Points on $X_{0}^{+}(N)$ over quadratic fields

by
Keisuke Arai and Fumiyuki Momose (Tokyo)

1. Introduction. In this article, we study points on the modular curve $X_{0}^{+}(N)$ over quadratic fields, and show that such points consist of cusps and CM points under certain conditions.

Let $N \geq 1$ be an integer. Let $X_{0}(N)$ be the modular curve over \mathbb{Q} associated to the subgroup $\left\{\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right)\right\} \subseteq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ (cf. [5]). A non-cuspidal point on $X_{0}(N)$ corresponds to a pair (E, A) where E is an elliptic curve and A is a cyclic subgroup of E of order N. For rational points on $X_{0}(N)$, we know the following.

Theorem 1.1 ([8, p. 129, Theorem 1]). If $N>163$, then $X_{0}(N)(\mathbb{Q})=$ \{cusps $\}$.

The second author studied points on $X_{0}(N)$ over quadratic fields when N is a prime number.

Theorem 1.2 ([12, p. 330, Theorem B]). Let K be a quadratic field which is not an imaginary quadratic field of class number one. Then for every sufficiently large prime number p, we have $X_{0}(p)(K)=\{$ cusps $\}$.

For any number field K, it seems likely that

$$
X_{0}(N)(K)=\{\text { cusps, CM points }\}
$$

for every sufficiently large integer N (cf. [16, p. 187]). But this still remains unsolved. Here a point x on a modular curve (e.g. $X_{0}(N), X_{0}^{+}(N)$ defined below) is called a $C M$ point if x is represented by an elliptic curve with complex multiplication.

Define an involution w_{N} on $X_{0}(N)$ by

$$
(E, A) \mapsto(E / A, E[N] / A)
$$

[^0]where $E[N]$ is the kernel of multiplication by N in E. Put
$$
X_{0}^{+}(N):=X_{0}(N) / w_{N} .
$$

We have the following open question: For a number field K, does

$$
X_{0}^{+}(N)(K)=\{\text { cusps }, \mathrm{CM} \text { points }\}
$$

hold for every sufficiently large integer N ? Notice that there are arbitrarily large N such that $X_{0}^{+}(N)(\mathbb{Q})=\{$ cusps $\}$ does not hold. We know the following partial answers (Theorem 1.3, Theorem 1.5) to the above question.

Theorem 1.3 ([2). For every sufficiently large prime number p, we have $X_{0}^{+}\left(p^{2}\right)(\mathbb{Q})=\{$ cusps, CM points $\}$.

Remark 1.4. We have a natural isomorphism $X_{0}^{+}\left(p^{2}\right) \cong X_{\text {split }}(p)$, where $X_{\text {split }}(p)$ is the modular curve (over $\left.\mathbb{Q}\right)$ associated to the subgroup $\left\{\binom{* 0}{0}\right.$, $\left.\left(\begin{array}{c}0 \\ * \\ *\end{array}\right)\right\} \subseteq \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$.

Let p be a prime number. We have an involution w_{p} on $X_{0}(p)$ as above. By abuse of notation, we also write w_{p} for the induced map $J_{0}(p) \rightarrow J_{0}(p)$. Put

$$
J_{0}^{-}(p):=J_{0}(p) /\left(1+w_{p}\right) J_{0}(p) .
$$

Let

$$
C:=\langle c l((\mathbf{0})-(\boldsymbol{\infty}))\rangle \subseteq J_{0}(p)(\mathbb{Q})
$$

be the subgroup generated by the divisor class $\operatorname{cl}(\mathbf{0})-(\boldsymbol{\infty})$) (for the precise definition of the cusps $\mathbf{0}$ and $\boldsymbol{\infty}$, see the next section). Then $C=$ $J_{0}(p)(\mathbb{Q})_{\text {tor }}$ (the torsion subgroup of $\left.J_{0}(p)(\mathbb{Q})\right)$ and C maps isomorphically to $J_{0}^{-}(p)(\mathbb{Q})_{\text {tor }}$ by the natural map ([6, p. 143, Corollary (1.4)], cf. [14, p. 229]). By abuse of notation we identify $C=J_{0}^{-}(p)(\mathbb{Q})_{\text {tor }}$. The order of C is equal to the numerator of $\frac{p-1}{12}$ ([14, p. 228, Theorem] or [6, p. 98, Proposition (11.1)]).

Theorem 1.5 ([11, p. 269, Theorem (0.1)], cf. 9], [10]). Let N be a composite number. If N has a prime divisor p which satisfies the following conditions (1) and (2), then $X_{0}^{+}(N)(\mathbb{Q})=\{$ cusps, CM points $\}$.
(1) $p \geq 17$ or $p=11$.
(2) $p \neq 37$ and $\sharp J_{0}^{-}(p)(\mathbb{Q})<\infty$.

We generalize Theorem 1.5 to quadratic fields. The following is the main theorem of this article.

Theorem 1.6. Let N be a composite number. Let p be a prime divisor of N such that ($p=11$ or $p \geq 17$) and $p \neq 37$. Suppose $\operatorname{ord}_{p} N=1$ if $p=11$. Let K be a quadratic field where p is unramified. Assume $X_{0}(N)(K)=$ $\{c u s p s\}$ and $J_{0}^{-}(p)(K)=C$. Then $X_{0}^{+}(N)(K)=\{$ cusps, CM points $\}$.

Remark 1.7. Since the modular curve $X_{0}(37)$ is peculiar ([15), we exclude $p=37$ in the above theorems. But we have recently shown that Theorem 1.5 holds even if $p=37$, and have generalized the result to certain imaginary quadratic fields (1).

Remark 1.8. (1) For N as in Theorem 1.5, we have $X_{0}(N)(\mathbb{Q})=$ \{cusps\} ([8, pp. 129-131]).
(2) The assumption $X_{0}(N)(K)=\{$ cusps $\}$ in Theorem 1.6 is usually satisfied by Theorem 1.2.

We have the following examples of the condition $J_{0}^{-}(p)(K)=C$ in Theorem 1.6. For a number field K, let h_{K} be the class number of K.

Proposition 1.9. Let K be an imaginary quadratic field.
(1) Suppose 11 does not split in K and 5 does not divide h_{K}. Then $J_{0}^{-}(11)(K)=C$.
(2) Suppose 17 does not split in K and 2 does not divide h_{K}. Then $J_{0}^{-}(17)(K)=C$.
(3) Suppose 19 does not split in K and 3 does not divide h_{K}. Then $J_{0}^{-}(19)(K)=C$.

