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1. Introduction. Let ε be a cubic algebraic unit. Let Πε(X) = X3 −
aX2+bX−c ∈ Z[X], with c ∈ {±1}, be its minimal polynomial. Let ε, ε′ and
ε′′ be the three conjugates of ε, i.e. the three distinct complex roots of Πε(X).

If ε is not totally real, it is known that in general ε is a fundamental unit
of the cubic order Z[ε] (see [Nag], [Lou06], [Lou08a] and [Lou10]).

Now, assume that ε is totally real. It is known (see [BHMMS], [MS] and
[Lou12]) that in general there exists η ∈ Z[ε] such that {ε, η} is a system of
fundamental units of the cubic order Z[ε]. There are two different situations
in which we might be able to make such a unit η explicit.

On the one hand, we might search for it of the form rε+ s. For example,
if we want ε − 1 to be also a unit, we are led to consider the parametrized
families of cubic polynomials Πl(X) = X3 + (l− 1)X2 − lX − 1, l ≥ 3, and
Πk(X) = X3 − kX2 − (k + 3)X − 1, k ≥ −1, the latter being associated
with the so-called simplest cubic fields (see [Enn1]). In that situation, we
would try to prove that {ε, ε − 1} is a system of fundamental units of the
order Z[ε]. This is the approach developed in [Enn1], [Enn2] and [Tho]. We
will improve on Ennola’s result in [Enn2], who proved that we can take
α = 1 in the following theorem (from a computational point of view, in the
case that M = O is the maximal order of Fl, the calculation of the index is
explained in [Enn1, Proposition 3.1]):

Theorem 1.1. Let Fl be the non-Galois totally real cubic number field
generated by a root ε of Πl(X) = X3 + (l − 1)X2 − lX − 1, l ≥ 3. Then
{ε, ε−1} is a system of fundamental units of the totally real cubic order Z[ε].
Moreover, let M be an order of Fl containing Z[ε] and set α = 2− 2/

√
7 =

1.244 . . . . If the index (M : Z[ε]) is less than or equal to lα/4, then {ε, ε−1}
is a system of fundamental units of M .
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On the other hand, we might assume that Q(ε) is Galois and that Z[ε] is
invariant under the action of the Galois group Gal(Q(ε)/Q). In that situation
we might expect that we can take for η any of the two conjugates ε′ or ε′′ of ε.
In [Lou12] we proved that if the order Z[ε] is invariant under the action of
Gal(Q(ε)/Q), then the index (Uε : 〈−1, ε, ε′〉) is less than or equal to 3, where
Uε is the group of units of Z[ε]. While trying to prove that this index was
equal to 1, we realized in [LL] that it seldom happens that Z[ε] is invariant
under the action of Gal(Q(ε)/Q). Essentially, it happens if and only if ε
is a so-called simplest cubic unit. Hence, we had not considered the right
problem: this order Z[ε] is too small.

In the present paper, we deal with the larger order Z[ε, ε′, ε′′]. This totally
real cubic order is invariant under the action of Gal(Q(ε)/Q), and its group
of units is of rank 2. Since ε and ε′ are multiplicatively independent units of
this order (see Lemma 4.1), it is natural to ask whether {ε, ε′} is a system
of fundamental units of Z[ε, ε′, ε′′]. In the literature we found several papers
in which the authors claimed that {ε, ε′} is indeed a system of fundamental
units of Z[ε, ε′, ε′′], provided that ε ranges in several peculiar families of
cubic units defined by parametrized families of cubic polynomials (see [Kish],
[Tog04], [Tog06] and [Tog08]). However, there are serious gaps in their proofs
(see Section 3). In the present paper, we will fill in these gaps and prove:

Theorem 1.2. Let ε, ε′ and ε′′ be the three real roots of any one of the
following parametrized families of Q-irreducible cubic polynomials of dis-
criminants a square (for n ∈ Z):

Φn(X) = X3 − n(n2 + n+ 3)(n2 + 2)X2 − (n3 + 2n2 + 3n+ 3)X − 1,

Ξn(X) = X3 − (n3 − 2n2 + 3n− 3)X2 − n2X − 1, n 6= 1, 2,

Ψn(X) = X3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n+ 3)X2

− (n3 − 2)n2X − 1.

Then {1, ε, ε2ε′} is a Z-basis of the totally real cubic order Z[ε, ε′], and {ε, ε′}
is a system of fundamental units of Z[ε, ε′].

To prove Theorem 1.2, we develop a general machinery which could be
used to obtain similar results for various families that might crop up in the
future, as in [Tha].

Combining our ideas for proving Theorems 1.1 and 1.2 we derive a
stronger statement (similar results can be obtained for the other two fami-
lies):

Theorem 1.3. Let ε, ε′ and ε′′ be the three real roots of Ξn, n ≥ 3. Let
M be an order of the cyclic cubic field Q(ε) containing the totally real cubic
order Z[ε, ε′]. Set α = 4−

√
28/3 = 0.94494 . . . . If the index (M : Z[ε, ε′]) is

less than or equal to 2
9n

α, then {ε, ε′} is a system of fundamental units of M .



Fundamental units of some cubic orders 285

From a computational point of view, in the case that M = O is the
maximal order of the cyclic cubic field K = Q(ε), the index (M : Z[ε, ε′]) =
fZ[ε,ε′]/fK = (n2 + 3)(n2 − 3n + 3)/fK can be calculated by using [Was1,
Theorem 1] to determine the conductor fK of K. (The same remark applies
to the Φn(X)’s by using [Kish, Theorem 1].)

