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The joint distribution of g-additive functions
by

MICHAEL DRMOTA (Wien)

1. Introduction. Let ¢ > 1 be a given integer. A real-valued function
f, defined on the non-negative integers, is said to be g-additive if f(0) =0

and
= Z flagj(n)g’) for n= Z aq,;(n)q’,
Jj=0 J=20
where a4 j(n) € E, :={0,1,...,q — 1}. A special ¢g-additive function is the
sum-of-digits function
n) = Z aq,j (1)

Jj=0
The statistical behaviour of the sum-of-digits function and, more generally,
of g-additive functions has been very well studied by several authors.

The most general result concerning the mean value of g-additive func-
tions is due to Manstavicius [20] (extending earlier work of Coquet [3]).

Let
——chq 2k,q~=—2f20q
ceE CGE
and
[logq x] [logq
> Mhka Z Mk
k=0
Then
1
(1.1) - > (f(n) = My(x))* < ¢B2(x),

n<x
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which implies
=37 Fn) = M) + O(By ().

For the sum-of-digits function s,(n) much more precise results are known,
e.g. Delange [5] proved (for integral :L') that

— Z sq(n logq z + 7(log, x),
n<.’1»'

where v is a continuous, nowhere differentiable and periodic function with
period 1. (Higher moments of a,(n) were considered by Kirschenhofer [19]
and by Kennedy and Cooper [17] (for the variance) and by Grabner, Kirs-
chenhofer, Prodinger and Tichy [12].)

There also exist distributional results for ¢g-additive functions. In 1972
Delange [4] proved an analogue to the Erdés—Wintner theorem. There exists
a distribution function F'(y) such that, as z — oo,

(1.2) “#{n < fn) <y}~ F(y)

if and only if the two series > ;<o Mg, D x>0 m2 ,q converge. This theorem
was generalized by Kdtai [16] who proved that ‘there exists a distribution
function F'(y) such that, as x — oo,

—#{n<f€\f() My(z) <y} — F(y)

if and only if the series >, -, mQ; kg Converges.
The most general theorem known concerning a central limit theorem is
again due to Manstavicius [20]. Suppose that, as x — oo,

max |f(eq’)| = o By(@))

and that Dy(x) — oo, where

log, =

= E U’iq and 0,2“1 ::—E 2(cq®)
k=0

CGE

Then, as x — oo,

Lo <o LD L gy,

where @ is the normal distribution function.

Similar distribution results for the sum-of-digits function of number sys-
tems related to substitution automata were considered by Dumont and
Thomas [8]. For number systems whose bases satisfy linear recurrences we
refer to [6].
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Furthermore, Bassily and Katai [1] studied the distribution of g-additive
functions on polynomial sequences.

THEOREM 1. Let f be a g-additive function such that f(cq¢’) = O(1) as
Jj— o0 and c € Ey. Assume that Dy(x)/(logx)" — 0o as x — oo for some
n > 0 and let P(x) be a polynomial with integer coefficients, degree r, and
positive leading term. Then, as x — 00,

é#{n <z f(P(nl)))q(—xT]\fq(ﬂﬁr) < y} — D(y),
ﬁ {p <z f(P(pl)))q&i\fqW) < y} — 9(y).

This result relies on the fact that suitably modified centralized moments
converge (cf. Lemma 4). Note also that this theorem was only stated (and
proved) for n = 1/3. However, a short inspection of the proof shows that
n > 0 is sufficient.

2. Joint distributions. It is a natural question to ask whether there
are analogue results for the joint distribution of ¢;-additive functions f;(n)
(if ¢1,...,94 > 1 are pairwise coprime integers). For example, Hildebrand
[14] announced that one always has

Liln <] filn) <y, 1<TSd} = B Fau)

if f; satisfies (1.2) for all [ = 1,...,d and that there is a joint central limit
theorem of the form
1 fi(ln) — My, (x)
—#{n <z :
x Dq, ()

if By, (z) — oo and By, (") ~ By, (x) for every n > 0 as x — oco. (Note that
the sum-of-digits function s,(n) is not covered by this result.)

In this paper we will first extend the above result of Bassily and Kétai
to the joint distribution of g-additive functions f; (1 < I < d) on specific
polynomial sequences if ¢1,...,qq are pairwise coprime.