In Section 2, we prepare the necessary material on modular curves. In Section 3, we introduce a key proposition (Proposition 3.1) and from it we deduce Theorem 1.6. In Section 4, we prove Proposition 3.1. In Section 5 , we prove Proposition 1.9 .
2. Modular curves. For a prime number p, let $g: X_{0}(p) \rightarrow X_{0}^{+}(p)$ be the quotient map. We know that the Jacobian variety $J_{0}^{+}(p)$ of $X_{0}^{+}(p)$ is isomorphic to $\left(1+w_{p}\right) J_{0}(p)$ and there is an exact sequence of abelian varieties

$$
0 \rightarrow J_{0}^{+}(p) \xrightarrow{g^{*}} J_{0}(p) \xrightarrow{u} J_{0}^{-}(p) \rightarrow 0,
$$

where g^{*} is the pull back and u is the quotient map ([11, p. 278]).
For an integer $N \geq 1$, let $\mathcal{X}_{0}(N)$ be the normalization of the composite

$$
X_{0}(N) \xrightarrow{j} X_{0}(1)=\mathbb{P}_{\mathbb{Q}}^{1} \subseteq \mathbb{P}_{\mathbb{Z}}^{1}
$$

where $j:(E, A) \mapsto E$. If p is a prime divisor of N with $r=\operatorname{ord}_{p} N$, then the special fiber $\mathcal{X}_{0}(N) \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ has $r+1$ irreducible components $E_{0}, E_{1}, \ldots, E_{r}$. They are defined over \mathbb{F}_{p} and intersect at the supersingular points. Let $\zeta=\zeta_{N}$ be a primitive N th root of unity. For each positive divisor d of N and an integer $i, 0 \leq i<d$, prime to d, let $A_{d, i}$ be the subgroup of $\mathbb{G}_{\mathrm{m}} \times \mathbb{Z} /(N / d) \mathbb{Z}$ generated by $\left(\zeta^{i}, 1 \bmod N / d\right)$. Let $\binom{i}{d}$ be the cuspidal section of $\mathcal{X}_{0}(N)$ which is represented by the pair $\left(\mathbb{G}_{\mathrm{m}} \times \mathbb{Z} /(N / d) \mathbb{Z}, A_{d, i}\right)$ for the integers d, i as above. For $d=1, N$, we write $\mathbf{0}=\binom{0}{1}$ and $\boldsymbol{\infty}=\binom{1}{N}$. We choose the irreducible
components E_{t} so that $\binom{i}{d} \otimes \mathbb{F}_{p}$ are sections of E_{t} for a positive divisor d of N with $t=\operatorname{ord}_{p} d$. For $0 \leq t \leq r$, let E_{t}^{h} be the open subscheme of E_{t} obtained by excluding the supersingular points.

The special fiber $\mathcal{X}_{0}(p) \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ has $g_{0}(p)+1$ supersingular points. They can be described as follows. Let $\alpha_{i}, \alpha_{i}^{\prime}:=w_{p}\left(\alpha_{i}\right)$ be the non- \mathbb{F}_{p}-rational supersingular points on $\mathcal{X}_{0}(p) \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ for $1 \leq i \leq g_{0}^{+}(p)$, and let β_{i} be the \mathbb{F}_{p}-rational supersingular points on $\mathcal{X}_{0}(p) \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ for $1 \leq i \leq g_{0}(p)-2 g_{0}^{+}(p)+1$. The involution w_{p} exchanges α_{i} and α_{i}^{\prime} and fixes $\beta_{i}([11, \mathrm{p} .279])$.

For a finite abelian group G and an integer $n \geq 1$, let $G^{(n)}$ be the prime-to- n subgroup of G. For an abelian group (or a commutative group scheme) G and an integer n, let $G[n]$ be the kernel of multiplication by n in G. For a group scheme G, let G^{0} be the connected component of the identity in G. For a morphism of schemes $X \rightarrow S$, let X^{sm} be the smooth locus of X. For a prime number p, let $\mathbb{Q}_{p}^{\text {unr }}$ be the maximal unramified extension of \mathbb{Q}_{p}, and let $\mathbb{Z}_{p}^{\text {unr }}$ be the ring of integers of $\mathbb{Q}_{p}^{\text {unr }}$. For a number field or a discrete valuation field L, let \mathcal{O}_{L} be the ring of integers. For an abelian variety J over a number field or a discrete valuation field L, let $J_{/ \mathcal{O}_{L}}$ be the Néron model of J over \mathcal{O}_{L} (later we take $J_{0}(p)$ or $J_{0}^{-}(p)$ as $\left.J\right)$.

Let p be a prime number and $M \geq 1$ be an integer. Let

$$
\pi: X_{0}(p M) \rightarrow X_{0}(p), \quad(E, A) \mapsto(E, A[p]) .
$$

Define

$$
h: X_{0}(p M) \rightarrow J_{0}(p), \quad h(x):=c l\left(\left(w_{p} \pi(x)\right)-\left(\pi w_{p M}(x)\right)\right) .
$$

Put

$$
\widetilde{h}^{-}: X_{0}(p M) \xrightarrow{h} J_{0}(p) \rightarrow J_{0}^{-}(p),
$$

where $J_{0}(p) \rightarrow J_{0}^{-}(p)$ is the quotient map. The map \widetilde{h}^{-}factors as $X_{0}(p M) \rightarrow$ $X_{0}^{+}(p M) \rightarrow J_{0}^{-}(p)$, where $X_{0}(p M) \rightarrow X_{0}^{+}(p M)$ is the quotient map. We call the induced map $h^{-}: X_{0}^{+}(p M) \rightarrow J_{0}^{-}(p)$. Thus we have the following commutative diagram:

See [1, p. 2276].

3. Key proposition

Proposition 3.1. Let K be a quadratic field. Let p be a prime number such that $p=11$ or $p \geq 17$. Let $M \geq 2$ be an integer and suppose $X_{0}(p M)(K)=\{c u s p s\}$. Let $y \in X_{0}^{+}(p M)(K)$ be a non-cuspidal point, and x,
$w_{p M}(x)$ be sections of the fiber $X_{0}(p M)_{y}$. Let L be the quadratic extension of K over which x and $w_{p M}(x)$ are defined. Take a prime \mathfrak{p} of L above p, and let $\kappa(\mathfrak{p})$ be the residue field of \mathfrak{p}. Assume $p \nmid M$ if $p=11$.
(1) If $p \mid M$ or $x \otimes \kappa(\mathfrak{p})$ is not a supersingular point, then $h(x) \otimes \kappa(\mathfrak{p})$ is a section of the connected component $\left(J_{0}(p) / \mathcal{O}_{L} \otimes \kappa(\mathfrak{p})\right)^{0}$ of the identity.
(2) Suppose otherwise (i.e. $p \nmid M$ and $x \otimes \kappa(\mathfrak{p})$ is a supersingular point). (2-a) If one of the following three conditions is satisfied, then $h(x) \otimes$ $\kappa(\mathfrak{p})$ is a section of $\left(J_{0}(p)_{\mathcal{O}_{L}} \otimes \kappa(\mathfrak{p})\right)^{0}$.