2. Sketch of proof. Let e1, . . . , en be n elements of a number field K of
degree n with complex imbeddings σk, 1 ≤ k ≤ n. Their discriminant is the
rational number d(e1, . . . , en) := (det [σk(el)]1≤k,l≤n)2. It is equal to 0 if and
only if e1, . . . , en are Q-linearly dependent. If ek = εk−1, 1 ≤ k ≤ n, for some
ε ∈ K, then d(e1, . . . , en) = d(1, ε, . . . , εn−1) is equal to the discriminant dε
of the minimal polynomial Πε(X) ∈ Q[X] of ε if this minimal polynomial
is of degree n, i.e. if K = Q(ε), and is equal to 0 otherwise. If M is a free
Z-module of rank n of K, then dM = d(e1, . . . , en) does not depend on the
Z-basis {e1, . . . , en} of M . It is called the discriminant of the module M .
In particular, dZ[α] = dα if K = Q(α). If M ⊆ N are two free Z-modules

of rank n of K, then the index (N : M) is finite and dM = (N : M)2dN .
Hence, dN divides dM . If O is the maximal order of K, then dO = dK ,
the discriminant of K. Finally, if K is a cyclic cubic field of conductor
fK > 1, then dK = f2K and for any free Z-module M of rank 3 of O we
have dM = (O : M)2dK = ((O : M)fK)2. Hence, dM = f2M is the square of
fM > 0, the conductor of the cubic module M , and fK divides fM .

Now, to simplify, assume that K is totally real, which will always be the
case in the present paper. Let M be an order of K. The unit group UM of M
is of rank n− 1. The regulator of the order M is defined by

Reg(M) := Reg(ε1, . . . , εn−1) := |det [log |σk(εl)|]1≤k,l≤n−1| > 0

(notice that we do not take into account one of the n embeddings of K,
namely σn, which may be chosen arbitrarily). It does not depend on the
system of fundamental units {ε1, . . . , εn} of M .

Our first main tool is the following result of T. W. Cusick (we will explain
in Section 3 how a misunderstanding of Proposition 2.1 created gaps in the
proofs of the three items of Theorem 1.2 in [Kish], [Tog04], [Tog06] and
[Tog08], gaps that will be filled in the present paper):

Proposition 2.1 (see [Cus]). For any order M of a totally real cubic
number field there exists a unit εM of M such that

(1) Reg(M) ≥ 1

16
log2(dεM /4) ≥ 1

16
log2(dM/4).

Our second main tool is built from the results of the second author
in [Lou12]:
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Proposition 2.2. Let ε be an algebraic cubic unit with minimal poly-
nomial Πε(X) = X3 − aX2 + bX − c ∈ Z[X], c ∈ {±1}, of discriminant
dε = −4a3c − 4b3 + a2b2 + 18abc − 27c2. Assume that Q(ε) is Galois, i.e.
dε = f2ε is a square. Let ε, ε′ and ε′′ be the three conjugates of ε. Then

(2) Reg(ε, ε′) ≤ 1

4
log2(4dε).

Proof. Since dε and Reg(ε, ε′) remain unchanged if ε is changed into
any of the units ±ε, ±1/ε, ±ε′, ±1/ε′, ±ε′′, ±1/ε′′, we may assume that
ε > 1 > |ε′| ≥ |ε′′| > 0, as in [Lou12]. Using εε′ε′′ = ±1, we have

Reg(ε, ε′) :=

∣∣∣∣∣det

(
log |ε| log |ε′|
log |ε′| log |ε′′|

)∣∣∣∣∣
= (log |ε|)2 + (log |ε|)(log |ε′|) + (log |ε′|)2,

(log |ε|)(log |ε′|) + (log |ε′|)2 = −(log |ε′|)(log |ε′′|) ≤ 0,

Reg(ε, ε′) ≤ (log |ε|)2.

By [Lou12, Lemmas 7–9], if Πε(X) 6= X3 − 20X2 − 9X − 1 (for which (2)
holds true), Πε(X) 6= X3 − 9X2 + 6X − 1 (for which (2) holds true as well)
and Q(ε) is Galois, then

dε ≥ min
(
4(ε− 1)2ε, ε2, (ε− 1)4/ε2

)
= (ε− 1)4/ε2 = ((ε− 1)/ε)4ε2 ≥ ε2/4

for ε ≥ 3.49. Now, by [Lou12, Lemma 4], if ε < 3.49, then Πε(X) = X3 −
2X2 − X + 1, X3 − 3X2 + 1 or X3 − 3X2 − X + 1, and (2) holds true in
these three cases.

Let ε1 and ε2 be multiplicatively independent units of a totally real
cubic order M . In practice, ε1 and ε2 are defined as any two of the three
real roots of a parametrized family of irreducible polynomials Πn(X) =
X3 − anX

2 + bnX ± 1 ∈ Z[X] with positive discriminants, and we take
M = Z[ε1, ε2] = Z[ε1, ε2, ε3], where ε3 = an − ε1 − ε2 is the third real root
of Πn(X). (Or, as in the situation of Theorem 1.1, ε1 and ε2 are of the
form rε + s ∈ Z[ε] for some totally real cubic unit ε which is a root of a
given parametrized family of irreducible cubic polynomials Πn(X), and we
take M = Z[ε].) Let UM be the group of units of M . How could one prove
that {ε1, ε2} is a system of fundamental units of the order M (whose unit
rank is equal to 2)? To begin with, one would try to prove that the index
(UM : 〈−1, ε1, ε2〉) is uniformly bounded. Notice that (see e.g. [Was2, Lemma
4.15])

(3) (UM : 〈−1, ε1, ε2〉) = Reg(ε1, ε2)/Reg(M).

