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1. Introduction. Let K O Q be a Galois field extension with Galois
group G and ring of algebraic integers R. We consider G as a topological
group with the Krull topology (see e.g. [L93, p. 329]).

Suppose that K O Q is a finite extension. The normal basis theorem
asserts that there is © € K such that B := {o(z)},ecq form a basis for K as
a vector space over Q. In fact, such a basis exists for general finite Galois
field extensions (see e.g. [J80, p. 283]). B is called a normal basis and x is
called a normal basis generator. If B is a Z-basis for R, then B is called
a normal integral basis and x is called a normal integral basis generator.
Normal integral bases do not always exist. In fact, for abelian extensions,
Leopoldt [Leo59] proved the following result:

1.1. THEOREM. Suppose that K O Q is a finite Galois field extension
with abelian Galois group. Then K has a normal integral basis if and only
if K is contained in the nth cyclotomic number field, K, , for some positive
square-free integer n.

For infinite extensions Theorem 1.1 makes no sense. However, if we let
(G,Z) denote the set of functions f : G — Z and we let G operate on (G, Z)
by (of)(t) = f(o~ 1) for 0,7 € G, then Theorem 1.1 can be formulated
by saying that there is a left Z-module isomorphism F' : (G,Z) — R that
respects the action of G.

Namely, if B is a Z-basis for R, then we can define F' by

F(f)=>_ flo)o().
ceG

Conversely, if F': (G,Z) — R is an isomorphism as above, and h: G — Z is
defined by h(1) = 1 and h(c) =0, 0 # 1, then = := F'(h) is a normal integral
basis generator for K. In this paper we prove, using an idea introduced
by Lenstra in [Le85] for the case of normal bases for infinite Galois field

2000 Mathematics Subject Classification: 11R04, 11R18, 11R33.

[79]



80 P. Lundstrom

extensions, that this version of Theorem 1.1 is valid for infinite extensions,
provided we only consider continuous functions G — Z:

1.2. THEOREM. Suppose that K O Q is a Galois field extension with
abelian Galois group G and ring of algebraic integers R. Denote by C(G,7Z)
the Z-module of all continuous functions f : G — Z, where Z is equipped
with the discrete topology. Let G operate on C(G,Z) by (o f)(7) = f(o717)
foro,7 € G. Then there is an isomorphism of Z-modules C(G,Z) — R that
respects the action of G if and only if for every finite extension K' O Q such
that K O K’ there is a positive square-free integer n such that K, O K'.

For some related results concerning normal bases for infinite Galois ex-
tensions see [Lu98] and [Lu99].

2. Cofinal countable inverse limits. We recall the following defini-
tions. A set I is preordered if it is equipped with a binary relation < that
is transitive and reflexive. A set I is directed if it is preordered and has the
additional property that for any two «, 8 € I there is v € I such that a <y
and # < 7. An inverse system of sets (Eq, fos) relative to a set I consists
of a preordered set I, a set F, for each o € I, and a map f.p5 : £z — E,
for each pair «a, 8 € I with a < 3, such that f,o, = idg, for each o € I, and
fapfay = fay for all o, 3,y € I with oo < 8 < ~y. The inverse limit of such
a system, denoted by limaer Fy, is defined to be the set of all (Ta)aer in
[Iocr B such that if o, 3 € I and o < 3, then fop(2g) = z4. Recall that
a subset J of I is called cofinal if for every a € I there is § € J such that
a < 3. We use the following result in Section 3:

2.1. PROPOSITION. Let (Eq, fap) be an inverse system of sets relative to
a directed set I, which has a countable cofinal subset J. Suppose furthermore
that all fop, o, 8 € J, are surjective. If all E, are non-empty, then the
inverse limit limyer Eo, taken with respect to the maps fop, o, 0 € I, is
non-empty.

Proof. Use the ideas in [B68, I11.7.4, Prop. 5]. =

3. Number fields. In this section, we prove Theorem 1.2. We need
three well known results (see Lemmas 3.1-3.3). The multiplicative group of
units of a ring S is denoted by S*.

3.1. LEMMA. Let L' D L be finite Galois field extensions of Q. Let Tr
denote the trace map from L' to L. Suppose that L O Q has Galois group H.

(a) If L has a normal integral basis, then Z[H|* acts transitively on the
set of normal integral basis generators for L.

