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Density of rational points on elliptic fibrations—II
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Ritabrata Munshi (Piscataway, NJ)

1. Introduction. A rational elliptic surface over P1(Q) has a Weier-
strass model given by

(1) Y 2 = X3 + g4(S, T )X + g6(S, T ),

where g4 is a homogeneous polynomial of degree 4 and g6 is a homogeneous
polynomial of degree 6 over the field of rationals (see [5]). The equation (1)
defines a sextic hypersurface V in the weighted projective space P(1, 1, 2, 3).
With any rational point P on V with reduced coordinates (S, T,X, Y ) we
associate the height

H(P ) = max{|S|, |T |, |X|1/2, |Y |1/3}.
With respect to this height we define the counting function

N(H) = #{P ∈ V (Q) : H(P ) ≤ H}.
We wish to understand the behaviour of N(H) as H tends to infinity. The
surface V may contain exceptional divisors defined over Q, and any such
divisor has � H2 rational points of height H. (For example, if g6 = 0
then X = Y = 0 is an exceptional divisor.) It appears that these contribu-
tions (when present) play the dominant role in determining the behaviour
of N(H). To be more precise, let

U = V − {exceptional divisors}
be the open complement of the set of exceptional divisors, and define the
refined counting function

N(H,U) = #{P ∈ U(Q) : H(P ) ≤ H}.
We may regard N(H,U) as counting “non-trivial” points on V . Manin et al.
(see [1], [2]) have given some precise conjectures concerning the asymptotic
behaviour of N(H,U), but in this paper we are concerned with the following
weaker version of the conjecture.
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Conjecture 1. For any ε > 0, we have

N(H,U)� H1+ε,(2)

where the implied constant depends on the variety V and ε.

In our previous paper [6] we established some rough estimates towards
this conjecture for certain special elliptic fibrations. In particular, for the
surface given by

Y 2 = X3 +Q(S, T )3,(3)

where Q(S, T ) is a positive definite quadratic form defined over Z, we proved
that

N(H,U)� H4/3+ε.(4)

This was obtained by counting the number of integer solutions of Y 2 =
X3 + Z3, via reduction to a pair of quadratic equations and an application
of a uniform bound of Heath-Brown on the density of rational points on
plane conics.

On the other hand, from our recent work with Iwaniec [4], one may
establish the almost sharp lower bound

N(H,U)� H

(logH)3/2

for the surface

Y 2 = X3 + aQ(S, T )2X + bQ(S, T )3,(5)

where Q is a quadratic form. (In [4] we assume that the cubic X3 + aX + b
is irreducible.) So it is desirable to obtain good upper bounds for N(H,U)
in the case of the surface given by (5).

We note that from the geometric point of view, the surfaces given by (5)
are precisely the rational elliptic surfaces with two conjugate double points
(see [5]). In this paper we deal with such surfaces. We also assume that the
associated cubic form

f(X,Z) = X3 + aZ2X + bZ3

factorizes as a product of a linear form and a positive definite quadratic
form. Hence after a change of variable we may assume

f(X,Z) = (X + λZ)(X + δZ)(X + δ̄Z),(6)

where λ ∈ Z, and δ is a generator of the ring of integers of an imaginary
quadratic field. As in [6], the problem of estimating N(H,U) boils down to
counting the number of integer solutions of the equation Y 2 = f(X,Z) with
the restriction |X| < H2 and |Z| < H2. Now we state our main theorem.
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Theorem 2. Suppose the cubic f(X,Z) satisfies (6). Then the number
of integer solutions to the equation Y 2 = f(X,Z) with the restrictions

0 < |X|, |Z| < H2 and Y 6= 0

is bounded by Of,ε(H5/4+ε).

From the above theorem we conclude the following bound for the density
of rational points on the surface (5).

Corollary 3. Suppose the cubic f(X,Z) satisfies (6), and Q is a pos-
itive definite binary quadratic form defined over Z. Let V be the surface

Y 2 = f(X,Q(S, T )).

Then N(H,U) = Of,Q,ε(H5/4+ε).

Proof. The corollary follows by setting Z = Q(S, T ), and observing that
there are at most O(Hε) pairs (S, T ) for each fixed Z.