Hence using Propositions 2.1 and 2.2, we might expect to obtain a uniform
bound on the index (UM : 〈−1, ε1, ε2〉).
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For example, if ε is as in Proposition 2.2, then

(UZ[ε,ε′] : 〈−1, ε, ε′〉) =
Reg(ε, ε′)

Reg(Z[ε, ε′])

≤
(

2 log(4dε)

log(dZ[ε,ε′]/4)

)2

=

(
2 log(2fε)

log(fZ[ε,ε′]/2)

)2

,

by (1) and (2), and

fε = (Z[ε, ε′] : Z[ε])fZ[ε,ε′].

Hence, the unit index (UZ[ε,ε′] : 〈−1, ε, ε′〉) is small as soon as the order index
(Z[ε, ε′] : Z[ε]) is not too large. More precisely, for any given integer N > 4,
we see that

(Z[ε, ε′] : Z[ε]) <
1

4
(2fε)

1−2/
√
N implies (UZ[ε,ε′] : 〈−1, ε, ε′〉) < N.

If, as explained in Section 8, we do not know beforehand a formula (in terms
of the coefficients of Πε(X) = X3−aX2+bX−c) for the discriminant dZ[ε,ε′],
at least we will be able to compute it for the three families considered in
Theorem 1.2.

3. Mistakes in the literature. In this section, we let the assumptions
and notation be as in Proposition 2.2.

Lemma 3.1. Let α be a cubic algebraic number of minimal polynomial
Πα(X) = X3 − aX2 + bX − c ∈ Z[X], of discriminant dα. Assume that
Q(α) is a cyclic cubic field, i.e. dα = f2α is a the square of some positive
integer fα. Let α, α′ and α′′ be the three conjugates of α. Then the conductor
fZ[α,α′] divides gcd(fα, a

2 − 3b, b2 − 3ac).

Proof. Since both d(1, α, α2) = dα = f2α, d(1, α, α′) and d(1, α, α2α′)
divide dZ[α,α′] = f2Z[α,α′], the desired result follows. Indeed, because of

det

1 α α′

1 α′ α′′

1 α′′ α

 = (α′α+ α′′α′ + αα′′)− (α′2 + α′′2 + α2) = b− (a2 − 2b)

and

det

1 α α2α′

1 α′ α′2α′′

1 α′′ α′′2α

 = ααα′′(α′′ + α+ α′)− (α2α′2 + α′2α′′2 + α′′2α2)

= ca− (b2 − 2ca),

we have d(1, α, α′) = (a2 − 3b)2 and d(1, α, α2α′) = (b2 − 3ac)2.
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In [Kish, (2.2), proof of Theorem 2], [Tog04, p. 67, line 9, displayed for-
mula for a lower bound for RO, and (2.7) of the proof of Lemma 2.4], [Tog06,
(2.7) of the proof of Lemma 2.2] and [Tog08, first assertion of Theorem 2.1],
it is wrongly asserted that Cusick’s result (Proposition 2.1) yields

(4) Reg(Z[ε, ε′]) ≥ 1

16
log2(dε/4) =

1

4
log2(fε/2).

Actually, Cusick proved a much weaker result: there exists some unit εM in
M = Z[ε, ε′] such that

Reg(Z[ε, ε′]) ≥ 1

16
log2(dεM /4) ≥ 1

16
log2(dZ[ε,ε′]/4) =

1

4
log2(fZ[ε,ε′]/2)

(since dZ[ε,ε′] divides ε, this latter lower bound is indeed weaker than (4)).

Let us give an explicit example showing that (4) can indeed be violated.
The conductor fK > 1 of the cubic field K := Q(ε) divides fZ[ε,ε′], and

fZ[ε,ε′] divides ∆ := gcd(fε, a
2 − 3b, b2 − 3ac) (see Lemma 3.1). Hence, if

∆ = p is a prime number, then fK = fZ[ε,ε′] = ∆ = p. Therefore, Q(ε) is
the only cubic cyclic field Kp of conductor p, whose regulator Reg(Kp) is
given in [Coh, Appendix B.4] if p ≤ 43, and Z[ε, ε′] is its ring of algebraic
integers, which yields Reg(Z[ε, ε′]) = Reg(Kp) and makes it easy to check
whether (4) is satisfied. For example, if Πε(X) = X3− 19196X2 + 83X + 1,
then fε = 5552687, ∆ = 7, Reg(Z[ε, ε′]) = Reg(K7) = 0.525 . . . and (4) is
blatantly violated.

4. Lemmas on cubic units. In this short section we state four useful
results on cubic units. Lemma 4.2 is an explicit formula for the roots of a
cubic polynomial with three real roots. It will be used to compute asymp-
totics for regulators in parametrized families of cubic fields and numerical
values of such regulators. Lemma 4.3 is a formula for the complex conju-
gates of a cubic algebraic number. Lemma 4.4 gives a Z-generating system
for the cubic or sextic order generated by all the complex conjugates of a
cubic algebraic number. At the end of the paper we will show that if this
order is sextic, then the Z-generating system is a Z-basis (see Lemma 8.1).

Lemma 4.1. Let ε 6= ±1 be a cubic unit. Assume that Q(ε) is Galois.
Then ε and ε′ are multiplicatively independent.

Proof. Set X = log |ε| and Y = log |ε′|. According to the beginning of the
proof of Proposition 2.2, Reg(ε, ε′) = X2 +XY +Y 2 = ((2X+Y )2 +3Y 2)/4
is equal to 0 if and only if X = Y = 0.

Lemma 4.2. We have P (X) = X3 − aX2 + bX − c = Q(3X − a)/27,
where Q(Y ) = Y 3 − 3pY − q with p = a2 − 3b and q = 2a3 − 9ab + 27c.
Moreover, dQ = 272dP = 27(4p3 − q2). Finally, if dP > 0 and q 6= 0, then
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p > 0 and the three real roots of P (X) are

εk :=
1

3

(
a+ 2

q

|q|
√
p cos

(
1

3
arctan

(√
4p3 − q2

q2

)
+

2kπ

3

))
, k ∈ {0, 1, 2}.