<y, 1§l§d} — D(y1)...D(ya)

THEOREM 2. Let q1,...,qq > 1 be pairwise coprime integers and let fi,
1 <1 < d, be g-additive functions such that fi(cq]) = O(1) as j — o
and c € Ey,. Assume that Dy, (x)/(logz)? — 00 as x — oo, 1 <1 < d, for
some n > 0 and let Py(x) be polynomials with integer coefficients of different
degrees r; and positive leading terms, 1 <1 < d. Then, as x — 00,

i#{n <z fl(Pl(g) (_xi\?)qz(aj‘rl) <y, 1< 1< d} N @(yl) @(yd)7
! fulBi(p)) — My, (2™)
@#{p < x‘ — D) <y, 1<1< d} = B(y1) - D(ya).
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COROLLARY 1. Let qq,...,qq4 > 1 be pairwise coprime integers and let
Py(x) be polynomials with integer coefficients of different degrees r; and pos-
itive leading terms, 1 <1 < d. Then, as x — o0,

1 s, (P(n)) — L2 1og g™
—#{n< ql( (n)) 2 Sai <y, 1 Slgd} — P(y1) ... 2(ya),
x L
1 sq (Pi(p)) — 45 Llog, a"
m#{p<l’ ql e ql <y[, 1§l§d}—>¢(y1)¢(yd)
l

log "

This theorem contains an unnatural condition, namely that one has to
consider polynomials P;(x) with different degrees r;. It would seem that this
condition is not necessary. However, this is the crux of the matter. By using
a variation of Bassily and Katai’s proof (combined with Baker’s theorem
on linear forms of logarithms) we could handle the case d = 2 with linear
polynomals Pj(x) = Ajz + B.

THEOREM 3. Let q1,q2 > 1 be coprime integers and let f; be q-additive
functions such that fi(cq]) = O(1) as j — oo and ¢ € Ey, l =1,2. Assume
that Dg,(z)/(logz)" — 00 as x — oo, | = 1,2, for some n > 0. Let Pj(z) =
Az + By, I = 1,2, be arbitrary linear polynomials with integer coefficients
and positive leading terms A; coprime to q;. Then, as x — oo,

| fBi(n)) — My ()
E#{””‘ Dul@)  ©

, 1= 1,2} — D(y1)P(y2).

COROLLARY 2. Let q1,q2 > 1 be coprime integers. Then, as x — o0,
SLII, (n) - logql €

1
Lifn < | T ] aee)
X g —1 T

12

Interestingly, there is even a local version of Corollary 2.

a—1
2

THEOREM 4. Let q1,q2 > 1 be coprime integers and set d=ged(q1 — 1,
g2 —1). Then, as x — o0,

%#{n <z | Sq (n) = k1, Sq,(n) = ko)

1
24-"log,,
uniformly for all integers ki, ko > 0 with k1 = ko mod d.

2m q’ logql
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Note that sq(n) = nmod (¢ — 1). Thus we always have sq, (n) =
Sq¢,(n) mod d and consequently

#{TL <z ‘ th(n) = k17SQ2(n) = kQ} =0
it k1 # k2 mod d.

There are some other results indicating that the g;-ary digital expansions
are asymptotically independent for different bases ¢;; e.g. Kim [18] (!) showed
that for all integers c1, ..., cq,

1

1
1 (M)=c;jmodm; (1<j<d)}=——
x\{n<$’5qy(n) ¢j mod m; (1< j <d)}| mi...mgq

+0(z7%

with
5= 1
120d2¢2m?2’
where q1,...,qq4 > 1 are pairwise coprime integers and m1, ..., mgq are pos-
itive integers such that

ged(gy —1,my) =1 (1 <j<d)

q = max{q,...,q4}, m = max{my,...,mg} and the O-constant depends
only on d and g. (This result sharpens a result by Bésineau [2] and solves a
conjecture of Gelfond [11].)

Drmota and Larcher [7] used a variation of Kim’s method to prove that a
d-dimensional sequence (154, (), . .., ®4Sq,(n))n>0 is uniformly distributed
modulo 1 if and only if oy, . . ., ag are irrational. (Grabner, Liardet and Tichy
[13] could prove a similar theorem by ergodic means.)

Another problem has been considered by Senge and Straus [26]. They
proved that if ¢; and ¢ are coprime and c is any given positive constant
then there are only finitely many n > 0 such that

Sq(n) <c and sg(n) <ec.
This result was later generalized and sharpened by Stewart [28], Schlickewei
[22, 23] and by Pethé and Tichy [21]. The proofs use Baker’s method for
linear forms of logarithms and the p-adic version of Schmidt’s subspace
theorem by Schlickewei applied to S-unit equations.

One would get a much deeper insight into all these results if one could

prove a local version of Theorem 2, e.g. asymptotic expansions or general
estimates for the numbers

“{n < | sg(n?) = k)

or for

55#@<xsm»=m

(1) For brevity we restrict to the sum-of-digits function sq(n).
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(and of course multivariate versions). It seems that problems of this kind are
extremely difficult, e.g. it is an open question whether there are infinitely
many primes p with even sum-of-digits function ss(p). The best known re-
sults concerning these questions are due to Fouvry and Mauduit [9, 10] who
proved that

1
—#{n<z|nePV(n=n-nyAny,ng €P),se(n)=0mod2} >c>0
T

for some constant ¢ > 0. (P denotes the set of primes.)
These questions are also related to two other conjectures of Gelfond [11],
namely that s,(P(n)) and s,(p) are uniformly distributed modulo m.

