i}(n)+b_{i}(n) \geq p-1(0 \leq i \leq r-1)
$$

Therefore the equality (3.4) can be written as follows:

$$
\lambda_{m}^{+}=\#\left\{1 \leq n \leq q^{2}-2: \begin{array}{l}
n \not \equiv 0 \bmod q-1 \\
a_{i}(n)+b_{i}(n) \geq p-1(0 \leq i \leq r-1)
\end{array}\right\}
$$

We see that

$$
\begin{aligned}
(p(p+1) / 2)^{r} & =\#\left\{n \in\left[0, q^{2}-1\right]: a_{i}(n)+b_{i}(n) \geq p-1(0 \leq i \leq r-1)\right\} \\
q & =\#\left\{n \in\left[0, q^{2}-1\right]: a(n)+b(n)=q-1\right\} \\
1 & =\#\left\{n \in\left[0, q^{2}-1\right]: a(n)+b(n)=2(q-1)\right\}
\end{aligned}
$$

Hence we obtain

$$
\lambda_{m}^{+}=(p(p+1) / 2)^{r}-q-1
$$

3.3. Case (V). Let m be a monic irreducible polynomial of degree three. For $n \in\left[1, q^{3}-2\right](n \equiv 0 \bmod q-1)$, we see that $1+s_{1}(n)+s_{2}(n)=0$ (cf. [Ge, Lemma 6.1]). Therefore

$$
B_{n}(u)=1+s_{1}^{+}(n) u=1-s_{2}(n) u .
$$

By Corollary 2.8, we have

$$
\lambda_{m}^{+}=\#\left\{1 \leq n \leq q^{3}-2: \begin{array}{l}
n \equiv 0 \bmod q-1 \\
s_{2}(n) \not \equiv 0 \bmod m
\end{array}\right\}
$$

For $n \in\left[1, q^{3}-2\right](n \equiv 0 \bmod q-1)$, consider the q-adic expansion

$$
n=a(n)+b(n) q+c(n) q^{2} \quad(0 \leq a(n), b(n), c(n)<q)
$$

Put $l(n)=a(n)+b(n)+c(n)$. Then $l(n)=q-1$ or $2(q-1)$. If $l(n)=q-1$, then $s_{2}(n)=0$ (cf. [Ge, Corollary 2.12]). If $l(n)=2(q-1)$, then Gekeler [Ge, Theorem 3.13]) proved the equality

$$
s_{2}(n)=(-1)^{a(n)}\binom{c(n)}{q-1-a(n)}\left(T^{q}-T\right)^{i(n)}\left(T^{q^{2}}-T\right)^{j(n)}
$$

where the integers $i(n), j(n)$ are defined by

$$
\begin{aligned}
i(n) & =a(n)+b(n)+q(b(n)+c(n))-\left(q^{2}-1\right) \\
j(n) & =a(n)+c(n)-(q-1)
\end{aligned}
$$

Since m is irreducible of degree three, we have

$$
s_{2}(n) \notin m A \Leftrightarrow\binom{c(n)}{q-1-a(n)} \not \equiv 0 \bmod p
$$

Therefore

$$
\lambda_{m}^{+}=\#\left\{1 \leq n \leq q^{3}-2: \begin{array}{l}
l(n)=2(q-1) \\
\binom{c(n)}{q-1-a(n)} \not \equiv 0 \bmod p
\end{array}\right\}
$$

By the same argument of case (IV), we can calculate the right side of the above equality to obtain

$$
\lambda_{m}^{+}=(p(p+1) / 2)^{r}
$$

4. Proof of Theorem 1.3. In this section, we prove Theorem 1.3. The difficult point is to show that K_{m}^{+}is not ordinary when m is a product of two distinct irreducible polynomials of degree two (see Subsection 4.2).