Lemma 4.3 (see [Lou12, proof of Proposition 10]). Assume that Π(X) =
X3−aX2+bX−c ∈ Z[X] is Q-irreducible and of discriminant ∆ = −4a3c−
4b3 +a2b2 + 18abc−27c2 = D2 = (−D)2 a square. Set x(D) = 2a2−6b ∈ Z,
y(D) = −(2a3 − 7ab+ 9c+D) ∈ Z and z(D) = a2b+ 3ac− 4b2 +Da ∈ Z.
Then α and

α′ = α(D) :=
xα2 + y(D)α+ z(D)

2D

and α′′ = α(−D) are the three real roots of Π(X).

Lemma 4.4. Let α, α′ and α′′ be the three complex conjugates of a cubic
algebraic number α. Then {1, α, α2, α′, αα′, α2α′} is a Z-generating system
of the cubic or sextic order Z[α, α′] = Z[α, α′, α′′].

Proof. Since α + α′ + α′′ ∈ Z, we do have Z[α, α′] = Z[α, α′, α′′]. Since
αn ∈ Z + Zα + Zα2 and α′n ∈ Z + Zα′ + Zα′2 for n ≥ 0, we see that
{ek,l := αkα′l; 0 ≤ k, l ≤ 2} is a Z-generating system of Z[α, α′]. We prove
that we can dispense with e0,2 = α′2, e1,2 = αα′2 and e2,2 = α2α′2. Indeed,
let Πα(X) = X3 − aX2 + bX − c ∈ Z[X] be the minimal polynomial of α.
Then α′2 = α′2−(α2−aα+b−c/α) = α′2+α′α′′−(α2−aα+b) = (a−α)α′−
(α2−aα+ b). Hence αα′2 = (aα−α2)α′− (α3−aα2 + bα) = (aα−α2)α′+ c
and α2α′2 = (aα2 − α3)α′ + cα = (bα− c)α′ + cα.

5. Proof of Theorem 1.1. We assume that l ≥ 3. We will use:

Lemma 5.1 (see [Enn1, Theorem 4.1]). Let O be the maximal order of
the cubic number field generated by a root ε of Πl(X) = X3 + (l − 1)X2 −
lX − 1, l ≥ 3. None of the units ±ε, ±(ε− 1), ±ε(ε− 1) and ±(ε− 1)/ε is a
non-trivial power in O, and none of the units ε2(ε−1) and ε(ε−1)2 is a fifth
power in O. Hence, 2, 3 and 5 do not divide the index (O∗ : 〈−1, ε, ε− 1〉).

The discriminant dl of Πl(X) is given by dl = (l2 +3l−1)2−32. Clearly,
it is positive and not a square. Hence Πl(X) has three distinct real roots
and K = Q(ε) is not Galois. With the notation of Lemma 4.2, we may
assume that ε = ε0, ε

′ = ε1 and ε′′ = ε2. We obtain ε = −l + O
(
1
l2

)
,

ε′ = 1 + 1
l −

2
l2

+ 4
l3

+O
(
1
l4

)
and ε′′ = −1

l +O
(
1
l2

)
(see also [Lou08b]). Hence,

Reg(ε, ε− 1) =

∣∣∣∣∣det

(
log |ε| log |ε− 1|
log |ε′| log |ε′ − 1|

)∣∣∣∣∣
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=

∣∣∣∣∣det

(
log l +O( 1

l3
) log l +O

(
1
l

)
1
l −

5
2l2

+O
(
1
l3

)
− log l − 2

l + 2
l2

+O
(
1
l3

))∣∣∣∣∣
= log2 l +

3 log l

l
− 9 log l

2l2
+O

(
1

l2

)
is asymptotic to 1

16 log2 dl. After having computed by hand an admissible

constant κ in this O
(
1
l2

)
error term and having done on a desk computer an

exact computation of Reg(ε, ε′) (by using Lemma 4.2 and by noticing that
here q = −2l3 − 3l2 + 3l + 29 < 0 for all l ≥ 3) for the small values of l

for which the now explicit expression −9 log l
2l2

+ κ
l2

is non-negative, i.e. for

3 ≤ l ≤ e2κ/9, we deduce that

Reg(ε, ε− 1) ≤ log2 l +
3 log l

l
.

Using (1) and (3), and noticing that dM = dl/(M : Z[ε])2 ≤ 4dl/l
2α, we

obtain

(O∗ : 〈−1, ε, ε− 1〉) =
Reg(ε, ε− 1)

Reg(M)
≤
(

log l + 3/(2l)
1
4 log(dl/l2α)

)2

< 7.

Indeed, with our choice of α we have
√

7

4
log(dl/l

2α)− log l− 3

2l
=

√
7

4
log(dl/l

4)− 3

2l
=

3(
√

7− 1)

2l
+O

(
1

l2

)
> 0

for l ≥ 3. Using Lemma 5.1, the desired result follows.

6. Proof of Theorem 1.2. Let us consider the family of cyclic cubic
fields studied in [Kish]:

Lemma 6.1. For n ∈ Z, the cubic polynomial Φn(X) is Q-irreducible, of
discriminant dn=f2n a square, with fn=(n2 + 1)(n2 + 3)(n4 +n3 + 4n2 + 3).
Let ε, ε′ and ε′′ be the three real roots of Φn(X). Then {1, ε, ε2ε′} is a
Z-basis of the order Z[ε, ε′] and this order has discriminant dZ[ε,ε′] = f2Z[ε,ε′]
= dn/(n

2 + 1)2, with fZ[ε,ε′] = (n2 + 3)(n4 + n3 + 4n2 + 3). Moreover, the
unit index (UZ[ε,ε′] : 〈−1, ε, ε′〉) is less than 3.