- \mathfrak{p} is unramified in L / \mathbb{Q}.
- \mathfrak{p} is ramified in L / K and p is split in K.
- \mathfrak{p} is inert in L / K and p is ramified in K.
- \mathfrak{p} is ramified in L / K and p is ramified in K.
(2-b) If \mathfrak{p} is ramified in L / K and p is inert in K, then $h^{-}(y) \otimes \kappa(\mathfrak{p})$ is a section of $\left(J_{0}^{-}(p) / \mathcal{O}_{L} \otimes \kappa(\mathfrak{p})\right)^{0}$.
REmark 3.2. (1) In Proposition 3.1. $h^{-}(y) \otimes \kappa(\mathfrak{p})$ is a section of $\left(J_{0}^{-}(p) / \mathcal{O}_{L}\right.$ $\otimes \kappa(\mathfrak{p}))^{0}$ in any case.
(2) We do not treat the case where \mathfrak{p} is split in L / K and p is ramified in K in Proposition 3.1. In that case the proof does not work.
(3) We do not use the last two cases of (2-a) in Proposition 3.1 for proving Theorem 1.6 .

Lemma 3.3 ([11, p. 278 Proposition (2.8)]). Let L^{\prime} be an extension of $\mathbb{Q}_{p}^{\text {unr }}$ of degree ≤ 2. Let $\mathcal{C} \subseteq J_{0}^{-}(p)_{/ \mathcal{O}_{L^{\prime}}}$ be the finite flat subgroup scheme generated by C. Then $\left(\mathcal{C} \otimes \overline{\mathbb{F}}_{p}\right) \cap\left(J_{0}^{-}(p)_{/ \mathcal{O}_{L^{\prime}}} \otimes \overline{\mathbb{F}}_{p}\right)^{0}=\{0\}$.

Proposition 3.4. Under the hypothesis in Proposition 3.1, further assume that p is unramified in K and $J_{0}^{-}(p)(K)=C$. Then $h^{-}(y)=0$.

Proof. By assumption we have $h^{-}(y) \in J_{0}^{-}(p)(K)=C$. Let L^{\prime} be the maximal unramified extension of the completion $L_{\mathfrak{p}}$. Then $\left[L^{\prime}: \mathbb{Q}_{p}^{\text {unr }}\right] \leq 2$ because p is unramified in K. Since $h^{-}(y) \in C \subseteq J_{0}^{-}(p)\left(L^{\prime}\right)$, we have $h^{-}(y) \in$ $\mathcal{C}\left(\mathcal{O}_{L^{\prime}}\right) \subseteq J_{0}^{-}(p)_{/ \mathcal{O}_{L^{\prime}}}\left(\mathcal{O}_{L^{\prime}}\right)$. Hence $h^{-}(y) \otimes \overline{\mathbb{F}}_{p} \in \mathcal{C}\left(\overline{\mathbb{F}}_{p}\right) \subseteq J_{0}^{-}(p)_{/ \mathcal{O}_{L^{\prime}}}\left(\overline{\mathbb{F}}_{p}\right)$. On the other hand $h^{-}(y) \otimes \overline{\mathbb{F}}_{p} \in\left(J_{0}^{-}(p) / \mathcal{O}_{L} \otimes \kappa(\mathfrak{p})\right)^{0}\left(\overline{\mathbb{F}}_{p}\right)=\left(J_{0}^{-}(p)_{/ \mathcal{O}_{L^{\prime}}} \otimes \overline{\mathbb{F}}_{p}\right)^{0}\left(\overline{\mathbb{F}}_{p}\right)$ by Proposition 3.1. Notice that taking the connected component is compatible with base change since $J_{0}^{-}(p)$ is semi-stable (4, p. 183, Corollary 4]). Then $h^{-}(y) \otimes \overline{\mathbb{F}}_{p}=0$ by Lemma 3.3. Since the order of C is prime to p, the group scheme \mathcal{C} over $\mathcal{O}_{L^{\prime}}$ is étale. Therefore $h^{-}(y)=0$.

The condition $h^{-}(y)=0$ implies that y is a CM point since $p \neq 37$ (11), p. 274, Proposition (2.2)]). Thus Theorem 1.6 follows from Proposition 3.1.
4. Calculation of connected components. Now we prove Proposition 3.1 .

For simplicity write $N=p M$. Let $\widetilde{\mathcal{Y}}_{0}(p) \rightarrow \operatorname{Spec} \mathcal{O}_{L}$ be the minimal proper regular model of $X_{0}(p) \otimes_{\mathbb{Q}} L$. We may canonically identify $\mathcal{X}_{0}(N)\left(\mathcal{O}_{L}\right)=X_{0}(N)(L)$ and $\mathcal{X}_{0}(p)\left(\mathcal{O}_{L}\right)=X_{0}(p)(L)=\widetilde{\mathcal{Y}}_{0}(p)\left(\mathcal{O}_{L}\right)$. If $w_{p} \pi(x)$ and $\pi w_{N}(x)$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes$ $\kappa(\mathfrak{p})$, then $h(x) \otimes \kappa(\mathfrak{p})$ is a section of $\left(J_{0}(p) \mathcal{O}_{L} \otimes \kappa(\mathfrak{p})\right)^{0}([6$, p. 179, Proposition (1.4)]). Put $r=\operatorname{ord}_{p} N$. If $x \otimes \kappa(\mathfrak{p})$ is a section of $E_{0}^{h} \cup E_{r}^{h}$, then $w_{p} \pi(x)$ and $\pi w_{N}(x)$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$. To see this, we use the following: π maps E_{0} to E_{0} and E_{r} to $E_{1} ; w_{N}$ exchanges E_{0} and $E_{r} ; w_{p}$ exchanges E_{0} and E_{1} ([10, p. 446]). Notice that here we use the symbol E_{i} in two ways.

If $p \mid M$, then $x \otimes \kappa(\mathfrak{p})$ is a section of $E_{0}^{h} \cup E_{r}^{h}$ since $e_{L / \mathbb{Q}}(\mathfrak{p}) \leq 4$ and $3 e_{L / \mathbb{Q}}(\mathfrak{p})<p-1$ ([10, p. 452, Corollary (2.3)], cf. [13, p. 159, Main Theorem]). Here we used $p \geq 17$. If $p \nmid M$ and $x \otimes \kappa(\mathfrak{p})$ is not a supersingular point, then $x \otimes \kappa(\mathfrak{p})$ is a section of $E_{0}^{h} \cup E_{r}^{h}$ for $r=1$.

From now on we consider the case when $p \nmid M$ and $x \otimes \kappa(\mathfrak{p})$ is a supersingular point.