Assume that $q \neq p$. By Theorem 1.1 and Proposition $2.6, K_{m}^{+}$is not ordinary if m has a prime factor Q with $\operatorname{deg} Q \geq 3$. Hence we can assume that the irreducible decomposition of m is

$$
m=Q_{1}^{n_{1}} \cdots Q_{t}^{n_{t}}
$$

where each Q_{i} is monic with $d_{i}=\operatorname{deg} Q_{i} \leq 2$. If we can show that K_{m}^{+} is not ordinary in the following two cases: (VI) $m=Q_{1}^{2}\left(d_{1}=2\right)$, (VII) $m=Q_{1} Q_{2}\left(d_{1}=d_{2}=2\right)$, then we obtain Theorem 1.3 by Proposition 2.6 and Corollary 3.5.
4.1. Case (VI). If $m=Q_{1}^{2}\left(d_{1}=2\right)$, by applying the Deuring-Shafarevich formula in $K_{Q_{1}^{2}}^{+} / K_{Q_{1}}^{+}$, we have

$$
\lambda_{Q_{1}^{2}}^{+}=\lambda_{Q_{1}}^{+} q^{2}+q^{2}-1
$$

(cf. [Sh1, Subsection 3.2]). Since $d_{1}=2$, we have $\lambda_{Q_{1}}^{+}=0$. Hence $\lambda_{Q_{1}^{2}}^{+}=$ $q^{2}-1$. On the other hand, the genus $g_{Q_{1}^{2}}^{+}$can be calculated as follows:

$$
g_{Q_{1}^{2}}^{+}=\left(q^{2}-1\right)(q+1)
$$

(cf. [K-M]). Hence $K_{Q_{1}^{2}}^{+}$is not ordinary.
4.2. Case (VII). If $m=Q_{1} Q_{2}\left(d_{1}=d_{2}=2\right)$, we see that

$$
(A / m A)^{\times} \simeq\left(A / Q_{1} A\right)^{\times} \times\left(A / Q_{2} A\right)^{\times} .
$$

This leads to the following isomorphism of character groups:

$$
(\widehat{A / m A})^{\times} \simeq\left(\widehat{A / Q_{1} A}\right) \times\left(\widehat{A / Q_{2} A}\right)^{\times}
$$

Hence we have the following one-to-one correspondence:

$$
\left\{\chi \in X_{m}^{+}: f_{\chi}=m\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(\chi_{1}, \chi_{2}\right) \in X_{Q_{1}} \times X_{Q_{2}}: \begin{array}{l}
f_{\chi_{1}}=Q_{1}, f_{\chi_{2}}=Q_{2}, \\
\chi_{1} \chi_{2} \text { is real }
\end{array}\right\} .
$$

Define $Q_{1}=T^{2}+u_{1} T+u_{2}$ and $Q_{2}=T^{2}+v_{1} T+v_{2}\left(u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{F}_{q}\right)$.
Let $\chi \in X_{m}^{+}$correspond to $\left(\chi_{1}, \chi_{2}\right) \in X_{Q_{1}} \times X_{Q_{2}}$.
Lemma 4.1. Assume that $u_{1}=v_{1}$. Then

$$
s_{2}^{+}(\chi)= \begin{cases}s_{1}\left(\chi_{1}\right) s_{1}\left(\chi_{2}\right) & \text { if } \chi_{1} \text { is imaginary }, \\ q & \text { if } \chi_{1} \text { is real. }\end{cases}
$$

Lemma 4.2. Assume that $u_{1} \neq v_{1}$. Set $\varepsilon=\left(u_{2}-v_{2}\right) /\left(u_{1}-v_{1}\right), \alpha=$ $u_{1}-\varepsilon$, and $\beta=v_{1}-\varepsilon$. Then

$$
\chi_{1}(T+\alpha) \chi_{2}(T+\beta) s_{2}^{+}(\chi)= \begin{cases}s_{1}\left(\chi_{1}\right) s_{1}\left(\chi_{2}\right) & \text { if } \chi_{1} \text { is imaginary }, \\ q & \text { if } \chi_{1} \text { is real. }\end{cases}
$$