REMARK. Schmidt [25] and Schmid [24] discussed the joint distribution
of so(kn) for different odd integers k;, 1 <[ < d. (The distribution modulo
m was investigated by Solinas [27].) It is surely possible to extend their result
to the joint distribution of f;(P;(n)), 1 < [ < d, where f; are g-additive
functions, P, are (certain) integer polynomials, and ¢; > 1 arbitrary integers
(e.g. all equal). However, we will not discuss this question here.

3. Proof of Theorem 2. As already mentioned, Theorem 2 is a direct
generalization of Bassily and Kétai’s result of [1]. Therefore we can proceed
as in [1].

The first two lemmata on exponential sums are stated in [1]; a proof can
also be found in [15].

LEMMA 1. Let f(y) be a polynomial of degree k of the form

a _
f(y):gyk—kalyk 1+...+ak

with ged(a,b) = 1. Let T be a positive number satisfying
> 23672 and  (logz)™ < b < zF(logz) ™.
Then, as x — o0,

=3 elf(m) = Ol(log) )

n<x

LEMMA 2. Let f(y) be as in Lemma 1 and 19,7 arbitrary positive num-
bers satisfying

7> 2%75 and (logz)” < b< z*(logz)™".

Then, as x — o0,

LS e(f(p) = O((log ) ™).

% p<z

The third lemma is proved in [1] with the help of Lemmata 1 and 2 and
the inequality of Erdés—Turan.
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LEMMA 3. Let 0 < A< 1 and
qg—1
Upga = 1[0, AU | J[b/g — A,b/g+ AJU 1 - A, 1].
b=1
Suppose that P(x) is an integer polynomial of degree r with positive leading
term. Then for every € > 0 and arbitrary A > 0 we have uniformly for
(log, )* < j <rlog,x — (log, z)* and 0 < A <1/(2q), as x — oo,

%#{TL < 1“ {Z(fl)} S Ub,q,A} < A+ (10g$)7>\’
% {p < x‘ {Z(fl)} = Ub,q,A} < A+ (logz) ™.

We will also make use of the following limiting relations for centralized
moments of g-additive functions (see [1]).

LEMMA 4. Let f be a q-additive function such that f(cg’) = O(1) as
Jj — 00 and ¢ € Ey and let P(x) be a polynomial with integer coefficients,
degree r, and positive leading term. Furthermore, suppose that for some
n > 0 we have Dy(z")/(logx)" — 00 as x — oo. Define fi forn < z” by

fi(n) = > flag;(n)g’)

(log, ©)7<j<rlog, z—(log, z)"

and set

Mg (z") = Z Mk,q,

(log, x)1<k<rlog, z—(log, z)"

D;l(:pr) = Z J,iq.

(log, z)"<k<rlog, r—(log, z)"

Then, as x — o0,

#Z (fl mr)“(m )>k = OSO * 4 (),

;#é (f1 m)q 12 )>k = Oi 2 d(2).

In [1] this property is only proved for n = 1/3. However, as already
mentioned, it is also true for any n > 0.

PRrROPOSITION 1. Let N; = [logql z], 1 <1<d, let A >0 be an arbitrary
constant and hy, 1 <1 < d, be positive integers. Furthermore, let Pj(x), 1 <
[ < d, be integer polynomials with non-negative leading terms and different
degrees r; > 1. Then for integers
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31 N <k <k <<k <N N (1<1<d)

(with some n > 0) we have, as x — o0,

1
(3.2) E#{n <z aqhk;z)(Pl(n)) = b§l)7 0<j<h, 1<I<d}

1 _
- ﬁ + O((logm) A)

q1 ---dqg
and
1 ,
(33) P <ele, w@E) =t 0<j<h, 1<1<d)
1
= <7 + Ol(logz) ™)
Qg

uniformly for bgl) € E, and kj(-l) in the given range, where the implicit
constant of the error term may depend on q;, on the polynomials P;, on h;
and on .

