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On p-adic Siegel modular forms
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Toshiyuki Kikuta (Osaka)

1. Introduction. In [9], Serre defined the notion of p-adic modular
forms and applied it to the construction of a p-adic L-function. Recently,
several people attempted to generalize this notion to the case of several
variables. In particular, Böcherer–Nagaoka [3] defined p-adic Siegel modu-
lar forms and showed that all Siegel modular forms with level p and real
Nebentypus are p-adic Siegel modular forms. The aim of this paper is to
generalize this result to the case of non-real Nebentypus.

We now state our results more precisely. Let k be a positive integer, p an
odd prime and χ a Dirichlet character modulo p with χ(−1) = (−1)k. For
the congruence subgroup Γ

(n)
0 (p) of the symplectic group Γn = Spn(Z), we

denote by Mk(Γ
(n)
0 (p), χ) the space of corresponding Siegel modular forms

of weight k and character χ. For a subring R of C, let Mk(Γ
(n)
0 (p), χ)R ⊂

Mk(Γ
(n)
0 (p), χ) denote the R-module of all modular forms whose Fourier

coefficients belong to R. Let µp−1 denote the group of (p − 1)th roots
of unity in C×. We fix an embedding σ from Q(µp−1) to Qp. For f ∈
Mk(Γ

(n)
0 (p), χ)Q(µp−1), let fσ denote the formal power series defined by tak-

ing σ of each Fourier coefficient of the Fourier expansion of f (see Subsection
2.4). The following theorem is our main result:

Theorem 1.1. For any modular form f ∈ Mk(Γ
(2)
0 (p), χ)Q(µp−1), fσ is

a p-adic Siegel modular form. In other words, there exists a sequence {gm}
of full modular forms such that

lim
m→∞

gm = fσ (p-adically).

We prove Theorem 1.1 in Section 3. The key point of the proof is the
following existence theorem:
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Theorem 1.2. There exists a sequence {Gkm ∈Mkm(Γ (2)
0 (p), χ)Q(µp−1)}

of modular forms such that

lim
m→∞

Gσkm
= 1 (p-adically).

2. Preliminaries

2.1. Siegel modular forms. Let Hn be the Siegel upper half-space
of degree n. The Siegel modular group Γn = Spn(Z) acts on Hn by the
generalized fractional transformation

MZ := (AZ +B)(CZ +D)−1 for M =

(
A B

C D

)
∈ Γn.

Let N be a positive integer. The congruence subgroup Γ (n)
0 (N) is defined by

Γ
(n)
0 (N) :=

{(
A B

C D

)
∈ Γn

∣∣∣∣ C ≡ On mod N

}
.

Let χ be a Dirichlet character modulo N . The space Mk(Γ
(n)
0 (N), χ) of

Siegel modular forms of weight k and character χ consists of all holomorphic
functions f : Hn → C satisfying

f(MZ) = χ(detD) det(CZ +D)kf(Z) for M =

(
A B

C D

)
∈ Γ (n)

0 (N).

If χ is trivial, we simply write Mk(Γ
(n)
0 (N)) for Mk(Γ

(n)
0 (N), χ). If f ∈

Mk(Γ
(n)
0 (N), χ) then f has a Fourier expansion of the form

f =
∑

O≤T∈Λn

af (T )e2πi tr(TZ),

where T runs over all semi-positive definite elements of

Λn := {T = (tij) ∈ Symn(Q) | tii ∈ Z, 2tij ∈ Z}.
In this paper, we mainly deal with the case where N is a prime.

2.2. p-adic Siegel modular forms. Let vp be the additive valuation
on Qp normalized by vp(p) = 1. We consider a formal power series of the
form f =

∑
O≤T∈Λn

a(T )e2πi tr(TZ) with a(T ) ∈ Qp. For a more accurate
interpretation of f , see [1, 3].

Definition 2.1. A formal power series f =
∑

O≤T∈Λn
a(T )e2πi tr(TZ)

with a(T ) ∈ Qp is called a p-adic Siegel modular form if there exists a
sequence {gm ∈Mkm(Γn)Q} of full modular forms such that limm→∞ gm = f
(p-adically), where the limit means that infT∈Λn(vp(agm(T ) − a(T ))) → ∞
as m→∞.
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Böcherer and Nagaoka showed

Theorem 2.2 (Böcherer–Nagaoka [3]). Let p be an odd prime. If f ∈
Mk(Γ

(n)
0 (p))Q then f is a p-adic Siegel modular form.

2.3. Jacobi forms and their liftings. In this subsection, we recall
some known facts on Jacobi forms and their liftings. Since we do not need
the general level case, we only consider the prime level case.