Let $M=\mathbb{Q}\left(e^{2 \pi i /\left(q^{2}-1\right)}\right)$, and let \mathfrak{p} be a prime ideal of M above p. We set

$$
L=\mathbb{Q}\left(\pi_{1}, \ldots, \pi_{2 g_{m}^{+}}, e^{2 \pi i /\left(q^{2}-1\right)}\right),
$$

where $Z_{m}^{(+)}(u)=\prod_{i=1}^{2 g_{m}^{+}}\left(1-\pi_{i} u\right)$. Let \mathcal{P} be a prime ideal of L over \mathfrak{p}.
Proposition 4.3. Assume that χ_{1} is imaginary. Then

$$
\operatorname{ord}_{\mathcal{P}}\left(s_{2}^{+}(\chi)\right)=\operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\chi_{1}\right)\right)+\operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\chi_{2}\right)\right) .
$$

Proof. This follows from Lemmas 4.1 and 4.2 ,
Proof of Lemma 4.1. We see that

$$
\begin{aligned}
s_{2}(\chi) & =\sum_{a, b \in \mathbb{F}_{q}} \chi\left(T^{2}+a T+b\right) \\
& =\sum_{a, b \in \mathbb{F}_{q}} \chi_{1}\left(\left(a-u_{1}\right) T+\left(b-u_{2}\right)\right) \chi_{2}\left(\left(a-u_{1}\right) T+\left(b-v_{2}\right)\right)=H+I,
\end{aligned}
$$

where

$$
\begin{aligned}
H & =\sum_{\substack{a \in \mathbb{F}_{q} \\
a \neq 0}} \sum_{b \in \mathbb{F}_{q}} \chi_{1}(a T+b) \chi_{2}\left(a T+b+u_{2}-v_{2}\right) \\
I & =\sum_{b \in \mathbb{F}_{q}} \chi_{1}(b) \chi_{2}\left(b+u_{2}-v_{2}\right)
\end{aligned}
$$

Notice that $u_{2} \neq v_{2}$. If χ_{1} is real, then $s_{1}\left(\chi_{1}\right)=s_{1}\left(\chi_{2}\right)=-1$. Hence

$$
\begin{aligned}
H & = \begin{cases}s_{1}\left(\chi_{1}\right) s_{1}\left(\chi_{2}\right)-s_{1}(\chi) & \text { if } \chi_{1} \text { is imaginary } \\
1-s_{1}(\chi) & \text { if } \chi_{1} \text { is real, }\end{cases} \\
I & = \begin{cases}-1 & \text { if } \chi_{1} \text { is imaginary } \\
q-2 & \text { if } \chi_{1} \text { is real. }\end{cases}
\end{aligned}
$$

This proves Lemma 4.1.
Proof of Lemma 4.2. We see that

$$
\begin{aligned}
& (T+\alpha)\left(T^{2}+a T+b\right) \\
& \quad \equiv\left(-\varepsilon\left(a-u_{1}\right)+b-u_{2}\right) T-\left(a-u_{1}\right) u_{2}+\alpha\left(b-u_{2}\right) \bmod Q_{1} \\
& (T+\beta)\left(T^{2}+a T+b\right) \\
& \quad \equiv\left(-\varepsilon\left(a-v_{1}\right)+b-v_{2}\right) T-\left(a-v_{1}\right) v_{2}+\beta\left(b-v_{2}\right) \bmod Q_{2}
\end{aligned}
$$

Noting that

$$
-\varepsilon\left(a-u_{1}\right)+b-u_{2}=-\varepsilon\left(a-v_{1}\right)+b-v_{2}
$$

we have

$$
\begin{aligned}
& \chi_{1}(T+\alpha) \chi_{2}(T+\beta) s_{2}(\chi) \\
&= \sum_{a, b \in \mathbb{F}_{q}} \chi_{1}\left(\left(-\varepsilon\left(a-u_{1}\right)+b-u_{2}\right) T-\left(a-u_{1}\right) u_{2}+\alpha\left(b-u_{2}\right)\right) \\
& \times \chi_{2}\left(\left(-\varepsilon\left(a-u_{1}\right)+b-u_{2}\right) T-\left(a-v_{1}\right) v_{2}+\beta\left(b-v_{2}\right)\right) \\
&= \sum_{a, b \in \mathbb{F}_{q}} \chi_{1}\left(b T+a\left(-u_{2}+\alpha \varepsilon\right)+b \alpha\right) \\
& \times \chi_{2}\left(b T+a\left(-v_{2}+\beta \varepsilon\right)+b \beta-v_{2}\left(u_{1}-v_{1}\right)+\beta\left(u_{2}-v_{2}\right)\right) \\
&= H+I
\end{aligned}
$$