Proof. We follow [1]. Let fy 4 a(x) be defined by

A)2
1
Jog.a(@) = A S Lip/q,04+1)/q) ({7 + 2}) dz
—A)2

where 14 is the characteristic function of the set A and {z} = = — [z] the
fractional part of z. The Fourier coefficients of the Fourier series f3, 4 A(x)

= ZmEZ dm,b,q,a€(mz) are given by
dob.q,0 =1/q
and for m # 0 by
e(—mb/q) —e(—m(b+1)/q) e(mA/2) — e( mA/2
2mim ' 2mimA
Note that dy, 44,4 = 0 if m # 0 and m = 0 mod ¢ and that

1 1
|dm,b,q,A‘ < min <—, —> .

wlm|’ Arm?

dm7b7Q7A =

By definition we have
0< fogalx)<1

and

1 ifzeb/g+ A (b+1)/q— 4]
fb,q,A(x)_{O 1fﬂj‘€[071]\[b/q_ ,(b+1)/q+A]

So if we set

d h
t(y1,-- - Ya) HHfbm QLA< (l)+1>

I=1j5=1 q;
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then for A < 1/(2q) we get
(#{n <rla (B =b", 0<j <k, 1<1<d)

=) t(Pi(n), ..., Pa(n))

1
Pi(n -
SZZ#{n<x‘{ k<l(>+)1} € Uby),ql,A} < Az + z(logz) ™
ql]

and

#p <zl a, o (Pilp) =8, 0<j <l 1<1<d}

d M
P(p _
< ;z}#{n < x‘ { kgl()jl} € Ub§z>7th} < An(z) + 7(z)(log z) 2,
=1 5= ql

where U SO is given in Lemma 3.
3

A
For convenience, let m; = (mgl), e mgl)) denote h;-dimensional integer
) 7k:(l)71
—ki’—1 h
vectors and vi = (¢, "' ,...,q; ' ), 1 <1< d. Furthermore set
d h
TN | 5
1=1j=1
Then t(Py(n),..., Pa(n)) has Fourier series expansion

t(yla oo 7yd) = Z Tm1 ..... mde(ml Vi +...+ my - ded)‘
my,...,mqg

Thus, we are led to consider the exponential sums

(34) Si= Y Tmym, Y_e(mi-viPi(n)+...4mg vaPa(n)),

(3.5) Sy = Z Twmy,....my Z e(m; - viPi(p)+ ...+ mg-vyPy(p)).

mi,..., my p<x
Let us consider for a moment just the first sum S;. If m;, ..., my are all
zero then
x+0(1
Tm,,....my Z e(my -viPi(n)+...+mg-vaPy(n)) = hli(h)d’
n<a Q- qy

which provides the leading term. Furthermore, if there exist [ and j with
my) # 0 and mgl) = 0 mod ¢; then Ty, ... .m, = 0. So it remains to consider
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the case where there exist [ and j with m§l) # 0 mod ¢;. Here the exponent
is of the form

Qa
viPi(n) + ...+ mg-vyPy(n) = EPI( n)+ ...+ b—de(n)

in which we assume that ged(a;,b;) =1, 1 < < d. The first observation
is that for any [ for which there exists j with m ;é 0 mod ¢; there exists

7, > 0 (only depending on ¢;) such that b > qm K it m& £ 0, m{ 2
0 mod ¢; and m(l}rl = gl}rz = ... (l) = 0 (cf. [1]). For the reader’s
convenience we repeat the argument. Suppose that the prime factorization
of q; is given by ¢; = pi* ... pi*. If mgl) # 0 mod ¢; then there exists t such
that m{) # 0 mod p;‘. Now we have

k(l) k(l) I k(l)_k(l) 1 k<l) 1
m £ ) =

bi(m{" + ¢ L+ = aq,

0 0 o
Hence b; = 0 mod pt “ and consequently b; > pf > q?l ¢ . Note that

mk
we also have b; < g, P

Now let D denote the set of I € {1,...,d} such that there exists j with

mgl) # 0 mod ¢;. Since all degrees r; are different there exists a unique Iy
with 7, = max{r; | l € D}. We now want to apply Lemma 1 with k = r;,

and b = b,. If kj(l) are in the range (3.1) then for every 7 > 0 there exists
xo(7) such that for x > xo(7),

(logx)™ < by, < x"o(logz) 7.

Consequently, we can apply Lemma 1 to obtain

1
c#n<ala, o Pm) =1, 0<j<h, 1<1<d)

1
= 7 + 0((1082) ™ Y [Timy.coma|) + O(A + (10g:2) ™),
ateqy 10

where m = (m;,...,my). Since
> [Tany,oma| < (24 2log(1/A)) e
m#0

it is possible to choose A = (logx)~* for a sufficiently large constant \;
such that (3.2) holds.
The proof of (3.3) runs along the same lines. m

COROLLARY 3. Let Ny = [log,, ], 1 <1 < d, and \,n > 0. Then for
integers k:j(-l) satisfying

Ny <kD <mNi =N (1<j<hy, 1<1<d)
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! .
and bg- ) ¢ E,,, we uniformly have, as x — oo,

1 .
“#Hn<azla, wEBm)=b" 0<j<h, 1<I<d}

Il
—
Il Q
_ :

(é#{n <z|a, ,o(P(n) = ), 0<j< hl}> +O((logz) ™)

and
%#{pm [y 50 (@) = B0, 0< < by, 1< 1< d)
H (—#{p <zla, ,0Pp)= b, 0<j< h,}) + O((logz) ™).