Let p be an odd prime and χ a Dirichlet character modulo p with χ(−1) =
(−1)k. Let φ be a Jacobi form of weight k, index 1 and character χ with
respect to Γ (1)

0 (p). Then φ has a Fourier expansion of the form

φ(τ, z) =
∞∑
n=0

∑
r∈Z

4n−r2≥0

c(n, r)qnζr for (τ, z) ∈ H1 × C,

where q := e2πiτ and ζ := e2πiz. The Maass lift Mφ ∈ Mk(Γ
(2)
0 (p), χ) of φ

is described by

Mφ(Z) =
(

1
2
L(1− k, χ) +

∞∑
n=1

∑
0<d|n

(p,d)=1

χ(d)dk−1qn
)
c(0, 0)

+
∞∑
l=1

∑
4nl−r2≥0

∑
0<d|(n,r,l)

(p,d)=1

χ(d)dk−1c

(
nl

d2
,
r

d

)
qnζrq′l

for Z =

(
τ z

z w

)
∈ H2,

where q′ := e2πiw. This lift was studied by Ibukiyama. For the precise defi-
nitions of Jacobi forms with level and their liftings, see [6, 8].

2.4. Embeddings from Q(µp−1) to Qp. In this subsection, we mention
how to determine embeddings from Q(µp−1) to Qp.

Let µp−1 denote the group of (p − 1)th roots of unity in C×. Let us
take a generator ζp−1 of µp−1 and consider the prime ideal factorization
of p in the ring Z[ζp−1] of integers of Q(µp−1). Let Φ(X) ∈ Z[X] be the
minimal polynomial of ζp−1, namely Φ(X) is the cyclotomic polynomial
having the root ζp−1. We can always decompose Φ(X) in the form Φ(X) ≡
q1(X) · · · qr(X) mod p, where r = ϕ(p−1) and each qi(X) is a polynomial of
degree one with qi(X) 6≡ qj(X) mod p. Then p is decomposed as a product of
r prime ideals pi := (qi(ζp−1), p), namely we have the perfect decomposition

(p) = p1 · · · pr = (q1(ζp−1), p) · · · (qr(ζp−1), p).
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Let ω be the Teichmüller character on Zp. If we write qi(X) = X − di for
some di ∈ Z, then an embedding σi from Q(ζp−1) to Qp corresponding to pi
is determined by σi(ζp−1) = ω(di).

Example 2.3. (1) Case p = 5 (ζ4 = i). We see easily that Φ(X) =
X2 + 1 ≡ (X−2)(X−3) mod 5. Putting p1 := (i−2, 5) and p2 := (i−3, 5),
we have (5) = p1p2. In fact, (i−2, 5) = (i−2) and (i−3, 5) = (i+2). Hence,
the embeddings σi corresponding to pi are determined by σ1(i) = ω(2) and
σ2(i) = ω(3).

(2) Case p = 7 (ζ6 = (1 +
√

3i)/2). One has Φ(X) = X2 − X + 1 ≡
(X − 3)(X − 5) mod 7. If we set p1 := (ζ6 − 3, 5) and p2 := (ζ6 − 5, 5), then
(7) = p1p2. Hence, the embeddings σi are determined by σ1(ζ6) = ω(3) and
σ2(ζ6) = ω(5).

For a formal power series of the form f =
∑

O≤T∈Λn
a(T )e2πi tr(TZ) with

a(T ) ∈ Q(µp−1), we define

fσ :=
∑

O≤T∈Λn

a(T )σe2πi tr(TZ).

3. Proofs

3.1. Proof of Theorem 1.2. Let X := Zp × Z/(p − 1)Z denote the
group of weights of p-adic Siegel modular forms. Let ω be the Teichmüller
character on Zp. Following Serre’s notation in [9], let us write ζ∗(s, u) :=
Lp(s, ω1−u) for (s, u) ∈ X, where Lp(s, χ) is Kubota–Leopoldt’s p-adic L-
function (e.g. [5]).