Remark 1. We observe that the cubic associated to the surface (3)
satisfies (6). Hence the above corollary improves our earlier result (4).

2. A lemma. For simplicity we assume that in (6) we have δ =
√
D

where D is a square-free negative number congruent to 2, or 3 modulo 4.
Let K = Q(

√
D) be the imaginary quadratic field and OK = Z[

√
D] the

ring of integers. Then the norm form is given by N(a+
√
D b) = a2 −Db2.

Suppose h is the class number and let R be a set of integral representatives
of the classes such that the norm of each ideal in R satisfies the Minkowski
bound.

Let d1 and d2 be a pair of coprime square-free positive rational integers,
and let d = d1d2. Consider the following pair of equations:

d1y
2
1 = x+ λz,(7)

d2y
2
2 = x2 −Dz2,(8)

in four variables x, z, y1 and y2. Our goal in this section is to estimate the
number N(H; d1, d2) of integer solutions of the above pair of equations with
the restrictions 0 < |x|, |z| < H, yi 6= 0, and (x, z) = 1.

Lemma 4. We have

N(H; d1, d2)�λ,D,ε {1 +
√
H/d}(Hd)ε

for any ε > 0.

Proof. First, we obtain a set of parametric solutions of (8). Substituting
these in (7) we get a set of conics. Then we apply a result of Heath-Brown
(Lemma 5 below) to count the number of points on these conics.

Let (y2, x, z) be a solution of (8). Since x and z are coprime, it follows
that (x+

√
D z) and (x−

√
D z) are coprime except for a possible common
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factor l | 4D. Hence from equation (8) we conclude that

(x+
√
Dz)OK = uv2,(9)

where u is square-free and each prime ideal appearing on the right hand
side is either split or ramified. Consequently,

Nu = d2 and Nv = y2.(10)

Now we have ideals I and J in the set R of integral representatives of ideal
classes, such that

Iu = uOK and Jv = vOK(11)

for some algebraic integers u = a+
√
D b and v = M +

√
DN , respectively.

From (9) and (11) we see that IJ2 = (e +
√
Df)OK is principal. Then it

follows that

(x+
√
D z)(e+

√
Df) = α(a+

√
D b)(M +

√
DN)2

for some unit α in OK . Without loss of generality, we may assume that
α = 1. Then we get

ex+Dfz = a(M2 +DN2) + 2bDMN,(12)

fx+ ez = 2aMN + b(M2 +DN2).(13)

Solving this system of linear equations we can express x, z as quadratics in
M , N with coefficients depending on a, b, e, f and D. We note that there
are at most OD,ε(dε) choices for (a, b), and at most OD(1) choices for (e, f).
So we conclude that if (y2, x, z) is a solution of (8), then (x, z) satisfies the
equations (12), (13) for some choice of (a, b, e, f).

Now, substituting the values of x and z in the equation (7), we get

Ed1y
2
1 = AM2 + 2BMN + CN2,(14)

where E = e2 −Df2, and the other coefficients are as follows:

A = (ea−Dfb) + λ(eb− fa),
B = D(eb− fa) + λ(ea−Dfb),
C = D(ea−Dfb) + λD(eb− fa).

It remains to count the number of solutions of (14). First, it is crucial
to note that there are restrictions on the possible values of gcd(M,N, y1).
Using the coprimality of x and z, and equations (12), (13), we observe that
gcd(M,N) divides E. So we are only concerned with those solutions of (14)
such that gcd(M,N, y1) |E. The set of all such integers E, and hence the
set of all possible values for gcd(M,N, y1), is determined by the fixed set
of representatives R. This means that the number of solutions of (14) that
contribute to N(H; d1, d2) is, up to a power of D, the same as the number
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of primitive solutions (i.e. gcd(M,N, y1) = 1) of (14) in the box

|y1| �λ

√
H/
√
d1, |M |, |N | �D

√
H/d

1/4
2 .(15)

These inequalities follow from the equations (7) and (9). To count the prim-
itive solutions we use the following result of Heath-Brown [3].