Proof. We know that {1, ε, ε2, ε′, εε′, ε2ε′} is a Z-generating system of
Z[ε, ε′] (Lemma 4.4). Notice also that Z[ε] = Z + Zε+ Zε2. Set

η0 =
ε2 − (n− 1)ε− n

n2 + 1
and η1 =

nε2 + (n+ 1)ε+ 1

n2 + 1
= nη0 + ε+ 1.

Since ε3 = aε2 − bε + c and ε4 = (a2 − b)ε2 + (c − ab)ε + ac, we deduce
that ε′ = xε2 + yε + z yields εε′ = (ax + y)ε2 + (z − bx)ε + cx and ε2ε′ =
(a(ax + y) + z − bx)ε2 + (cx − b(ax + y))ε + c(ax + y). Using Lemma 4.3,
we then obtain ε′ = −η0 + P (ε) with P (ε) ∈ Z[ε], εε′ = −η1 + Q(ε) with
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Q(ε) ∈ Z[ε], and

(5) ε2ε′ = η0 − (n+ 1)(n2 + n+ 3)ε− 1.

Hence, {1, ε, ε2, η0, η1} is a Z-generating system of Z[ε, ε′]. Since η1 − nη0 =
ε + 1 ∈ Z[ε], {1, ε, ε2, η0} is a Z-generating system of Z[ε, ε′]. Since ε2 =
(n2+1)η0+(n−1)ε+n, {1, ε, η0} is a Z-generating system of Z[ε, ε′]. Finally,
by (5), {1, ε, ε2ε′} is a Z-generating system of Z[ε, ε′] and the expression for
its discriminant follows from the last assertion of the proof of Lemma 3.1.

As in the proof of Theorem 1.1, with the notation of Lemma 4.2, we
may assume that ε = ε0, ε

′ = ε1 and ε′′ = ε2. Noticing that q > 0 for
n ≥ 0 and q < 0 for n ≤ −1, we obtain ε = n5 + O(n4) = n5

(
1 + O

(
1
n

))
,

ε′ = − 1
n2 +O

(
1
n3

)
= − 1

n2

(
1 +O

(
1
n

))
, ε′′ = − 1

n3 +O
(

1
n4

)
= − 1

n3

(
1 +O

(
1
n

))
and

Reg(ε, ε′) =

∣∣∣∣∣det

(
log |ε| log |ε′|
log |ε′| log |ε′′|

)∣∣∣∣∣
=

∣∣∣∣∣∣∣det

 5 log |n|+O
(
1
n

)
−2 log |n|+O

(
1
n

)
−2 log |n|+O

(
1
n

)
−3 log |n|+O

(
1
n

)

∣∣∣∣∣∣∣

= 19 log2 |n|+O

(
log |n|
n

)
.

In fact, we have the more precise asymptotics

Reg(ε, ε′) = 19 log2 |n|+ 8 log |n|
n

+O

(
log |n|
n2

)
.

Since

Reg(Z[ε, ε′]) ≥ 1

16
log2

dZ[ε,ε′]

4
=

1

4
log2

(n2 + 3)(n4 + n3 + 4n2 + 3)

2
,

we have

(UZ[ε,ε′] : 〈−1, ε, ε′〉) =
Reg(ε, ε′)

Reg(Z[ε, ε′])
≤ 19

9
+O

(
1

log |n|

)
,

and (UZ[ε,ε′] : 〈−1, ε, ε′〉) < 3 for |n| large enough. After having computed
by hand an admissible constant κ in this O(1/log |n|) error term and hav-
ing done on a desk computer an exact computation of Reg(ε, ε′) (by using
Lemma 4.2) for the small values of n for which the now explicit expression
19
9 + κ

log |n| is not smaller than 3, i.e. for |n| ≤ e9κ/8, we deduce that the last

assertion holds true for any n ∈ Z (notice that here q < 0 for all n ∈ Z≤−1
and q > 0 for all n ∈ Z≥0).

Let us now consider the family of cyclic cubic fields studied in [Tog04]
and [Was1]:
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Lemma 6.2. For 1 6= n ∈ Z, the cubic polynomial Ξn(X) is Q-irreducible,
of discriminant dn = f2n a square, with fn = (n−1)(n2+3)(n2−3n+3). Let ε,
ε′ and ε′′ be the three real roots of Ξn(X). Then {1, ε, ε2ε′} is a Z-basis of the
order Z[ε, ε′] and this order is of discriminant dZ[ε,ε′] = f2Z[ε,ε′] = dn/(n−1)2,

with fZ[ε,ε′] = (n2 + 3)(n2 − 3n + 3). Moreover, for n 6= 1, 2, the unit index
(UZ[ε,ε′] : 〈−1, ε, ε′〉) is less than 3.

Proof. The proof is the same as that of Lemma 6.1. Set

η0 =
ε2 − 1

n− 1
.

We obtain ε = η0+P (ε) with P (ε) ∈ Z[ε], εε′ = −η0+Q(ε) with Q(ε) ∈ Z[ε],
and

(6) ε2ε′ = η0 − (n2 + 1)ε− 1.

Hence, {1, ε, ε2, η0} is a Z-generating system of Z[ε, ε′]. Since ε2=(n−1)η0+1,
{1, ε, η0} is a Z-generating system of Z[ε, ε′]. Finally, by (6), {1, ε, ε2ε′} is a
Z-generating system of Z[ε, ε′] and the expression for its discriminant follows
from the last assertion of the proof of Lemma 3.1.

