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1. Introduction. Let K ⊇ Q be a Galois field extension with Galois
group G and ring of algebraic integers R. We consider G as a topological
group with the Krull topology (see e.g. [L93, p. 329]).

Suppose that K ⊇ Q is a finite extension. The normal basis theorem
asserts that there is x ∈ K such that B := {σ(x)}σ∈G form a basis for K as
a vector space over Q. In fact, such a basis exists for general finite Galois
field extensions (see e.g. [J80, p. 283]). B is called a normal basis and x is
called a normal basis generator. If B is a Z-basis for R, then B is called
a normal integral basis and x is called a normal integral basis generator.
Normal integral bases do not always exist. In fact, for abelian extensions,
Leopoldt [Leo59] proved the following result:

1.1. Theorem. Suppose that K ⊇ Q is a finite Galois field extension
with abelian Galois group. Then K has a normal integral basis if and only
if K is contained in the nth cyclotomic number field , Kn, for some positive
square-free integer n.

For infinite extensions Theorem 1.1 makes no sense. However, if we let
(G,Z) denote the set of functions f : G→ Z and we let G operate on (G,Z)
by (σf)(τ) = f(σ−1τ) for σ, τ ∈ G, then Theorem 1.1 can be formulated
by saying that there is a left Z-module isomorphism F : (G,Z) → R that
respects the action of G.

Namely, if B is a Z-basis for R, then we can define F by

F (f) =
∑

σ∈G
f(σ)σ(x).

Conversely, if F : (G,Z)→ R is an isomorphism as above, and h : G→ Z is
defined by h(1) = 1 and h(σ) = 0, σ 6= 1, then x := F (h) is a normal integral
basis generator for K. In this paper we prove, using an idea introduced
by Lenstra in [Le85] for the case of normal bases for infinite Galois field
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extensions, that this version of Theorem 1.1 is valid for infinite extensions,
provided we only consider continuous functions G→ Z:

1.2. Theorem. Suppose that K ⊇ Q is a Galois field extension with
abelian Galois group G and ring of algebraic integers R. Denote by C(G,Z)
the Z-module of all continuous functions f : G → Z, where Z is equipped
with the discrete topology. Let G operate on C(G,Z) by (σf)(τ) = f(σ−1τ)
for σ, τ ∈ G. Then there is an isomorphism of Z-modules C(G,Z)→ R that
respects the action of G if and only if for every finite extension K ′ ⊇ Q such
that K ⊇ K ′ there is a positive square-free integer n such that Kn ⊇ K ′.

For some related results concerning normal bases for infinite Galois ex-
tensions see [Lu98] and [Lu99].

2. Cofinal countable inverse limits. We recall the following defini-
tions. A set I is preordered if it is equipped with a binary relation ≺ that
is transitive and reflexive. A set I is directed if it is preordered and has the
additional property that for any two α, β ∈ I there is γ ∈ I such that α ≺ γ
and β ≺ γ. An inverse system of sets (Eα, fαβ) relative to a set I consists
of a preordered set I, a set Eα for each α ∈ I, and a map fαβ : Eβ → Eα
for each pair α, β ∈ I with α ≺ β, such that fαα = idEα for each α ∈ I, and
fαβfβγ = fαγ for all α, β, γ ∈ I with α ≺ β ≺ γ. The inverse limit of such
a system, denoted by lim←−α∈I Eα, is defined to be the set of all (xα)α∈I in∏
α∈I Eα such that if α, β ∈ I and α ≺ β, then fαβ(xβ) = xα. Recall that

a subset J of I is called cofinal if for every α ∈ I there is β ∈ J such that
α ≺ β. We use the following result in Section 3:

2.1. Proposition. Let (Eα, fαβ) be an inverse system of sets relative to
a directed set I, which has a countable cofinal subset J . Suppose furthermore
that all fαβ, α, β ∈ J , are surjective. If all Eα are non-empty , then the
inverse limit lim←−α∈I Eα, taken with respect to the maps fαβ , α, β ∈ I, is
non-empty.

Proof. Use the ideas in [B68, III.7.4, Prop. 5].

3. Number fields. In this section, we prove Theorem 1.2. We need
three well known results (see Lemmas 3.1–3.3). The multiplicative group of
units of a ring S is denoted by S∗.

3.1. Lemma. Let L′ ⊇ L be finite Galois field extensions of Q. Let Tr
denote the trace map from L′ to L. Suppose that L ⊇ Q has Galois group H.

(a) If L has a normal integral basis, then Z[H]∗ acts transitively on the
set of normal integral basis generators for L.

(b) If x is a normal integral basis generator for L′, then Tr(x) is a
normal integral basis generator for L.
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Proof. (a) follows directly from the definition of a normal integral basis
generator and (b) is [N90, Theorem 4.10].