CASE (i): \mathfrak{p} is unramified in L / \mathbb{Q}. In this case $j(x \otimes \kappa(\mathfrak{p}))=0$ or 1728 , and

$$
\hat{\mathcal{O}}_{\mathcal{X}_{0}(N) \otimes \mathbb{Z}_{p}^{\mathrm{unr}}, x} \cong \mathbb{Z}_{p}^{\mathrm{unr}}[[u, v]] /\left(u v-p^{i}\right)
$$

where $i=3$ (resp. 2) if $j(x \otimes \kappa(\mathfrak{p}))=0$ (resp. 1728) ([6, p. 63]). Here $\hat{\mathcal{O}}_{\mathcal{X}_{0}(N) \otimes \mathbb{Z}_{p}^{\mathrm{unr}}, x \text { is }}$ is completion of the local ring $\mathcal{O}_{\mathcal{X}_{0}(N) \otimes \mathbb{Z}_{p}^{\text {unr }, x}}$ at the maximal ideal. Since w_{N} is an automorphism, we have

$$
\hat{\mathcal{O}}_{\mathcal{X}_{0}(N) \otimes \mathbb{Z}_{p}^{\mathrm{unr}}, w_{N}(x)} \cong \mathbb{Z}_{p}^{\mathrm{unr}}[[u, v]] /\left(u v-p^{i}\right)
$$

Then $j\left(w_{N}(x) \otimes \kappa(\mathfrak{p})\right)=j(x \otimes \kappa(\mathfrak{p}))=0$ (resp. 1728). Hence $j\left(\pi w_{N}(x) \otimes\right.$ $\kappa(\mathfrak{p}))=j(\pi(x) \otimes \kappa(\mathfrak{p}))$. Since w_{p} fixes all the \mathbb{F}_{p}-rational supersingular points on $\mathcal{X}_{0}(p) \otimes \mathbb{F}_{p}$, we have $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})=\pi(x) \otimes \kappa(\mathfrak{p})=w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$.

If $j(x \otimes \kappa(\mathfrak{p}))=1728$, then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of the unique exceptional irreducible component B of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}}$ $\kappa(\mathfrak{p})$. Therefore $h(x) \otimes \kappa(\mathfrak{p})$ is a section of $\left(J_{0}(p)_{/ \mathcal{O}_{L}} \otimes \kappa(\mathfrak{p})\right)^{0}$.

Assume $j(x \otimes \kappa(\mathfrak{p}))=0$. Then $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}} \kappa(\mathfrak{p})$ has two exceptional irreducible components, say B_{1}, B_{2}. Also $\widetilde{\mathcal{Y}}_{0}(N)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}} \kappa(\mathfrak{p})$ has two exceptional irreducible components over $x \otimes \kappa(\mathfrak{p})\left(\right.$ resp. $\left.w_{N}(x) \otimes \kappa(\mathfrak{p})\right)$, say A_{1}, A_{2} (resp. A_{3}, A_{4}). See the figure below. We may assume $x \otimes \kappa(\mathfrak{p})$ is a section of A_{1}^{sm}. Then $w_{N}(x) \otimes \kappa(\mathfrak{p})$ is a section of A_{4}^{sm}. Hence $\pi(x) \otimes \kappa(\mathfrak{p})$ (resp. $\left.\pi w_{N}(x) \otimes \kappa(\mathfrak{p})\right)$ is a section of $B_{1}^{\mathrm{sm}}\left(\right.$ resp. $\left.B_{2}^{\text {sm }}\right)$. Therefore $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ are sections of the same irreducible component B_{2}^{sm}, and so $h(x) \otimes \kappa(\mathfrak{p})$ is a section of $\left(J_{0}(p) / \mathcal{O}_{L} \otimes \kappa(\mathfrak{p})\right)^{0}$. Note that $x \otimes \kappa(\mathfrak{p})$ and $w_{N}(x) \otimes \kappa(\mathfrak{p})$ may be equal in $\mathcal{X}_{0}(N) \otimes_{\mathbb{Z}} \kappa(\mathfrak{p})$. Then $A_{1}=A_{3}, A_{2}=A_{4}$.

CASE (ii): \mathfrak{p} is ramified in L / K and p is split in K. Let $\sigma \in \operatorname{Gal}(L / K)$ be the non-trivial element. Since \mathfrak{p} is ramified in L / K, we have $x^{\sigma} \otimes \kappa(\mathfrak{p})=$ $x \otimes \kappa(\mathfrak{p})$. Since $\kappa(\mathfrak{p})=\mathbb{F}_{p}$, the sections $x \otimes \kappa(\mathfrak{p})$ and $w_{N}(x) \otimes \kappa(\mathfrak{p})=x^{\sigma} \otimes \kappa(\mathfrak{p})$ are \mathbb{F}_{p}-rational. Thus $\pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ are also \mathbb{F}_{p}-rational. Since w_{p} fixes all the \mathbb{F}_{p}-rational supersingular points on $\mathcal{X}_{0}(p) \otimes \mathbb{F}_{p}$, we have $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})=\pi(x) \otimes \kappa(\mathfrak{p})=w_{p} \pi(x) \otimes \kappa(\mathfrak{p}) \in \mathcal{X}_{0}(p)(\kappa(\mathfrak{p}))$. If $j(x \otimes \kappa(\mathfrak{p})) \neq$ 0,1728 , then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ correspond to sections in the unique exceptional irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}} \kappa(\mathfrak{p})$.

Suppose $j(x \otimes \kappa(\mathfrak{p}))=0,1728$. Let $\widetilde{\mathcal{X}}_{0}(N)$ (resp. $\left.\widetilde{\mathcal{X}}_{0}(p)\right)$ be the minimal regular model of $X_{0}(N)$ (resp. $\left.X_{0}(p)\right)$ over \mathbb{Z}_{p}. Then $\widetilde{\mathcal{Y}}_{0}(p) \otimes \mathcal{O}_{L_{\mathfrak{p}}}$ is obtained from $\widetilde{\mathcal{X}}_{0}(p) \otimes \mathcal{O}_{L_{\mathrm{p}}}$ by blowing-up at the singular points of the special fiber. Assume $j(x \otimes \kappa(\mathfrak{p}))=1728$. If $x \otimes \kappa(\mathfrak{p})$ define a section of $\widetilde{\mathcal{X}}_{0}(N)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$, then $\pi(x) \otimes \kappa(\mathfrak{p}), \pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ and $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ define sections of the unique exceptional irreducible component of $\widetilde{\mathcal{X}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$. Hence $\pi(x) \otimes$ $\kappa(\mathfrak{p}), \pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ and $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$.

If $x \otimes \kappa(\mathfrak{p})$ corresponds to a singular point of $\widetilde{\mathcal{X}}_{0}(N) \otimes \kappa(\mathfrak{p})$, then by an easy calculation, $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$ (see the figure below).

Assume $j(x \otimes \kappa(\mathfrak{p}))=0$. Looking at a similar figure, we can show $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$.