With the notation of Lemma 4.2, we may assume that ε = ε0, ε
′ = ε1

and ε′′ = ε2. We obtain ε = n3 +O(n2) = n3
(
1+O

(
1
n

))
, ε′ = − 1

n +O
(

1
n2

)
=

− 1
n

(
1 +O

(
1
n

))
, ε′′ = − 1

n2 +O
(

1
n3

)
= − 1

n2

(
1 +O

(
1
n

))
and

Reg(ε, ε′) =

∣∣∣∣∣det

(
log |ε| log |ε′|
log |ε′| log |ε′′|

)∣∣∣∣∣
=

∣∣∣∣∣∣∣det

3 log |n|+O
(
1
n

)
−log |n|+O

(
1
n

)
−log |n|+O

(
1
n

)
−2 log |n|+O

(
1
n

)

∣∣∣∣∣∣∣

= 7 log2 |n|+O

(
log |n|
n

)
.

In fact, we have the more precise asymptotics

Reg(ε, ε′) = 7 log2 |n| − 9 log |n|
n

+O

(
log |n|
n2

)
.

Since

Reg(Z[ε, ε′]) ≥ 1

16
log2

dZ[ε,ε′]

4
=

1

4
log2

(n2 + 3)(n2 − 3n+ 3)

2
,

we have

(UZ[ε,ε′] : 〈−1, ε, ε′〉) =
Reg(ε, ε′)

Reg(Z[ε, ε′])
≤ 7

4
+O

(
1

log |n|

)
,
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and (UZ[ε,ε′] : 〈−1, ε, ε′〉) < 3 for |n| large enough. As at the end of the
proof of Lemma 6.1, we deduce that the last assertion holds true for any
1, 2 6= n ∈ Z (notice that here q < 0 for all n ∈ Z≤0 and q > 0 for all
n ∈ Z≥1). Indeed, for n = 2, ε′ε2 = η0−(n2+1)ε = ε2−5ε−2 = η3 is a cube,
where η = ε2− 4ε− 2 ∈ Z[ε] ⊆ Z[ε, ε′] (check that φ2(x) = x3− 3x2− 4x− 1
divides (x2 − 4x− 2)3 − (x2 − 5x− 2)).

Remark 6.3. Write fZ[ε,ε′] = (n2 + 3)(n2 − 3n+ 3) = 9δb, with δ = 0 if
n 6≡ 0 (mod 3) and δ = 1 if n ≡ 0 (mod 3) (hence, gcd(b, 3) = 1). According
to Lemma 6.2 and [Was1, Theorem 1], if b is squarefree, then Z[ε, ε′] is the
maximal order of Q(ε).

Let us finally consider the family of cyclic cubic fields studied in [Tog06]:

Lemma 6.4. For n ∈ Z, the cubic polynomial Ψn(X) is Q-irreducible,
of discriminant dn = f2n a square, with fn = (n2 − n + 1)(n3 + n − 1)
× (n4 + 2n3 + 4n2 + 3n+ 3)(n4 − n3 + n2 − 3n+ 3). Let ε, ε′ and ε′′ be the
three real roots of Ψn(X). Then {1, ε, ε2ε′} is a Z-basis of the order Z[ε, ε′]
and this order is of discriminant dZ[ε,ε′] = f2Z[ε,ε′] = dn/(n

3 − n + 1)2, with

fZ[ε,ε′] = (n2 − n + 1)(n4 + 2n3 + 4n2 + 3n + 3)(n4 − n3 + n2 − 3n + 3).
Moreover, the unit index (UZ[ε,ε′] : 〈−1, ε, ε′〉) is less than 3.

Proof. Here again, the proof is the same as that of Lemma 6.1. Set

η1 =
ε2 + ε− n
n3 + n− 1

and η0 =
n2ε2 + n2ε+ n− 1

n3 + n− 1
= n2η1 + 1.

We obtain ε′ = η0+P (ε) with P (ε) ∈ Z[ε], εε′ = −nη1+Q(ε) with Q(ε)∈Z[ε],
and

(7) ε2ε′ = η1 + nε.

Hence, {1, ε, ε2, η0, η1} is a Z-generating system of Z[ε, ε′]. Since η0 − n2η1
= 1 ∈ Z[ε], {1, ε, ε2, η1} is a Z-generating system of Z[ε, ε′]. Since ε2 =
(n3 + n − 1)η1 − ε + n, {1, ε, η1} is a Z-generating system of Z[ε, ε′]. Fi-
nally, by (7), {1, ε, ε2ε′} is a Z-generating system of Z[ε, ε′] and the ex-
pression for its discriminant follows from the last assertion of the proof
of Lemma 3.1.

With the notation of Lemma 4.2, we may assume that ε = ε0, ε
′ = ε1 and

ε′′ = ε2. We obtain ε = −n8 +O(n6) = −n8
(
1 +O

(
1
n2

))
, ε′ = 1

n3 +O
(

1
n5

)
=

1
n3

(
1 +O

(
1
n2

))
, ε′′ = − 1

n5 +O
(

1
n7

)
= − 1

n5

(
1 +O

(
1
n2

))
and

Reg(ε, ε′) =

∣∣∣∣∣det

(
log |ε| log |ε′|
log |ε′| log |ε′′|

)∣∣∣∣∣
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=

∣∣∣∣∣det

(
8 log |n|+O

(
1
n2

)
−3 log |n|+O

(
1
n2

)
−3 log |n|+O

(
1
n2

)
−5 log |n|+O

(
1
n2

))∣∣∣∣∣
= 49 log2 |n|+O

(
log |n|
n2

)
.

In fact, we have the more precise asymptotics

Reg(ε, ε′) = 49 log2 |n|+ 24 log |n|
n2

+O

(
log |n|
n3

)
.