Proof. If there exist [ and j1, jo with k(l) = k(l) but b(l) #* b(l) then both
sides are zero.

So it remains to consider the case where for every [ the integers k()
1 < j < hy, are different, and without loss of generality we can assume that
they are increasing. Hence we can directly apply Proposition 1. =

COROLLARY 4. For any choice of integers ki, 1 < I < d, we have, as
T — 00,

11 [ Sra(Bi(n) = My () \™
EZH( Dy () >

s ()

=1 n<x
and
1 a fia(Pi(p)) — Mg, 1 (™) &
() H( Dy, 1(x™) )

il 5 (o)) -

Proof. In order to demonstrate how this property can be derived, we
consider the case d = 2 and k1 = ko = 2. Set A4; = [(logql x)" and B; =
[log,, © — (log,, x)"] and observe that

PO~ Miaa™) = D 5 (fl (ba)5 aql,jm(n)),b)—%)

J=A, bE By, gl



28 M. Drmota

where 0(x,y) denotes the Kronecker delta. Hence we have

Ly~ <f1,1<P1g31>71—(x11{§1,1< Tl)) (fm(Pz(D 33’1—(;74{(;)2,1(9:’"2))2

n<x
B Bs

SPD YD 3D o ED VD Dl s

J1=A1 jo=A1 j3=Az ja=A2 b1 €EEy ba€Ey, b3€E,, byc€E,y, Qh

)Y (ﬁ(blq{l)a(aql,ﬁ<P1<n>>,b1> - m—)

n<x ¢

X <f1(52Q{2)5(%1J2(Pl(n))’b2) - M)
x (f2(53Q§3)5(aq2,j3(P2(”))’b3) - M)

i (Pt (a5, (P, b) - )

By Corollary 3 it follows that

i Z (fl(b1Q{1)5(@q1,jl(Pl(n)),bl) ~ Myi,q

n<x

X (fl (b2q{2)5(ath,j2 (Pl(n)), b2) _ Mz

)
)
X <f2(bgq%3)5(aqz,j3 (P2(n)), bs) - mjm)
)

o (Faoaat g (Pal) ) — "2
= f1(bra]") f1(baal?) fo(bsad’) fo(bagd)
X {0 <0 | ag,, (Pi(n)) = b1, ag, s (P()) = b,
Agy.js (P2(n)) = b3, ag, j, (P2(n)) = ba}
— f1(bra]") f1(bag]?) 2 bs3)
X A< | gy (PL) = b1y g, (Pr(0) = b, s (Pa() = B}
Mgz L v Mz Misax | M

X —===F ...
q2 q1 q1 q2 q2
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— (A 3 0aa) 0 < 2 g (Pr() = 1, s (PA0) = 12} )
x (f2<bsq%3>f2<b4q;‘4>
A < 2 g (Pa() = b s (Pa(0) = B} )
- (Aot
G <2 g (i) = . g ga(PA(0) = b} )
. (f2<b3qé3>§#{n < o (Pa) = b} )

q2
m; m m; m;
-, < J1,91 Jz,q1> < 73,92 34"12) + O((logl‘)*’\)

q1 q1 q2 q2
( n<x

x (fl(bzq{Q)é(athQ(Pl(n)),b2) — M))

q1

X (% > (fQ(b3Qé3)6(GQQ,j3(P2(n)),bg) - M)

n<x q2

(fl b1 )d(aq, j, (Pr(n)),b1) — maq_lq>

X <f2(b4qg4)5<aqzyj4<P2(n)>’ be) = %))
+0((logz) ™).

So we directly obtain the claimed result with an error term of the form
O((logx)~M4=47), u

By combining Lemma 4, Corollary 4, and the Fréchet—Shohat theorem
it follows that, as z — oo,

%#{n <z fl,l(Pl(gil) ;(Jf‘ft;z,l(xw) <y, 1<1< d} N ¢(y1).--¢(yd),
Since
My, (z") = Mg, 1(z™) = O((log z)"),
DQl T ) Dth(x ):O((log$)7l)’
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it also follows that
AR = My, a7 i () = My ()
n<a Dy, (z7) Dy, 1(x™)
as x — oo. Consequently we finally obtain the limiting relations stated in
Theorem 2.

— 0

4. Proof of Theorem 3. The proof of Theorem 3 is similar to that of
Theorem 2, i.e., we will prove an analogue to Proposition 1. However, the
proof requires an additional ingredient, namely a proper version of Baker’s
theorem on linear forms. More precisely, we will use the following version

due to Waldschmidt [29].