As in [4], let EJk,1 be the normalized Jacobi Eisenstein series of weight
k and index 1 (i.e. the constant term is 1). It is known that its Fourier
coefficients are in Q. Moreover we denote by

E
(1)
k = 1− 2k

Bk

∞∑
n=1

∑
0<d|n

dk−1qn ∈Mk(Γ1)Q,

E
(1)
k,χ = 1 +

2
L(1− k, χ)

∞∑
n=1

∑
0<d|n

(p,d)=1

χ(d)dk−1qn ∈Mk(Γ
(1)
0 (p), χ)Q(µp−1)

the normalized Eisenstein series of weight k for Γ1 and normalized Hecke’s
Eisenstein series of weight k and character χ for Γ (1)

0 (p), respectively.
We choose α ∈ Z/(p − 1)Z such that χσ = ωα. Moreover, we take a

sequence {km = apm+1} for 0 < a ∈ Z with a ≡ −α mod p− 1. Note that a
is even or odd according as χ is even or odd. If we put

φkm := E
(1)
a(p−2),χE

(1)
ap(pm−1)E

J
2a,1
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then φkm is a Jacobi form of weight km and index 1 with character χ

for Γ (1)
0 (p). Here note that E(1)

ap(pm−1)E
J
2a,1 has rational Fourier coefficients.

Moreover if we write its Fourier expansion as φkm =
∑

n,r ckm(n, r)qnζr,
then ckm(n, r) ∈ Q(µp−1) and ckm(0, 0) = 1. Now we can prove

Lemma 3.1. {φσkm
} converges uniformly in the formal power series ring

Qp[ζ, ζ−1][[q]].

Proof. Recall that

φσkm
= (E(1)

a(p−2),χE
(1)
ap(pm−1)E

J
2a,1)σ

= (E(1)
a(p−2),χ)σE(1)

ap(pm−1)E
J
2a,1 ∈ Qp[ζ, ζ−1][[q]].

Hence we may only show that limm→∞E
(1)
ap(pm−1) ∈ Qp[[q]]. To prove this, we

consider the Eisenstein series

G
(1)
lm

:= −Blm
2lm

E
(1)
lm

= −Blm
2lm

+
∞∑
n=1

∑
0<d|n

dlm−1qn,

where we put lm := ap(pm − 1). It is clear that there exists a limiting value
limm→∞

∑
0<d|n d

lm−1 ∈ Qp for each n ≥ 1. Obviously, this convergence is
uniform with respect to n ≥ 1. Since lm tends to (−ap, 0) 6= (0, 0) in X,
we can apply Corollaire 2 of [9] to G(1)

lm
. Therefore we see that the constant

term also converges in Qp,

− lim
m→∞

Blm
2lm
∈ Qp.

Now we shall show that this value is not zero. If m ≥ 1 then p−1 | lm. Hence
the denominator of Blm is divisible by p according to the von Staudt–Clausen
theorem. This means that the numerator of Blm/2lm is divisible by p for no
m ≥ 1. It follows immediately that

− lim
m→∞

Blm
2lm
6= 0.

Therefore

lim
m→∞

E
(1)
lm

= lim
m→∞

(
1− 2lm

Blm

∞∑
n=1

∑
0<d|n

dlm−1qn
)
∈ Qp[[q]].

This completes the proof of Lemma 3.1.

Let us return to the proof of Theorem 1.2. Taking the Maass liftMφkm =:
Fkm ∈Mkm(Γ (2)

0 (p), χ)Q(µp−1), we have the following Fourier expansion:
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Fkm =
1
2
L(1− km, χ) +

∞∑
n=1

∑
0<d|n

(p,d)=1

χ(d)dkm−1qn

+
∞∑
l=1

∑
4nl−r2≥0

∑
0<d|(n,r,l)

(p,d)=1

χ(d)dkm−1ckm

(
nl

d2
,
r

d

)
qnζrq′l.

For l > 0, the lth Fourier Jacobi coefficient is∑
4nl−r2≥0

∑
0<d|(n,r,l)

(p,d)=1

χ(d)dkm−1ckm

(
nl

d2
,
r

d

)
qnζr.

Since χ(d)σ = ω(d)α = dα, if we take σ then∑
4nl−r2≥0

∑
0<d|(n,r,l)

(p,d)=1

dkm+α−1ckm

(
nl

d2
,
r

d

)σ
qnζr.

The constatnt term of the Fourier Jacobi expansion is Hecke’s Eisenstein
series of weight km and character χ. By a similar argument of Serre, we
obtain(

1
2
L(1− km, χ) +

∞∑
n=1

∑
0<d|n

(p,d)=1

χ(d)dkm−1qn
)σ

=
1
2
ζ∗(1− km, 1− km − α) +

∞∑
n=1

∑
0<d|n

(p,d)=1

dkm+α−1qn.