Since

Reg(Z[ε, ε′]) ≥ 1

16
log2

dZ[ε,ε′]

4

=
1

4
log2

(n2 − n+ 1)(n4 + 2n3 + 4n2 + 3n+ 3)(n4 − n3 + n2 − 3n+ 3)

2
,

we have

(UZ[ε,ε′] : 〈−1, ε, ε′〉) =
Reg(ε, ε′)

Reg(Z[ε, ε′])
≤ 49

25
+O

(
1

log |n|

)
,

and (UZ[ε,ε′] : 〈−1, ε, ε′〉) < 3 for |n| large enough. As at the end of the proof
of Lemma 6.1, we deduce that the last assertion holds true for any 1 6= n ∈ Z
(notice that here q < 0 for all n ∈ Z).

Lemma 6.5. In the situation of Lemmas 6.1, 6.2 and 6.4, the unit index
(UZ[ε,ε′] : 〈−1, ε, ε′〉) is odd.

Proof. This index is even if and only if ε, −ε, ε′ or −ε′ is a square, which
implies that ε or −ε is totally positive. If Πε(X) = X3− aX2 + bX − c, this
implies a > 0, b > 0 and c > 0, or a < 0, b > 0 and c < 0. Since in our
situations we have c = 1 > 0, we only need to notice that a < 0 or b < 0.

7. Proof of Theorem 1.3. Let us come back to the proof of Lemma 6.2.
Since n ≥ 3, we have Reg(ε, ε′) < 7 log2 n, dZ[ε,ε′] = ((n2+3)(n2−3n+3))2 ≥
16
81n

8 and dM = dZ[ε,ε′]/(M : Z[ε, ε′])2 ≥ 4n8−2α. Hence,

(UM : 〈−1, ε, ε′〉) =
Reg(ε, ε′)

Reg(M)
≤ 16Reg(ε, ε′)

log2(dM/4)
<

16 · 7
4(4− α)2

= 3.

8. Conclusion and open problems

8.1. Remarks on Godwin’s example. Let us consider the family
of cyclic cubic fields (introduced in [God]) associated with the polynomi-

als Πb(X) = X3 − X2 − 9b2−1
4 X + b2, with b odd, of discriminant db =

(b(27b2 + 1)/4)2 a square (in fact, in [God] it is assumed that b = B2

is a square). If θ denotes any of its three real roots, then its conjugates
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are φ =
(
θ2 − b+1

2 θ − 3b2−b
2

)
/b (by Lemma 4.3) and ψ = 1 − θ − φ. Set

ε := (3φ− 1)/(3θ − 1). After a little computation we found that

ε =
6

b
θ2 − 3

b
θ − 27b+ 1

2
and that ε is a cubic algebraic unit of the minimal polynomial

Πm(X) = X3 −mX2 − (m+ 3)X − 1 with m = −3(9b+ 1)/2.

Hence, Godwin’s cubic fields are simplest cubic fields and he should have
cited [Cohn] for the evenness of the class number and [Sha] for the funda-
mental units.

8.2. The discriminant of the sextic order Z[ε, ε′, ε′′] when Q(ε) is
not Galois

Lemma 8.1. Let α, α′ and α′′ be the three complex conjugates of a cubic
algebraic number α. Assume that the cubic extension Q(α)/Q is not Galois.
Then {1, α, α2, α′, αα′, α2α′} is a Z-basis of the order Z[α, α′] = Z[α, α′, α′′]
and d(1, α, α2, α′, αα′, α2α′) = d3α.

Proof. The normal closure N of the cubic number field Q(α) is a sextic
number field with Galois group the permutation group S3 = {σi; 0 ≤ i ≤ 5}
of order 6, where σ0 = Id, σ1 = (1, 2), σ2 = (2, 3), σ3 = (3, 1), σ4 = (1, 2, 3)
and σ5 = (1, 3, 2). Here, S3 acts on the three roots α1 = α, α2 = α′

and α2 = α′′ by permutation of the indices. The first assertion of the
lemma follows from Lemma 4.4. To compute d(1, α, α2, α′, αα′, α2α′) =
det [TrN/Q(ηiηj)]1≤i,j≤6, where η1 = 1, η2 = α, η3 = α2, η4 = α′, η5 = αα′

and η6 = α2α′, we notice that

TrN/Q(αkα′l) =

6∑
i=1

σi(α1)
kσi(α2)

l

= (αkα′l + αlα′k) + (αkα′′l + αlα′′k) + (α′kα′′l + α′lα′′k)

is a symmetric polynomial in α, α′ and α′′. Hence, it can be expressed as
a polynomial in Z[a, b, c], where Πα(X) = X3 − aX2 + bX − c ∈ Z[X] of
discriminant dα = −4a3c − 4b3 + a2b2 + 18abc − 27c2 is the minimal
polynomial of α. We deduce that d(1, α, α2, α′, αα′, α2α′) is equal to

det



6 2a 2a2 − 4b 2a 2b ab− 3c

2a 2a2 − 4b U 2b ab− 3c V

2a2 − 4b U W ab− 3c V X

2a 2b ab− 3c 2a2 − 4b ab− 3c 2b2 − 4ac

2b ab− 3c V ab− 3c 2b2 − 4ac Y

ab− 3c V X 2b2 − 4ac Y Z


,
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where U = 2a3− 6ab+ 6c, V = a2b− ac− 2b2, W = 2a4− 8a2b+ 8ac+ 4b2,
X = a3b − a2c − 3ab2 + 5bc, Y = −2a2c + ab2 − bc and Z = −2a3c +
a2b2 + 4abc − 2b3 − 3c2, and any mathematical software yields the desired
result.