LEMMA 5. Let aq,...,q, be non-zero algebraic numbers and by, ..., b,
integers such that
abroal £1

and let Ay,..., A, > e be real numbers with log A; > h(a;), where h(-)
denotes the absolute logarithmic height. Set d = [Q(av, ..., an) : Q. Then
la% . abr — 1] > exp(=U),

where
U = 20nH32,3n+64n+2(1 1 log d)(log B + logd)log A; .. .log A,,,
B = max{2,|b1],...,|bn|}
COROLLARY 5. Let q1,q2 > 1 be coprime integers and my, ms integers

such that m1 #Z 0 mod g1 and mo # 0 mod go. Then there exists a constant
C > 0 such that for all integers ki, ko > 1,

ma mo
k k
a' q5°
> max ‘ml‘ ’mQ, . efClog q1 log g2 log(max(kl,kz))-log(max(|m1|,|m2|))‘
ki ? ko
a, qs

Proof. Since ¢1,q2 > 1 are coprime integers and my # 0 mod ¢q1, mo #
0 mod g2 we surely have mqukl + mgqgk2 # 0. So we can apply Lemma 5
for n =3, aq = q1, a2 = q2, a3 = —ma/my, by = k1, by = —ko, b3 = 1 and
directly obtain

my ma k1 ky —ko 1102
Tt = mldt e et -
q1 qs 1
> |Tn1 |q11€1 e—C log ¢1 log g2 log(max(k1,k2))-log max(|m1|,|mz|) )

Since the problem is symmetric it is no loss of generality to assume that
[malgr ™ > [malgy . w
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Finally we will use the following (trivial) lemma on exponential sums.

LEMMA 6. Let « be a real number with 0 < |a| < 1/2. Then, as x — 00,

1
e(an) € —.
2 ol
PROPOSITION 2. Let P(x) = Ajx + By, | = 1,2, be linear polynomials
with integer coefficients and non-negative leading terms A; which are co-
prime to q;. Set N} = [logql x], 1 = 1,2, let A\, > 0 be arbitrary constants
and let hy, ho be positive integers. Then for integers

(4.1) Ny <k <k <. <kl <N N (1=1,2)

n<x

we have, as r — 00,

1
(4.2) ;#{n <z a, Lo (Aim + By) = b§l)7 0<j<h,l=12}
(]
1
= =7 +O((logz) ™)
9" 65?

uniformly for bgl) € E, and k‘](-l) in the given range, where the implicit
constant of the error term may depend on q;, h; and .

Proof. The proof runs along the same lines as the proof of Proposition 1.
The only problem is to estimate the sum

1
Z ‘Tmhmz‘ 1z Z 6((A1m1 -vi + Aomy - V2)n) )
(m1,m2)#0 n<x

) —kP_1
where m; = (mgl),...,mgl)) and v; = (g, & 1,...,ql "), 1=1,2, such

that the integers kJ(D are in the given range (4.1).

First we fix A = (log x) ~*° with an arbitrary (but fixed) constant Ao > 0.
Furthermore, since

> [Ty o | < (log )~

El) 3j:|m§l) |>(log z)2*0

we can restrict to those m # 0 for which |m§l)] < (log x)?* for all 1,5 and
my) # 0 mod q; if my) #0.

We also note that it is also sufficient to consider just the case where
mgl) # 0 for all j and I = 1,2. (Otherwise we just reduce hy resp. hs to a
smaller value and use the same arguments.)

Set & = n/(h1 + ha — 1). Then there exists an integer k with 0 < k <
h1 4+ ho — 2 such that for all j and [ = 1,2

KO — kD ¢ [(log2)*, (log ) B D7),
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So fix k with this property. Before discussing the general case, let us consider
two extremal ones.

First suppose that

0]

l
1T k§) < (10g93)k5

for all j and [ =1,2. Set
ht W _
k() —k§
my = A Zm§l)ql Y (1=1,2).
j=1

Then we have ; % 0 mod ¢; and log || < (log z)*®. Hence, we can apply
Corollary 5 to

mi mo

ki 41 kf) +1
a ds

Aim; - vy + Aogmgy - vo =

and obtain

k-1 —kf) -1

— k&
|Aim; - vi + Aomy - vo| > max(g, "1 , 0o )e‘mog log z (log z)

for some constant C' > 0. Since |[A;m;-v;+ Asmy-vy| < 1/2; from Lemma 6
we get

1
=) e((Aymy - vy + Aymy - vo)n)

n<x

< lqlogq z—(log m)<h1+h2_1)‘;eClog log « (log z)*°

— e—(logm)(h1+h271)5/loglH—Cloglogx(log:r)M < (loga:)_)‘

for any given A > 0.
Next suppose that

R
for all j and [ = 1,2. Here we set m; = Almy) (I =1,2) and obtain

|Aimy - vi + Aomy - Vo

__ — hi (1) ha (2)
™ my | my | m;,
(1) (2) (1) (2)
D 11 k3 11 Z £ 41 Z k3 11
e e =2 ¢! j2=2 g,

IEXC NN e I

> max(q; Ky, 17q2 K, 1)6—0(1oglogx)2
—k(l)—l —k“)—l _ (k+1)8
—O((logm)”‘0 max(q, i 2 4o h2 )e (log z) )