where

$$
\begin{aligned}
H & =\sum_{\substack{a, b \in \mathbb{F}_{q} \\
b \neq 0}} \chi_{1}(b T+a \gamma+b \alpha) \chi_{2}(b T+a \gamma+b \beta+\delta) \\
I & =\sum_{a \in \mathbb{F}_{q}} \chi_{1}(a \gamma) \chi_{2}(a \gamma+\delta)
\end{aligned}
$$

Here, $\gamma=-u_{2}+\alpha \varepsilon=-v_{2}+\beta \varepsilon$ and $\delta=-v_{2}\left(u_{1}-v_{1}\right)+\beta\left(u_{2}-v_{2}\right)$. Notice that $\gamma \neq 0$ and $\delta \neq 0$. Hence

$$
\begin{aligned}
H & = \begin{cases}s_{1}\left(\chi_{1}\right) s_{1}\left(\chi_{2}\right)-J & \text { if } \chi_{1} \text { is imaginary } \\
1-J & \text { if } \chi_{1} \text { is real, }\end{cases} \\
I & = \begin{cases}-1 & \text { if } \chi_{1} \text { is imaginary } \\
q-2 & \text { if } \chi_{1} \text { is real, }\end{cases}
\end{aligned}
$$

where

$$
J=\sum_{a \in \mathbb{F}_{q}} \chi_{1}(T+a) \chi_{2}\left(T+a+v_{1}-u_{1}\right)
$$

On the other hand, we see that

$$
\begin{aligned}
(T+\alpha)(T+a) & \equiv(a-\varepsilon) T+a \alpha-u_{2} \bmod Q_{1} \\
(T+\beta)(T+a) & \equiv(a-\varepsilon) T+a \beta-v_{2} \bmod Q_{2}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\chi_{1}(T+ & \alpha) \chi_{2}(T+\beta)\left(1+s_{1}(\chi)\right) \\
= & \chi_{1}(T+\alpha) \chi_{2}(T+\beta) \\
& +\sum_{a \in \mathbb{F}_{q}} \chi_{1}\left((a-\varepsilon) T+a \alpha-u_{2}\right) \chi_{2}\left((a-\varepsilon) T+a \beta-v_{2}\right) \\
= & \chi_{1}(T+\alpha) \chi_{2}(T+\beta)+\sum_{a \in \mathbb{F}_{q}} \chi_{1}(a T+a \alpha+\gamma) \chi_{2}(a T+a \beta+\gamma) \\
= & 1+\sum_{a \in \mathbb{F}_{q}} \chi_{1}(T+a) \chi_{2}\left(T+a+v_{1}-u_{1}\right)=1+J
\end{aligned}
$$

This yields Lemma 4.2.
Now we prove Theorem 1.3. Assume that $r \geq 2$. We see that $A / Q_{1} A$, $A / Q_{2} A$, and $\mathcal{O}_{M} / \mathfrak{p}$ are finite fields of the same cardinality. Fix isomorphisms

$$
\sigma_{1}: A / Q_{1} A \rightarrow \mathcal{O}_{M} / \mathfrak{p}, \quad \sigma_{2}: A / Q_{2} A \rightarrow \mathcal{O}_{M} / \mathfrak{p}
$$

Define an isomorphism τ by

$$
\tau: W_{q^{2}-1} \rightarrow\left(\mathcal{O}_{M} / \mathfrak{p}\right)^{\times}(\zeta \mapsto \zeta \bmod \mathfrak{p})
$$

Set

$$
\omega_{1}=\left.\tau^{-1} \circ \sigma_{1}\right|_{\left(A / Q_{1} A\right)^{\times}}, \quad \omega_{2}=\left.\tau^{-1} \circ \sigma_{2}\right|_{\left(A / Q_{2} A\right)^{\times}}
$$

Then ω_{1}, ω_{2} are generators of $X_{Q_{1}}, X_{Q_{2}}$, respectively.