CASE (iii): \mathfrak{p} is inert in L / K and p is ramified in K. We have $\kappa(\mathfrak{p})=$ $\mathbb{F}_{p^{2}}$. The sections x and $w_{N}(x)=x^{\sigma}$ correspond to $\operatorname{Gal}(L / K)$-conjugate L-rational points. Hence $\pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ correspond to $\operatorname{Gal}\left(\mathbb{F}_{p^{2}} / \mathbb{F}_{p}\right)$-conjugate $\mathbb{F}_{p^{2}}$-rational supersingular points. If one of them is \mathbb{F}_{p}-rational, they coincide. Then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})=\pi(x) \otimes \kappa(\mathfrak{p})=\pi w_{N}(x) \otimes$ $\kappa(\mathfrak{p}) \in \mathcal{X}_{0}(p)\left(\mathbb{F}_{p}\right)$. (When $j(x \otimes \kappa(\mathfrak{p}))=0,1728$, look at some figures.) Otherwise they correspond to distinct but $\operatorname{Gal}\left(\mathbb{F}_{p^{2}} / \mathbb{F}_{p}\right)$-conjugate $\mathbb{F}_{p^{2}}$-rational supersingular points. Then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})=\pi w_{N}(x) \otimes \kappa(\mathfrak{p}) \in \mathcal{X}_{0}(p)(\kappa(\mathfrak{p}))$. In any case $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes \kappa(\mathfrak{p})$.

CASE (iv): \mathfrak{p} is ramified in L / K and p is ramified in K. We have $\kappa(\mathfrak{p})=$ \mathbb{F}_{p} and $x \otimes \kappa(\mathfrak{p})=x^{\sigma} \otimes \kappa(\mathfrak{p})=w_{N}(x) \otimes \kappa(\mathfrak{p}) \in \mathcal{X}_{0}(N)\left(\mathbb{F}_{p}\right)$. Then $\pi(x) \otimes \kappa(\mathfrak{p})=$ $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$, which is \mathbb{F}_{p}-rational. Hence $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})=\pi(x) \otimes \kappa(\mathfrak{p})=$ $\pi w_{N}(x) \otimes \kappa(\mathfrak{p}) \in \mathcal{X}_{0}(p)\left(\mathbb{F}_{p}\right)$. For $j(x \otimes \kappa(\mathfrak{p})) \neq 0,1728$, see the figures below (there are two cases).

For $j(x \otimes \kappa(\mathfrak{p}))=0,1728$ we need more complicated figures, but we omit them.

CASE (v): \mathfrak{p} is ramified in L / K and p is inert in K. We have $\kappa(\mathfrak{p})=\mathbb{F}_{p^{2}}$. Since L / K is ramified at \mathfrak{p}, we have $x \otimes \kappa(\mathfrak{p})=x^{\sigma} \otimes \kappa(\mathfrak{p})=w_{N}(x) \otimes \kappa(\mathfrak{p})$. Hence $\pi(x) \otimes \kappa(\mathfrak{p})=\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$.

If $\pi(x) \otimes \kappa(\mathfrak{p})$ is \mathbb{F}_{p}-rational, we have $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})=\pi(x) \otimes \kappa(\mathfrak{p})=$ $\pi w_{N}(x) \otimes \kappa(\mathfrak{p}) \in \mathcal{X}_{0}(p)\left(\mathbb{F}_{p}\right)$. (When $j(x \otimes \kappa(\mathfrak{p}))=0,1728$, look at some figures.) Then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of the same irreducible component of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}} \kappa(\mathfrak{p})$.

Suppose $\pi(x) \otimes \kappa(\mathfrak{p})$ is not \mathbb{F}_{p}-rational. Note that $j(\pi(x) \otimes \kappa(\mathfrak{p})) \neq 0,1728$ in this case. Then $w_{p} \pi(x) \otimes \kappa(\mathfrak{p})$ and $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})(=\pi(x) \otimes \kappa(\mathfrak{p}))$ corre-
 $\pi w_{N}(x) \otimes \kappa(\mathfrak{p})$ define sections of two distinct exceptional irreducible components of $\widetilde{\mathcal{Y}}_{0}(p)^{\mathrm{sm}} \otimes_{\mathcal{O}_{L}} \kappa(\mathfrak{p})$. Let \mathcal{J} (resp. $\left.\mathcal{J}^{+}, \mathcal{J}^{-}\right)$be the Néron model of $J_{0}(p) \otimes L_{\mathfrak{p}}\left(\right.$ resp. $\left.J_{0}^{+}(p) \otimes L_{\mathfrak{p}}, J_{0}^{-}(p) \otimes L_{\mathfrak{p}}\right)$ over $\mathcal{O}_{L_{\mathfrak{p}}}$. Considering the ramification index $e\left(L_{\mathfrak{p}} / \mathbb{Q}_{p}\right)=2<p-1$, we have an induced exact sequence

$$
0 \rightarrow \mathcal{J}^{+} \rightarrow \mathcal{J} \rightarrow \mathcal{J}^{-}
$$

([4, p. 187, Theorem 4]). To simplify the notation let \mathcal{J}_{s} (resp. $\mathcal{J}_{s}^{+}, \mathcal{J}_{s}^{-}$) be the geometric special fiber $\mathcal{J} \otimes_{\mathcal{O}_{L_{\mathfrak{p}}}} \overline{\mathbb{F}}_{p}$ (resp. $\mathcal{J}^{+} \otimes_{\mathcal{O}_{L_{\mathfrak{p}}}} \overline{\mathbb{F}}_{p}, \mathcal{J}^{-} \otimes_{\mathcal{O}_{L_{\mathfrak{p}}}} \overline{\mathbb{F}}_{p}$). Then the natural composite map

$$
\mathcal{J}_{s}^{+} /\left(\mathcal{J}_{s}^{+}\right)^{0} \rightarrow \mathcal{J}_{s} /\left(\mathcal{J}_{s}\right)^{0} \rightarrow \mathcal{J}_{s}^{-} /\left(\mathcal{J}_{s}^{-}\right)^{0}
$$

is the zero map. Let $\widetilde{\mathcal{Y}}^{+} \rightarrow \operatorname{Spec} \mathcal{O}_{L_{\mathfrak{p}}}$ be the minimal proper regular model of $X_{0}^{+}(p) \otimes_{\mathbb{Q}} L_{\mathfrak{p}}$. Let $\left\{C_{i}\right\}$ (resp. $\left\{C_{j}^{\prime}\right\}$) be the set of irreducible components of $\widetilde{\mathcal{Y}}_{0}(p) \otimes \overline{\mathbb{F}}_{p}\left(\right.$ resp. $\left.\widetilde{\mathcal{Y}}^{+} \otimes \overline{\mathbb{F}}_{p}\right)$. Let \mathcal{D} (resp. $\left.\mathcal{D}_{+}\right)$be the free abelian group generated by the divisors C_{i} (resp. C_{j}^{\prime}). Let $\mathcal{D}^{0} \subseteq \mathcal{D}$ (resp. $\mathcal{D}_{+}^{0} \subseteq \mathcal{D}_{+}$) be the subgroup of divisors of degree 0 . Let $\alpha: \mathcal{D} \rightarrow \mathcal{D}$ (resp. $\left.\alpha_{+}: \mathcal{D}_{+} \rightarrow \mathcal{D}_{+}\right)$ be the \mathbb{Z}-linear map defined by