Let {p1, p2, . . .} denote the set of all odd primes. For each pi, let εpi
denote a primitive pith root of unity. For all positive integers m,n such that
m ≥ n, let

rmn : Gal(Kp1...pm/Q)→ Gal(Kp1...pn/Q)

be the restriction map and let

pmn : Zp1−1 × . . .× Zpm−1 → Zp1−1 × . . .× Zpn−1

be the natural projection. For each positive integer n, let

θn : Zp1−1 × . . .× Zpn−1 → Gal(Kp1...pn/Q)

be the group isomorphism given by θn(a1, . . . , an) = σa1,...,an , where

σa1,...,an(εi) = εaii , i = 1, . . . , n.

With the above notations, we immediately get:

3.2. Lemma. If m and n are positive integers such that m ≥ n, then the
following diagram is commutative:

Zp1−1 × . . .× Zpm−1 Zp1−1 × . . .× Zpn−1

Gal(Kp1...pm/Q) Gal(Kp1...pn/Q).

θm

��

pmn //

θn

��
rmn //

We also need the following:

3.3. Lemma. If G1 and G2 are groups, then the map

p : Z[G1 ×G2]∗ → Z[G2]∗,

induced by the projection G1 ×G2 → G2, is surjective.

Proof. The inclusion p(Z[G1 ×G2]∗) ⊆ Z[G2]∗ is trivial. For the reverse
inclusion, let i : Z[G2]∗ → Z[G1×G2]∗ be the map induced by the canonical
injection G2 → G1 ×G2. Then Z[G2]∗ = p(i(Z[G2]∗)) ⊆ p(Z[G1 ×G2]∗).

Proof of Theorem 1.2. Let U denote the set of open subgroups of G. If
N ∈ U let

KN = {k ∈ K | σ(k) = k for all σ ∈ N}.
We write N ′ ≺ N when N,N ′ ∈ U and N ⊆ N ′.

Assume that there is an isomorphism of Z-modules F : C(G,Z) → R
that respects the action of G. Pick a finite field extension KN ⊇ Q, where
N ∈ U . By Theorem 1.1, it is enough to show that KN has a normal
integral basis. Let CN (G,Z) = {f ∈ C(G,Z) | σf = f for all σ ∈ N}. Then
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F (CN (G,Z)) = RN . If we define h ∈ CN (G,Z) by h(σ) = 1 if σ ∈ N and
h(σ) = 0 if σ /∈ N , then F (h) is a normal integral basis generator for KN .

Now suppose that if K ′ ⊇ Q is a finite extension such that K ⊇ K ′,
then there is a positive integer n such that Kn ⊇ K ′. We can assume that
K ⊇ Kn for all positive square-free integers n. By Theorem 1.1, for every
N ∈ U there is a normal integral basis generator yN for KN . If N ′ ≺ N ,
then let TrN ′/N : KN → KN ′ denote the trace function and define βN ′/N ∈
Z[G/N ′]∗ by the relation TrN ′/N (yN ) = βN ′/N (yN ′). This is possible because
of Lemma 3.1(a), (b). If N ′ ≺ N , then let %N ′/N : Z[G/N ] → Z[G/N ′] de-
note the natural map and define the function γN ′/N : Z[G/N ]∗ → Z[G/N ′]∗

by γN ′/N (αN ) = %N ′/N (αN )βN ′/N for all αN ∈ Z[G/N ]∗. It is easy to check
that (Z[G/N ]∗, γN ′/N ) form an inverse system of sets relative to U . Let

V = {N ∈ U | KN = Kp1...pn for some n ≥ 1}.
By Lemmas 3.2 and 3.3, the functions γN ′/N , N,N ′ ∈ V , are surjective.
Since V is a countable cofinal subset of U , we see, by Proposition 2.1, that
the inverse limit Γ := lim←−N∈U Z[G/N ]∗ taken with respect to the functions
γN ′/N , is non-empty. Now choose (αN )N∈U ∈ Γ . For every N ∈ U , let
xN = αN (yN ). Then, by Lemma 3.1(a) and the above construction, we get:

(i) if N ∈ U , then xN is a normal integral basis generator for KN ,
(ii) if N ′ ≺ N , then TrN ′/N (xN ) = xN ′ .

Let f ∈ C(G,Z). Since G is compact and Z is equipped with the discrete
topology, there is N ∈ U such that f is constant on τN for every choice of
τ ∈ G. We can therefore define a map fN : G/N → Z induced by f . We
now define F : C(G,Z)→ R by

F (f) =
∑

σ∈G/N
fN (σ)σ(xN).

By (ii), F is well defined. It is clear that F is Z-linear. By (i), F is bijective.
It is easy to check that F also respects the action of G.
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