Lemma 4.4.

$$
\begin{aligned}
& s_{1}(n) \equiv 0 \bmod Q_{1} \Leftrightarrow s_{1}\left(\omega_{1}^{n}\right) \in \mathcal{P} \\
& s_{1}(n) \equiv 0 \bmod Q_{2} \Leftrightarrow s_{1}\left(\omega_{2}^{n}\right) \in \mathcal{P} .
\end{aligned}
$$

Proof. This follows from $s_{1}\left(\omega_{1}^{n}\right) \equiv \sigma_{1}\left(s_{1}(n) \bmod Q_{1}\right) \bmod \mathfrak{p}$, and $s_{1}\left(\omega_{2}^{n}\right)$ $\equiv \sigma_{2}\left(s_{1}(n) \bmod Q_{2}\right) \bmod \mathfrak{p}$.

Let γ_{1} be a generator of $\left(A / Q_{1} A\right)^{\times}$. Write $\alpha=\gamma_{1}^{q+1}$ and $\zeta=\omega_{1}\left(\gamma_{1}\right)$. Then α is a generator of \mathbb{F}_{q}^{\times}, and ζ is a primitive $\left(q^{2}-1\right)$ th root of unity.

Lemma 4.5. There exists a generator $\gamma_{2} \in\left(A / Q_{2} A\right)^{\times}$such that $\gamma_{2}^{q+1}=\alpha$.
Proof. Let γ be a generator of $\left(A / Q_{2} A\right)^{\times}$. Since γ^{q+1} is a generator of \mathbb{F}_{q}^{\times}, we can take $i_{0} \in \mathbb{Z}$ such that $\gamma^{(q+1) i_{0}}=\alpha$. We notice that $\operatorname{gcd}\left(i_{0}, q-1\right)$ $=1$. The map

$$
\left(\mathbb{Z} /\left(q^{2}-1\right)\right)^{\times} \rightarrow(\mathbb{Z} /(q-1))^{\times}\left(x \bmod \left(q^{2}-1\right) \mapsto x \bmod (q-1)\right)
$$

is surjective. Hence we can take $i \in \mathbb{Z}$ such that

$$
i \equiv i_{0} \bmod q-1, \quad \operatorname{gcd}\left(i, q^{2}-1\right)=1
$$

Set $\gamma_{2}=\gamma^{i}$. Then γ_{2} is a generator of $\left(A / Q_{2} A\right)^{\times}$such that $\gamma_{2}^{q+1}=\alpha$.
Take $n \in \mathbb{Z}$ such that $\zeta^{n}=\omega_{2}\left(\gamma_{2}\right)$. Then ζ^{n} is a primitive $\left(q^{2}-1\right)$ th root of unity. Therefore $\operatorname{gcd}\left(n, q^{2}-1\right)=1$. Take $m_{1} \in \mathbb{Z}$ such that

$$
1 \leq m_{1} \leq q^{2}-2, \quad n m_{1} \equiv\left(q-p^{r-1}\right)+p^{r-1} q \bmod q^{2}-1
$$

Since $l((p-1)+q)=p<q-1$ (definition of $l(n)$, see Subsection 3.3), we have

$$
s_{1}\left(\left(q-p^{r-1}\right)+p^{r-1} q\right)=s_{1}((p-1)+q)^{p^{r-1}}=0
$$

(cf. [Ge, Corollary 2.12]). By Lemma 4.4, we have

$$
s_{1}\left(\omega_{1}^{n m_{1}}\right)=s_{1}\left(\omega_{1}^{\left(q-p^{r-1}\right)+p^{r-1} q}\right) \in \mathcal{P}
$$

Next we consider the complex conjugate $\bar{\omega}_{1}^{n m_{1}}$. We see that

$$
-n m_{1} \equiv\left(p^{r-1}-1\right)+\left(q-p^{r-1}-1\right) q \bmod q^{2}-1
$$