$$
\alpha(B)=\sum_{i}\left(B, C_{i}\right) C_{i} \quad\left(\text { resp. } \alpha_{+}\left(B^{\prime}\right)=\sum_{j}\left(B^{\prime}, C_{j}^{\prime}\right) C_{j}^{\prime}\right)
$$

where $\left(B, C_{i}\right)$ (resp. $\left.\left(B^{\prime}, C_{j}^{\prime}\right)\right)$ is the intersection number. Then we have the following commutative diagram:

$$
\begin{array}{cc}
\mathcal{J}_{s}^{+} /\left(\mathcal{J}_{s}^{+}\right)^{0} & \longrightarrow \mathcal{J}_{s} /\left(\mathcal{J}_{s}\right)^{0} \longrightarrow \mathcal{J}_{s}^{-} /\left(\mathcal{J}_{s}^{-}\right)^{0} \\
\cong & \cong \downarrow \\
& \cong \\
\mathcal{D}_{+}^{0} / \alpha_{+}\left(\mathcal{D}_{+}\right) \xrightarrow{g^{*}} & \mathcal{D}^{0} / \alpha(\mathcal{D})
\end{array}
$$

where g^{*} is the natural map induced by the quotient map $g: X_{0}(p) \rightarrow X_{0}^{+}(p)$ and the vertical maps are the natural isomorphisms (6, p. 179, Proposition $(1.4)])$. Let $Z\left(\right.$ resp. $\left.Z^{\prime}\right)$ be the irreducible component of $\widetilde{\mathcal{Y}}_{0}(p) \otimes \overline{\mathbb{F}}_{p}$ over E_{0}
(resp. E_{1}), and let $F_{2 i-1}$ (resp. $F_{2 i}$) be the exceptional divisor of $\widetilde{\mathcal{Y}}_{0}(p) \otimes \overline{\mathbb{F}}_{p}$ over α_{i} (resp. α_{i}^{\prime}) for $1 \leq i \leq g_{0}^{+}(p)$. Let $\bar{F}_{i}:=F_{i}-Z^{\prime}$ and $\bar{Z}:=Z-Z^{\prime}$ be the elements of \mathcal{D}^{0} (cf. [11, p. 281]).

We may assume $w_{p} \pi(x) \otimes \overline{\mathbb{F}}_{p}=\alpha_{1}, \pi w_{N}(x) \otimes \overline{\mathbb{F}}_{p}=\alpha_{1}^{\prime}$ in $\mathcal{X}_{0}(p) \otimes \overline{\mathbb{F}}_{p}$. Then $w_{p} \pi(x) \otimes \overline{\mathbb{F}}_{p}$ (resp. $\pi w_{N}(x) \otimes \overline{\mathbb{F}}_{p}$) defines a section of F_{1}^{sm} (resp. $\left.F_{2}^{\mathrm{sm}}\right)$ in $\widetilde{\mathcal{Y}}_{0}(p) \otimes \overline{\mathbb{F}}_{p}$. In the isomorphism $\mathcal{J}_{s} /\left(\mathcal{J}_{s}\right)^{0} \cong \mathcal{D}^{0} / \alpha(\mathcal{D})$, the section $h(x) \otimes \overline{\mathbb{F}}_{p}$ corresponds to $F_{1}-F_{2}$. We have $F_{1}-F_{2}=\bar{F}_{1}-\bar{F}_{2} \in$ $g^{*}\left(\mathcal{D}_{+}^{0} / \alpha_{+}\left(\mathcal{D}_{+}\right)\right) \subseteq \mathcal{D}^{0} / \alpha(\mathcal{D})$ by the discussion in [11, pp. 279-281] (especially by the line " $g^{*}\left(\bar{K}_{i}\right) \equiv \bar{F}_{2 i-1}+\bar{F}_{2 i}-\bar{Z} \equiv \bar{F}_{2 i-1}-\bar{F}_{2 i} \bmod \alpha(\mathcal{D})$ " on p. 281). Therefore we get $h^{-}(y) \otimes \overline{\mathbb{F}}_{p}=0$ in $\mathcal{J}_{s}^{-} /\left(\mathcal{J}_{s}^{-}\right)^{0}$.

Now we have completed the proof of Proposition 3.1 and hence that of Theorem 1.6 .
5. Mordell-Weil groups over quadratic fields. In this section we prove Proposition 1.9 . Notice that $g_{0}(p)=1$ if and only if $p \in\{11,17,19\}$. In this case we have $J_{0}^{-}(p)=J_{0}(p) \cong X_{0}(p)$ and $J_{0}(p)(\mathbb{Q})=C(\underline{6}$, p. 151, Theorem (4.1)]). Let F (resp. G, H) be the Néron models of $J_{0}(11)$ (resp. $\left.J_{0}(17), J_{0}(19)\right)$ over \mathbb{Z}.

Proposition 5.1.
(1) We have $F\left(\mathbb{F}_{2}\right)=F\left(\mathbb{F}_{4}\right) \cong \mathbb{Z} / 5 \mathbb{Z}$. For any quadratic field K, we have $F(K)_{\text {tor }}=C$.
(2) We have $G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }} \cong G\left(\mathbb{F}_{5}\right) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. For any quadratic field K other than $\mathbb{Q}(\sqrt{-1})$, we have $G(K)_{\text {tor }}=C$.
(3) We have $H\left(\mathbb{F}_{2}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$ and $H(\mathbb{Q}(\sqrt{-3}))_{\text {tor }} \cong H\left(\mathbb{F}_{4}\right) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}$. For any quadratic field K other than $\mathbb{Q}(\sqrt{-3})$, we have $H(K)_{\mathrm{tor}}=C$.

Proof. (1) Let f_{11} be the cusp form of weight 2 and level 11 corresponding to $J_{0}(11)$. Then $a_{2}\left(f_{11}\right)=-2$ and $a_{3}\left(f_{11}\right)=-1$, where $a_{i}\left(f_{11}\right)$ is the i th Fourier coefficient of f_{11} for $i=2,3$ ([3, p. 117]). We then have $\sharp F\left(\mathbb{F}_{2}\right)=$ $\sharp F\left(\mathbb{F}_{3}\right)=\sharp F\left(\mathbb{F}_{4}\right)=5, \sharp F\left(\mathbb{F}_{9}\right)=15$. Now $F\left(\mathbb{F}_{2}\right)=F\left(\mathbb{F}_{4}\right) \cong \mathbb{Z} / 5 \mathbb{Z}$ has been shown.