This lemma raises the following more general question:

Question 1. Let α be an algebraic number of degree n. Let αk, 1 ≤
k ≤ n, be its complex conjugates. Assume that the normal closure N =
Q(α1, . . . , αn) of Q(α) is of degree n!. Is the discriminant dZ[α1,...,αn] of the
order Z[α1, . . . , αn] an explicit perfect power of dα? And can one exhibit a
Z-basis of this order?

8.3. System of fundamental units for some totally imaginary
sextic orders. Let ε > 1 be a real cubic unit of negative discriminant
−dε < 0. Then K = Q(ε) is not normal, the conjugates of ε are ε, η and
η̄ for some non-real algebraic unit η. The normal closure N = Q(ε, η)
of K is a totally imaginary sextic field. The unit rank UM of the sex-
tic order M = Z[ε, η] = Z[ε, η, η̄] is equal to 2, and using |η| = 1/

√
ε we

have

Reg(ε, η) =

∣∣∣∣∣det

(
2 log |ε| 2 log |η|
2 log |η| 2 log |η̄|

)∣∣∣∣∣ = 3 log2 ε 6= 0.

Hence, ε and η are multiplicatively independent, and it is natural to ask:

Question 2. Is {ε, η} a system of fundamental units of this order?

Recall that (3) gives (UM : 〈−1, ε, η〉) = Reg(ε, η)/Reg(M). Since dε ≥
ε2/3 (see [Lou06, Theorem 2] or [Lou10, Theorem 1]), we have

Reg(ε, η) ≤ 3

4
log2(3dε).

On the other hand, dM = dZ[ε,η] = d3ε . Using [CF] and [Sil] we deduce that

Reg(N) � log2 dK . Hence, if we could adapt the proofs of these papers
to the case of arbitrary modules M of N , we could expect a lower bound
Reg(M) � log2 dM = 9 log2 dε and we we would end up with a uniform
bound on (UM : 〈−1, ε, η〉). At least, let us give here a precise general result:

Theorem 8.2. Let ε > 1 be a real cubic unit of negative discriminant
−dε < 0. Let η be any complex conjugate of ε. Let N = Q(ε, η) be the nor-
mal closure of the cubic field K = Q(ε). Let L = Q(

√
−dε) be the imaginary

quadratic subfield of N . Assume that UL = µL = {±1} and ε is the fun-
damental unit of the order Z[ε] (see [Lou06, Theorem 4] and [Nag] for a
characterization). Set M = Z[ε, η]. Then (UM : 〈−1, ε, η〉) divides 9.
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Proof. We adapt the proof of [FT, Theorem 43]. We stick to their nota-
tion: σ is the generator of Gal(N/L) such that σ(ε) = τ̄ and τ is the non-
trivial element of Gal(N/K). Then K2 = Q(η) and K3 = Q(η̄). Since ε is
the fundamental unit of the order Z[ε], it follows that η and η̄ are the funda-
mental units of Z[η] and Z[η̄], respectively. Now, if β ∈ UN , then NN/L(β) ∈
UL = µL = {±1}. Hence, if α ∈ UM , then α3 = ±α1+τα1+στα1+σ2τ .

Now, we claim that α1+τ ∈ Z[ε], α1+στ ∈ Z[η] and α1+σ2τ ∈ Z[η̄], which
will yield α3 ∈ 〈−1, ε, η〉), and will give the desired result (in our sit-
uation we cannot use [FT]’s last argument to prove that this index di-
vides 3, for ε could be a cube in K without being a cube in Z[ε]). So, let
α =

∑
1≤k,l≤m ak,lε

kηl be in Z[ε, η], ak,l ∈ Z. Since τ(ε) = ε and τ(η) = η̄,
we have

α1+τ =
∑

1≤k,l,k′,l′≤m
l<l′

ak,lak′,l′ε
k+k′(ηl

′−l + η̄l
′−l) +

∑
1≤k,l,k′

ak,lak′,lε
k+k′(ηη̄)l.

Since ηη̄ = 1/ε ∈ Z[ε] (for ε is a unit of this order) and ηn + η̄n =
TrK/Q(εn) − εn ∈ Z[ε] it follows that α1+τ ∈ Z[ε]. The proofs of the other

two claims are similar (for example, to prove α1+στ ∈ Z[η], notice that
Z[ε, η] = Z[ε, η, η̄] = Z[η, η̄] for TrK/Q(ε) = ε+η+ η̄ ∈ Z, and that στ(η) = η
and στ(η̄) = ε).

This also leaves open the following question (we know the answer if M
is a totally real cubic order, by [BHMMS], [MS] and [Lou12]):

Question 3. If ε is a given unit of a totally imaginary sextic order M ,
does there always exist a second unit η ∈M such that {ε, η} is a system of
fundamental units of this order?

8.4. The discriminant of the cubic order Z[ε, ε′, ε′′] when Q(ε) is
Galois. Let ε be a cubic algebraic unit. Assume that Q(ε) is Galois. We
know that {1, ε, ε2, ε′, εε′, ε2ε′} is a Z-generating system of the order Z[ε, ε′]
(Lemma 4.4). Lemma 3.1 gives some information on the conductor of this
cubic order.

Question 4. Is it possible to derive (from Lemma 4.3?) an expression
for a Z-basis of this order and/or to compute its discriminant and conductor?
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33–65.

[Sha] D. Shanks, The simplest cubic fields, Math. Comp. 310 (1979), 33–55.

[Sil] J. H. Silverman, An inequality relating the regulator and the discriminant of

a number field, J. Number Theory 19 (1984), 437–442.

[Tha] F. Thaine, On the construction of families of cyclic polynomials whose roots

are units, Experiment. Math. 17 (2008), 315–331.

[Tho] E. Thomas, Fundamental units for orders in certain cubic number fields,

J. Reine Angew. Math. 310 (1979), 33–55.
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