Finally, we set Gkm := 2L(1 − km, χ)−1Fkm . Since km tends to (0,−α)
in X, (1 − km, 1 − km − α) tends to (1, 1) in X. Note that ζ∗(s, u) has a
simple pole at (1, 1). Combining this fact with Lemma 3.1, we see that Gσkm

tends to 1. In fact, the q-expansion of Gσkm
is given by

Gσkm
= 1 +

2
ζ∗(1− km, 1− km − α)

∞∑
n=1

∑
0<d|n

(p,d)=1

dkm+α−1qn

+
2

ζ∗(1− km, 1− km − α)

×
( ∞∑
l=1

∑
4nl−r2≥0

∑
0<d|(n,r,l)

(p,d)=1

dkm+α−1ckm

(
nl

d2
,
r

d

)σ
qnζrq′l

)
.

This completes the proof of Theorem 1.2.
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3.2. Proof of Theorem 1.1. In order to apply Serre’s argument, we
start by proving

Lemma 3.2. Each f ∈Mk(Γ
(n)
0 (p))Q(µp−1) is a Q(µp−1)-linear combina-

tion of elements of Mk(Γ
(n)
0 (p))Q.

Proof. We have Mk(Γ
(n)
0 (p))C = Mk(Γ

(n)
0 (p))Q ⊗ C by Shimura’s re-

sult [10]. Hence f ∈ Mk(Γ
(n)
0 (p))Q(µp−1) can be uniquely written in the

form f =
∑N

i=1 cifi for some ci ∈ C and fi ∈ Mk(Γ
(n)
0 (p))Q. For each

τ ∈ Aut(C/Q(µp−1)), f τ =
∑N

i=1 c
τ
i fi because each fi has rational Fourier

coefficients. On the other hand, since the Fourier coefficients of f are in
Q(µp−1), we have f τ = f =

∑N
i=1 cifi. It follows from uniqueness of descrip-

tion of f that cτi = ci. The assertion follows.

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. For any f ∈ Mk(Γ
(2)
0 (p), χ)Q(µp−1), take a se-

quence {Gkm ∈ Mkm(Γ (2)
0 (p), χ−1)} of modular forms constructed in The-

orem 1.2. We consider fGkm ∈ Mk+km(Γ (2)
0 (p))Q(µp−1). Note that each

k + km is even. Applying Lemma 3.2 to each fGkm , we see that fGkm

is a Q(µp−1)-linear combination of elements of Mk+km(Γ (2)
0 (p))Q. Hence,

(fGkm)σ = fσGσkm
is a p-adic Siegel modular form according to Theorem

2.2. Since Gσkm
tends to 1, fσGσkm

tends to fσ. Thus fσ is a p-adic Siegel
modular form.

4. Towards a generalization. In this section, we make some remarks
on possible generalizations.

If we can solve the following problem affirmatively, then we can generalize
Theorem 1.1 to the case of any degree.

Problem 4.1. Let p be an odd prime and χ a Dirichlet character mod-
ulo p. Does there exist a sequence {Gkm ∈Mkm(Γ (n)

0 (p), χ)Q(µp−1)} of Siegel
modular forms such that

lim
m→∞

Gσkm
= 1 (p-adically)?

Now we raise one more question which is equivalent to this problem.

Problem 4.2. Let p and χ be as above. Does there exist a modular form
Ga ∈Ma(Γ

(n)
0 (p), χ)Q(µp−1) such that

Gσa ≡ 1 mod p?

Remark. (1) If we can solve Problem 4.2 affirmatively, then we can
solve Problem 4.1 affirmatively by putting Gkm := Gp

m

a .
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(2) Take α ∈ Z/(p − 1)Z such that χσ = ωα. As we have seen in the
proof of Theorem 1.1, for f ∈ Mk(Γ

(2)
0 (p), χ−1)Q(µp−1), the p-adic weight

of fσ is (k, k − α). Assume that there is another sequence {G′k′m ∈
Mk′m(Γ (2)

0 (p), χ)Q(µp−1)} in Theorem 1.2. The well-definedness of p-adic
weights indicates that {k+k′m} also tends to (k, k−α) in X and hence {k′m}
converges automatically to (0,−α) in X. Similarly, {km} of Problem 4.1
converges automatically to (0,−α) in X. In fact, for the Siegel Φ-operator,
Φn−2(Gkm)∈Mkm(Γ (2)

0 (p), χ)Q(µp−1) still satisfies that limm→∞ Φ
n−2(Gkm)σ

= 1 (p-adically). For the p-adic weights and their well-definedness, see
[1, 7, 10].

(3) Combining (1) with (2), we see that there is a relation between a and
χ in Problem 4.2 such that a ≡ −α mod p− 1 for α satisfying χσ = ωα.

(4) If p−1 | a (i.e. χ is trivial), then Problem 4.2 was solved by Böcherer–
Nagaoka [2]. They used theta series to construct Gp−1, but their arguments
do not work for the case of non-real Nebentypus.
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