For any quadratic field K, we have inclusions $C=F(\mathbb{Q})[5] \subseteq F(K)[5] \subseteq$ $F(K)_{\text {tor }}^{(2)} \hookrightarrow F\left(\mathbb{F}_{4}\right) \cong \mathbb{Z} / 5 \mathbb{Z}$, where $F(K)_{\text {tor }}^{(2)}$ is the prime-to-2 subgroup of
$F(K)_{\text {tor }}$ (the notation introduced in Section 2). Since $\sharp C=5$, the above inclusions are all isomorphisms. Finally we show $F(K)_{\text {tor }}^{(2)}=F(K)_{\text {tor }}$. Since $F(K)[2] \hookrightarrow F\left(\mathbb{F}_{9}\right)$ and $\sharp F\left(\mathbb{F}_{9}\right)=15$, we have $F(K)[2]=\{0\}$. Thus indeed $F(K)_{\text {tor }}^{(2)}=F(K)_{\text {tor }}$.
(2) Let f_{17} be the cusp form of weight 2 and level 17 corresponding to $J_{0}(17)$. Then we know the Fourier coefficients $a_{2}\left(f_{17}\right)=-1, a_{3}\left(f_{17}\right)=0$ and $a_{5}\left(f_{17}\right)=-2$ (loc. cit.). We then have $\sharp G\left(\mathbb{F}_{4}\right)=8, \sharp G\left(\mathbb{F}_{3}\right)=4, \sharp G\left(\mathbb{F}_{9}\right)=16$, $\sharp G\left(\mathbb{F}_{5}\right)=8$.

For any quadratic field K, we have an inclusion $\mathbb{Z} / 4 \mathbb{Z} \cong C=G(\mathbb{Q}) \subseteq$ $G(K)_{\text {tor }}$. Since $G(K)_{\text {tor }}^{(2)} \hookrightarrow G\left(\mathbb{F}_{4}\right)$ and $\sharp G\left(\mathbb{F}_{4}\right)=8$, we have $G(K)_{\text {tor }}^{(2)}=\{0\}$.

We know that $G(\mathbb{Q}(\sqrt{-1}))$ has a subgroup which is isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times$ $\mathbb{Z} / 2 \mathbb{Z}\left([6\right.$, p. 103] $)$. Since $G(\mathbb{Q}(\sqrt{-1}))[5]=\{0\}$, we have $G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }}=$ $G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }}^{(5)} \hookrightarrow G\left(\mathbb{F}_{5}\right)$. By using $\sharp G\left(\mathbb{F}_{5}\right)=8$, we conclude $G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }}$ $\cong G\left(\mathbb{F}_{5}\right) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Let $\mathrm{G}_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ be the absolute Galois group of \mathbb{Q}. Let $r: \mathrm{G}_{\mathbb{Q}} \rightarrow$ $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ be the Galois representation determined by the $G_{\mathbb{Q}}$-action on $G(\overline{\mathbb{Q}})[2]$. Since $G(\mathbb{Q})=C \cong \mathbb{Z} / 4 \mathbb{Z}$, we have $G(\mathbb{Q})[2] \cong \mathbb{Z} / 2 \mathbb{Z}$. Then the image $r\left(\mathrm{G}_{\mathbb{Q}}\right)$ is conjugate to the subgroup $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$. Since $G(\mathbb{Q}(\sqrt{-1}))[2] \cong$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, the restriction $\left.r\right|_{G_{\mathbb{Q}(\sqrt{-1})}}$ is trivial, where $G_{\mathbb{Q}(\sqrt{-1})}=$ $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(\sqrt{-1}))$ is the absolute Galois group of $\mathbb{Q}(\sqrt{-1})$ considered as a subgroup of $\mathrm{G}_{\mathbb{Q}}$. Then Ker r corresponds to the quadratic field $\mathbb{Q}(\sqrt{-1})$. So, for any quadratic field K other than $\mathbb{Q}(\sqrt{-1})$, the restriction $\left.r\right|_{G_{K}}$ is not trivial. Then $G(K)[2] \cong \mathbb{Z} / 2 \mathbb{Z}$. Since $G(K)_{\text {tor }}^{(2)}=\{0\}$ and $G(\mathbb{Q})=C \cong \mathbb{Z} / 4 \mathbb{Z}$, we have $G(K)_{\text {tor }} \cong \mathbb{Z} / 2^{n} \mathbb{Z}$ for $n \geq 2$.

Since $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \cong G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }}=G(\mathbb{Q}(\sqrt{-1}))_{\text {tor }}^{(3)} \hookrightarrow G\left(\mathbb{F}_{9}\right)$ and $\sharp G\left(\mathbb{F}_{9}\right)=16$, we have $G\left(\mathbb{F}_{9}\right) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Let $\mathrm{G}_{\mathbb{F}_{3}}=\operatorname{Gal}\left(\overline{\mathbb{F}}_{3} / \mathbb{F}_{3}\right)$ be the absolute Galois group of \mathbb{F}_{3}. Let $\rho: \mathrm{G}_{\mathbb{F}_{3}} \rightarrow$ $\mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})$ be the Galois representation determined by the $G_{\mathbb{F}_{3}}$-action on $G\left(\overline{\mathbb{F}}_{3}\right)[4]$. Since $\mathbb{Z} / 4 \mathbb{Z} \cong C=G(\mathbb{Q})=G(\mathbb{Q})_{\text {tor }}^{(3)} \hookrightarrow G\left(\mathbb{F}_{3}\right)$ and $\sharp G\left(\mathbb{F}_{3}\right)=4$, we have $G\left(\mathbb{F}_{3}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$. Then $G\left(\mathbb{F}_{3}\right)[4] \cong \mathbb{Z} / 4 \mathbb{Z}$, and so we may assume that ρ is of the form $\left(\right.$| 1 | |
| :--- | :--- |
| 0 | |$)$, where χ is the $\bmod 4$ cyclotomic character. Let $\bar{\rho}: \mathrm{G}_{\mathbb{F}_{3}} \rightarrow$ $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ be the reduction of ρ modulo 2 . Since $G\left(\mathbb{F}_{3}\right)[2] \cong \mathbb{Z} / 2 \mathbb{Z}$, we have $\bar{\rho}\left(\mathrm{G}_{\mathbb{F}_{3}}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$. Since $\chi\left(\mathrm{G}_{\mathbb{F}_{3}}\right)=\{1,-1\}$ and the Galois group $\mathrm{G}_{\mathbb{F}_{3}}$ is topologically generated by one element, we have $\rho\left(\mathrm{G}_{\mathbb{F}_{3}}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)\right\}$ or $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right)\right\}$.