—kV -1 —kD -1

> max(q, y o )efc(log log)*
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Thus, we again have

1
— Z e((A1m1 “V1 + Agl’l’lg . VQ)TL) < (lOg 113')7/\

n<x

(4.3)

for any given A > 0.
In general, we assume that for some s; (I = 1,2),
l ! .
k:](ll - kﬁ) < (logz)*  (j < s1)
and

K0 = KD > (g5

Here we set
@) _ (D
J

St
k
my :Alng-l)ql K (l:1,2).
J=1

Then we have (as in the first case) m; #Z 0 mod ¢; and log || < (log x)*?.
Furthermore, we can estimate the sums

M m(.l) a )(k+1)6
J _ 2)\o ,,—(logx
E O O((log ) ’q ).
- J
J=sit+l q;
Thus we get
|Aim; - vy + Aomy - vy
. — h 1 h 2
m my | Zl my | Zz my
| k4 k241 kD 41 k) 41
1 4 ji=s1tl g a=s2+1 gy
S R SO D k&
> max(ql 1 s 2 )6 C'loglog z (log x)
B s " 1 COp | (k+1)5
—O((logw)?° max(q, " g, * e (s
—kS)—l —kgl)—l _ )
> max(q1 1 s 2 )6 C'log log z(log =) ,

which again implies (4.3).
Hence, we finally get

1
Z Ty ,m.| - ‘; Z e((Aimy - vi + Aomy - vo)n)

(mi,m2)7#0 n<x

= O((logx)~*°) + O((log z)** %),
which completes the proof of Proposition 2. m

5. Proof of Theorem 4. The proof of Theorem 4 relies on a direct
application of proper saddle point approximations.
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Set
Ay by = #{n <z ’ Sq1 (n) = k1, Sqz (Tl) = kQ}

Then the empirical characteristic function is given by

(Pz(tth) _ = E elt15q1 (n)+itasgy (n) J— E aklkzeltlkﬁrltzkz,
X X
n<x kl,kgzo

which implies that the numbers ay,, can be determined by
I —it1k1—itak
Ak1ky = (271_)2 S S sz(tth)e LRLT2R2 (dt dto.
—T —T
We first use Theorem 2 to extract the asymptotic leading term of ag,,. In
fact, we need a little bit more general property.

LEMMA 7. Set

1 21
l log, » and Di(r):= ql12
and let P(x) denote the linear polynomial P(x) =lem(q1 — 1,92 — 1)z + B
for some integer B with 0 < B <lem(q1 —1,q2 — 1). Then, for every e >0
there exists xo = xo(e) such that

M (x) := g log,, =

1 $ eitisar (P +itasey (P(n)
X

n<x

_ it My ()42 Moy (2)— 1 (53D2, () +13D2, (0)) | .

for all x > xo and for all t1,ts real.

Proof. First we notice that Theorem 2 cannot be directly applied. It may
occur that the leading term A = lem(q; — 1,¢2 — 1) of P(z) is not coprime
to g1 resp. to ¢o. However, if A = qlKl A; (for some K; > 0 and A; coprime
to ¢;) and if B; has g;-ary expansion B; = By + Biq; + ... + BqulLl then

Sq(An+ B) = sq, (¢ Ain + Bo + Bigi + ... + Br,g")
= 54, (q/" " Ain+ By + Boqy + ...+ B, ") + By
= 50, (¢ 2Am+ By + Bsq + ...+ Br,g/'" %) + By + By

= sq,(Amn+ By) + C|
for some integers Bj, C;. Therefore, the joint (normalized) limiting distri-
bution of (sq, (An+ B), s4, (An + B)) is the same as that of (s,, (A1n+ B1),
8¢, (Aan+Bs)), and A; is coprime to ¢;, [ = 1,2. Hence, we can always apply
Theorem 2 for properly chosen linear polynomials P;(z), [ = 1,2.
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By Levi’s theorem it now follows from Theorem 2 (and the above remark)
that for every fixed ¢1,ty we have, as ¢ — oo,
1 ,
51) = i(t15q; (P(n))+t254, (P(n)))/VIog®
(1) — ; e

_ ittt My (2)+t2 My, (x))/VTogz— 5 (t1 D} (x)+t3 D3 (x))/(log ) _, .