Since $l\left(\left(p^{r-1}-1\right)+\left(q-p^{r-1}-1\right) q\right)=q-2<q-1$, we have

$$
s_{1}\left(\left(p^{r-1}-1\right)+\left(q-p^{r-1}-1\right) q\right)=0
$$

Again by Lemma 4.4,

$$
s_{1}\left(\bar{\omega}_{1}^{n m_{1}}\right)=s_{1}\left(\omega_{1}^{\left(p^{r-1}-1\right)+\left(q-p^{r-1}-1\right) q}\right) \in \mathcal{P}
$$

Since $n m_{1} \equiv 1 \bmod q-1$, we see that $\omega_{1}^{n m_{1}}$ is imaginary. Therefore,

$$
s_{1}\left(\omega_{1}^{n m_{1}}\right) s_{1}\left(\bar{\omega}_{1}^{n m_{1}}\right)=q .
$$

Hence

$$
1 \leq \operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\omega_{1}^{n m_{1}}\right)\right)<\operatorname{ord}_{\mathcal{P}}(q) .
$$

Let $c \in \mathbb{Z}$ be such that

$$
1 \leq c \leq q-2, \quad c \equiv m_{1} \bmod q-1
$$

Set $m_{2}=c+(q-1) q$. Then

$$
s_{1}\left(m_{2}\right)=-\binom{q-1}{c}\left(T^{q}-T\right)^{c}
$$

(cf. $\left[\mathrm{Ge}\right.$, Corollary 3.14]). Notice that $\binom{q-1}{c} \not \equiv 0 \bmod p$. Therefore $s_{1}\left(m_{2}\right) \not \equiv 0$ $\bmod Q_{2}$. By Lemma 4.4 we see that $s_{1}\left(\omega_{2}^{m_{2}}\right) \notin \mathcal{P}$. Since $\omega_{2}^{m_{2}}$ is imaginary, we have

$$
\operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\omega_{2}^{-m_{2}}\right)\right)=\operatorname{ord}_{\mathcal{P}}(q) .
$$

Let $\chi=\omega_{1}^{n m_{1}} \omega_{2}^{-m_{2}}$. Then $\chi(\alpha)=1$ since $m_{1} \equiv m_{2} \bmod q-1$. Hence χ is a real character of conductor $m=Q_{1} Q_{2}$. By Proposition 4.3, we have

$$
\operatorname{ord}_{\mathcal{P}}\left(s_{2}^{+}(\chi)\right)=\operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\omega_{1}^{n m_{1}}\right)\right)+\operatorname{ord}_{\mathcal{P}}\left(s_{1}\left(\omega_{2}^{-m_{2}}\right)\right) \notin \operatorname{ord}_{\mathcal{P}}(q) \mathbb{Z}
$$

By 2.5), there exist $\pi_{i}, \pi_{j}(i \neq j)$ such that $s_{2}^{+}(\chi)=\pi_{i} \pi_{j}$. Therefore, by Proposition 2.3, we see that K_{m}^{+}is not ordinary. This completes the proof of Theorem 1.3.

Acknowledgements. The author wishes to thank the referee for pointing out some minor errors and misprints in an earlier version of this paper.

References

[B-E-W] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1998.
[G-R] S. Galovich and M. Rosen, The class number of cyclotomic function fields, J. Number Theory 13 (1981), 363-375.
[Ge] E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), 11-26.
[Go] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1998.
[Ha] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
[K-M] M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one, Tokyo J. Math. 14 (1991), 45-56.
[Ro] M. Rosen, Number Theory in Function Fields, Springer, Berlin, 2002.
[Sh1] D. Shiomi, The Hasse-Witt invariant of cyclotomic function fields, Acta Arith. 150 (2011) 227-240.
[Sh2] D. Shiomi, Ordinary cyclotomic function fields, J. Number Theory 133 (2013), 523-533.
[Sh3] D. Shiomi, Explicit formulas for Hasse-Witt invariants of cyclotomic function fields with conductor of degree two, RIMS Kôkyûroku Bessatsu B34 (2013), 213-222.

Daisuke Shiomi
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Kojirakawa-machi 1-4-12
Yamagata 990-8560, Japan
E-mail: shiomi@sci.kj.yamagata-u.ac.jp

Received on 19.8.2013
and in revised form on 10.3.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11R60; Secondary 14H40. Key words and phrases: cyclotomic function field, Jacobian.