Let $\mathrm{G}_{\mathbb{F}_{9}}=\operatorname{Gal}\left(\overline{\mathbb{F}}_{3} / \mathbb{F}_{9}\right)$ be the absolute Galois group of \mathbb{F}_{9} considered as a subgroup of $\mathrm{G}_{\mathbb{F}_{3}}$. Since $G\left(\mathbb{F}_{9}\right)[2] \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, the restriction $\left.\bar{\rho}\right|_{\mathrm{G}_{\mathbb{F}_{9}}}$ is trivial. Then $\rho\left(\mathrm{G}_{\mathbb{F}_{9}}\right) \subseteq\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\right\}$, because $\left.\chi\right|_{\mathrm{G}_{\mathbb{F}_{9}}}$ is trivial. This combined with the above consideration of $\rho\left(\mathrm{G}_{\mathbb{F}_{3}}\right)$ implies that the restriction $\left.\rho\right|_{\mathrm{G}_{\mathbb{F}_{9}}}$ is trivial. Therefore $G\left(\mathbb{F}_{9}\right) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.

Hence, for any quadratic field K other than $\mathbb{Q}(\sqrt{-1})$, we have $\mathbb{Z} / 2^{n} \mathbb{Z} \cong$ $G(K)_{\text {tor }}=G(K)_{\text {tor }}^{(3)} \hookrightarrow G\left(\mathbb{F}_{9}\right) \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$. Since $n \geq 2$, we have $n=2$. Therefore we conclude $G(K)_{\text {tor }}=C$.
(3) Let f_{19} be the cusp form of weight 2 and level 19 corresponding to $J_{0}(19)$. Then $a_{2}\left(f_{19}\right)=2$ and $a_{5}\left(f_{19}\right)=3$ (loc. cit.). We then have $\sharp H\left(\mathbb{F}_{2}\right)=\sharp H\left(\mathbb{F}_{5}\right)=3, \sharp H\left(\mathbb{F}_{4}\right)=9$ and $\sharp H\left(\mathbb{F}_{25}\right)=27$. Thus $H\left(\mathbb{F}_{2}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$.

By [6, p. 125, Corollary (16.3)], we have $H[3] \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mu_{3}$ as group schemes over \mathbb{Z}, where $\mu_{3}=\operatorname{Spec}\left(\mathbb{Z}[X] /\left(X^{3}-1\right)\right)$. Then we have $H[3](\mathbb{Q}(\sqrt{-3})) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}$ and $H[3](K) \cong \mathbb{Z} / 3 \mathbb{Z}$ for any quadratic field K other than $\mathbb{Q}(\sqrt{-3})$. Since $H\left(\mathbb{F}_{25}\right)$ has an odd order, so do $H(\mathbb{Q}(\sqrt{-3}))_{\text {tor }}$ and $H(K)_{\text {tor }}$. Then we have inclusions $H[3](\mathbb{Q}(\sqrt{-3})) \subseteq H(\mathbb{Q}(\sqrt{-3}))_{\text {tor }} \hookrightarrow$ $H\left(\mathbb{F}_{4}\right)$. Comparing the orders, we get $H(\mathbb{Q}(\sqrt{-3}))_{\text {tor }} \cong H\left(\mathbb{F}_{4}\right) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}$. So, for any quadratic field K other than $\mathbb{Q}(\sqrt{-3})$, we have $C=H[3](K) \subseteq$ $H(K)_{\mathrm{tor}} \hookrightarrow H\left(\mathbb{F}_{4}\right) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}$. Therefore $H(K)_{\text {tor }}=H[3](K)=C$.

Proof of Proposition 1.9. It suffices to show $\sharp J_{0}(p)(K)<\infty$ for $p=$ $11,17,19$. But this is done in [7, p. 143, Corollary 1]. For $p=11,19$, the same method as in [1, p. 2278, Proposition 4.3] also works.

Acknowledgements. This work was supported in part by Japan Society for the Promotion of Science Core-to-Core Program [18005]; and Japan Society for the Promotion of Science Grant-In-Aid [19204002]. We would like to thank the anonymous referee for useful comments, which have helped us to improve Proposition 1.9(2) and Proposition 5.1(2).

References

[1] K. Arai and F. Momose, Rational points on $X_{0}^{+}(37 M)$, J. Number Theory 130 (2010), 2272-2282.
[2] Y. Bilu and P. Parent, Serre's uniformity problem in the split Cartan case, Ann. of Math. 173 (2011), 569-584.
[3] B. J. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV (Antwerp, 1972), Lecture Notes in Math. 476, Springer, Berlin, 1975.
[4] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin, 1990.
[5] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable, II, Lecture Notes in Math. 349, Springer, Berlin, 1973, 143-316.
[6] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S. 47 (1977), 33-186.
[7] -, Rational points on modular curves, in: Modular Functions of One Variable V, Lecture Notes in Math. 601, Springer, Berlin, 1977, 107-148.
[8] -, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), 129-162.
[9] F. Momose, Rational points on the modular curves $X_{\text {split }}(p)$, Compos. Math. 52 (1984), 115-137.
[10] -, Rational points on the modular curves $X_{0}^{+}\left(p^{r}\right)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 441-466.
[11] -, Rational points on the modular curves $X_{0}^{+}(N)$, J. Math. Soc. Japan 39 (1987), 269-286.
[12] -, Isogenies of prime degree over number fields, Compos. Math. 97 (1995), 329-348.
[13] F. Momose and M. Shimura, Lifting of supersingular points on $X_{0}\left(p^{r}\right)$ and lower bound of ramification index, Nagoya Math. J. 165 (2002), 159-178.
[14] A. P. Ogg, Rational points on certain elliptic modular curves, in: Analytic Number Theory (St. Louis, MO, 1972), Proc. Sympos. Pure Math. 27, Amer. Math. Soc., Providence, RI, 1973, 221-231.
[15] - Über die Automorphismengruppe von $X_{0}(N)$, Math. Ann. 228 (1977), 279-292.
[16] J.-P. Serre, Représentations l-adiques, in: Algebraic Number Theory (Kyoto, 1976), Japan Soc. Promotion Sci., Tokyo, 1977, 177-193.

Keisuke Arai
Department of Mathematics
School of Engineering
Tokyo Denki University
2-2 Kanda-Nishiki-cho, Chiyoda-ku
Tokyo, Japan 101-8457
E-mail: araik@mail.dendai.ac.jp

Fumiyuki Momose
Department of Mathematics Faculty of Science and Engineering Chuo University
1-13-27 Kasuga, Bunkyo-ku
Tokyo, Japan 112-8551
E-mail: momose@math.chuo-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11G18, 14G05; Secondary 11G05, 11G15.
 Key words and phrases: rational points, modular curves, elliptic curves.
 The first author deeply regrets the death of his co-author, Professor Fumiyuki Momose during this work, and dedicates this article to his memory.