(b) If x is a normal integral basis generator for L', then Tr(z) is a
normal integral basis generator for L.
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Proof. (a) follows directly from the definition of a normal integral basis
generator and (b) is [N90, Theorem 4.10]. m

Let {p1,p2,...} denote the set of all odd primes. For each p;, let g,
denote a primitive p;th root of unity. For all positive integers m, n such that
m > n, let

o Gal(Kp, p,, /Q) — Gal(Kp,..p, /Q)

be the restriction map and let
Py’ Lpy—1 X oo X Ly 1 — Ly —1 X oo X DLy, 1
be the natural projection. For each positive integer n, let
Op i Lpy—1 X ... X Ly, —1 — Gal(Kp,. . /Q)
be the group isomorphism given by 0, (a1,...,a,) = 0q,,....a,, Where
Oay,.an (i) =€, i=1,...,n.

With the above notations, we immediately get:

3.2. LEMMA. If m and n are positive integers such that m > n, then the
following diagram is commutative:

2
Zpl—l X ... X me—l HZpl—l X ... X an—l

97nl len

T

Gal(Ky,. p,,/Q) = Gal(Kyp,...p,/Q).
We also need the following;:

3.3. LEMMA. If Gy and G4 are groups, then the map
p: Z[Gl X Gg]* — Z[GQ]*,
induced by the projection G1 X Ga — G, is surjective.

Proof. The inclusion p(Z[G1 x Ga|*) C Z[G2|* is trivial. For the reverse
inclusion, let i : Z[G2]* — Z[G1 x G2]* be the map induced by the canonical
injection G2 — G1 X GQ. Then Z[GQ]* = p(Z(Z[GQ]*)) g p(Z[Gl X G2]*) u

Proof of Theorem 1.2. Let U denote the set of open subgroups of G. If
N e U let
KN ={ke K |o(k)=kforaloe N}

We write N’ < N when N,N' € U and N C N'.

Assume that there is an isomorphism of Z-modules F' : C(G,Z) — R
that respects the action of G. Pick a finite field extension K~ D Q, where
N € U. By Theorem 1.1, it is enough to show that K has a normal
integral basis. Let Cy(G,Z) = {f € C(G,Z) | of = f for all 0 € N}. Then



82 P. Lundstrom

F(Cn(G,Z)) = RN. If we define h € Cx(G,Z) by h(c) =1 if 0 € N and
h(c) =0 if o ¢ N, then F(h) is a normal integral basis generator for K.
Now suppose that if K’ O Q is a finite extension such that K O K’,
then there is a positive integer n such that K, DO K’. We can assume that
K D K, for all positive square-free integers n. By Theorem 1.1, for every
N € U there is a normal integral basis generator yy for KN. If N’ < N,
then let Try/ /y : KN — KN denote the trace function and define BnN €
Z[G/N']* by the relation Try/ /5 (yn) = Bn/n(yn+). This is possible because
of Lemma 3.1(a), (b). If N" < N, then let on//n : Z[G/N]| — Z[G/N'] de-
note the natural map and define the function vy /n : Z[G/N|* — Z[G/N']*
by Y/ /n(an) = oni v (an) By n for all ay € Z[G/N]*. It is easy to check
that (Z[G/N]*,yn//n) form an inverse system of sets relative to U. Let

V={NeU|K" =K, ,, for somen > 1}.

By Lemmas 3.2 and 3.3, the functions vyy//n, N, N’ € V, are surjective.
Since V' is a countable cofinal subset of U, we see, by Proposition 2.1, that
the inverse limit I" := lim yeyy Z[G//N]* taken with respect to the functions
YN’/N, is non-empty. Now choose (an)nvey € I'. For every N € U, let
zn = an(yn). Then, by Lemma 3.1(a) and the above construction, we get:

(i) if N € U, then xx is a normal integral basis generator for K%,
(i) if N" < N, then Try//n(zN) = 2N

Let f € C(G,Z). Since G is compact and Z is equipped with the discrete
topology, there is N € U such that f is constant on 7N for every choice of
7 € G. We can therefore define a map fny : G/N — Z induced by f. We
now define F': C(G,Z) — R by

F(f) = Z fn(o)o(zn).

ceG/N

By (ii), F is well defined. It is clear that F' is Z-linear. By (i), F' is bijective.
It is easy to check that F' also respects the action of G. =
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