Moreover, we can show that this convergence is uniform for all ¢1,t5. Since
& (y1)P(y2) is continuous we know that the normalized empirical distribution
function

Folyr,un) = i#{n < 2| 5q(n) < Mi(n) + yuDi(x), 1 = 1,2}

converges uniformly to @(y1)®(y2). Furthermore, the variances

1 (s¢.(n) = My(n))?
DD S

n<x

are bounded (compare with (1.1)). Hence we get

~ 1
| AP, (y1, ) < -
max{[yz |,ly2/} > A

Thus it follows by elementary means (and by using the definition of the
characteristic function) that the convergence in (5.1) is uniform. m

The proof of Theorem 2 will also make use of the following estimate on
exponential sums.

PROPOSITION 3. Let q1,...,q9q4 > 1 be pairwise coprime integers. Then
there exists a constant ¢ > 0 such that for all real numbers t1, ..., tq,
1
— Z e(t15q, (n) +tasg,(n) + ... +tasq,(n))| < eclos = Tin, la—Dull*
x
n<x

where ||t|| = mingez |t — k| denotes the distance to the integers.

A proof of Proposition 3 can be found in [7]. It is, more or less, a slight
generalization of a corresponding estimate of exponential sums presented by
Kim [18].

Now we can start with the proof of Theorem 4.

Proof. For any K > (0 and integers s1, s3 set

2 K
CK(81752)2:{(t17t2) € [-m, m]?: |t — WSll mod 27| < ;L= 1’2}-
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Furthermore set
q1—2q2—2

Ap = [—7‘(‘,7‘(‘]2\ U U Ck(s1,82).

81:0 8220

By Proposition 3 for every £ > 0 there exists K = K (¢) such that

€

Lt b)) dty dty < ——.

(27r)2AS [ty t2)| b diz log x
K

Furthermore, we can choose K < ¢/(—loge)'/? (for some constant ¢’ > 0).
So it remains to consider the integrals

1 1 . .
Ik (s1,82) = (2)2 X o Z et (s (M) =h1)Fita (s, (")_k"’)) dty dto
ﬂ-) CK(Sl 82) x n<x

_ e—27ri(k1 q;i1+k2 q;gl 1
(2m)?

x| (l 3 it u () k) Fita(sa, <n>—kz>>e2ﬂ<qf—%+qi—21>“ dt’, dt},.
Ck(0,0)

n<x

By Lemma 7 it is easy to evaluate Ik (0,0) asymptotically. For sufficiently
large = > xo(¢) we have

lpa (b1, ts) — ei(thl(w)+t2M2($))—%(thf(x)*‘thg(x))’ <e

for all real t1,to, and consequently
(5.2)  Ik(0,0)

_ (21)2 S eit1(Ml(z)*kl)Jritz(MQ(aJ)*kz)*%(t%Df(z)thng(ﬂ?)) dty dto
Y
Ck(0,0)

2
+O<€K )
log x

— X S it1 (M (z)—k1)+ita(Ma(x)—k2)— 5 (t] D (2)+t3 D3 (z)) dty dto

—0o0 —0

+O<€(—10g5)>

log x

1 — M, 2 —1
11 (- M) | (<o)
=1 \V 21Dy, (z) 2qu () log z
In order to treat the remaining integrals I (s1, s2) we recall that d and
A denote d = ged(q1 — 1,92 — 1) and A =lem(q; — 1,92 — 1). We represent
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81782by
Sl:mlql; +r (0<m<d, 0<r<(qg—1)/d, 1=1,2)
and observe that
S1 So mi + Mo ™ T2
+ = + +
Gp—1 q-1 d G1—1 q—1
_myp+my T q2;1 + Tz—qgl
d A

Thus, ¢ := TG TR g always an Ath root of unity and ¢ = 1 if and
only if

(5.3) mi+ma=d, 711 =0andr=0.

Thus, if (5.3) is satisfied, i.e., s1 = my ‘“;1 and so = (d — ml)q2;1, we have
(recall that k1 = ks mod d)

IK(Sl,SQ) = 6_27ri%(k1_k2)11((0,0) = IK(0,0)

Hence

d—1 1 1
> IK<m1‘”d ,(d—ml)qu >:dIK(0,O)

m1:0

which fits (by (5.2)) the asymptotic leading term of ay, -
Finally we have to consider the case where

<:eZ7T7,((11‘5—£1+%) #1

Here we have

—2mi(ky =L 4hy 52
Ix(s1,89) = e 2mimaatha g5y

A-1
1 .,/ ’ g/ ’
% § CB S (_ E eltl(szﬂ (An +B)_k1)+7‘t2(5‘12 (An +B)_k2)) dt’l dté
B=0 Cg(0,0) N n'<(z—B)/A

As above, it follows by Lemma 7 that for sufficiently large x > z;(¢) (and
of course uniformly for all B=10,1,...,4—1)

S <l Z eiti(Sql(An/+B)k1)+it’2(sq2(An’+B)k2)> dt, dt,
Ck(0,0) xn’<(x—B)/A

e ) o)

g(—mgg))

log x

Thus
Ik (s1,52) = O<

This completes the proof of Theorem 4. =
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