Lemma 5 (Heath-Brown). Let q be a ternary quadratic form with ma-
trix M. Let ∆ = |detM|, and assume that ∆ 6= 0. Write ∆0 for the highest
common factor of the 2 × 2 minors of M. Then the number of primitive
integer solutions of q(x) = 0 in the box |xi| < Ri is

�ε {1 + (R1R2R3∆
2
0/∆)1/3+ε}(R1R2R3)ε

for any ε > 0.

We apply the above result to the equation (14). In this case the absolute
value of the determinant is given by

d1|E(B2 −AC)| = d1(λ2 −D)Nu(NIJ2)2 ≥ d.
Also the gcd of all 2×2 minors is E, which is OD(1). Hence, in the notations
of Lemma 5, we have ∆ ≥ d and ∆0 = OD(1). Also from (15) we get

R1R2R3 �λ,D H3/2/d1/2.

So it follows from Lemma 5 that the number of solutions of (14) contributing
to N(H; d1, d2) is

�λ,D,ε {1 +
√
H/d}(Hd)ε.

Remark 2. We note that the exponent of H in Lemma 4 is sharp. In
fact, it follows that

N(H; d1, d2)�λ,D,d

√
H,

if any of the conics (14) has a rational point. For example, consider the
system (7), (8) with d1 = d2 = λ = −D = 1. Then a set of solutions of (8)
is given by taking (x, z, y2) = (a2− b2, 2ab, a2 + b2). Substituting this in (7),
we get a conic

y2
1 = a2 − b2 + 2ab.

Clearly (y1, a, b) = (1, 1, 0) is a point on the conic, and then we can construct
�
√
H rational points which contribute to N(H; d1, d2). The author wishes

to thank the referee for this observation.

3. Proof of Theorem 2. Suppose (X,Y, Z) is an integer triplet satis-
fying the equation

Y 2 = f(X,Z),(16)

and such that Y 6= 0 and 0 < |X|, |Z| < H2. We write g = gcd(X,Z) in
the form g = dt2, where d is square-free. It follows from (16) that d2t3 |Y .
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Defining

x =
X

g
, z =

Z

g
, y =

Y

d2t3
,

we observe that the integer triplet (x, y, z) satisfies the equation

dy2 = f(x, z) with (x, z) = 1.(17)

Also, we have d < (H/t)3/2 and the size restrictions

0 < |x|, |z| < 1
d

(
H

t

)2

and 0 < |y| �f
1
d2

(
H

t

)3

.

Our aim is to count the number of integer solutions of the equation (17)
for any given square-free d, satisfying the above restriction on the sizes. As
the form of the equation does not depend on the positive integer t, we do
the counting by writing H in place of H/t, and then at the end we replace
t back and sum over the range 0 < t < H. However from the form of the
estimate it will be clear that this sum over t only increases the bound by a
constant and does not alter the magnitude.

Using the assumed structure (6) of the cubic form f , we observe that d
and y factorize as d = d1d2 and y = y1y2 so that

d1y
2
1 = x+ λz,(18)

d2y
2
2 = N(x+

√
Dz).(19)

Now we apply the bound from Lemma 4 to count the number of solutions
when d is in the range d < H5/4. It follows that∑

0<|X|,|Z|<H2

0<Y 2=f(X,Z)

d<H5/4

1�f,ε

∑
d<H5/4

{
1 +

H

d

}
(Hd)ε �f,ε H

5/4+ε.(20)

For larger values of d we count by switching the “parameters” and the
“variables”. To this end we combine the equations (18), (19) and obtain

d2y
2
2 = (y4

1)d2
1 − (2λy2

1)d1z + (λ2 −D)z2.(21)

We consider this as an equation in y2, d1 and z, with parameters d2 and y1.
Now given d2 and y1, we restrict d1 to the dyadic segment [L, 2L]. Then we
note that we have the following bounds:

0 < |y2| �f
H2

Ld
3/2
2

and 0 < |z| � H2

Ld2
.

Observe that the bound on y2 follows from (19). Also gcd(y2, d1, z) = 1,
as otherwise equation (18) will imply that gcd(x, z) > 1. In the context of
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equation (21), using the notations of Lemma 5, we note that

R1R2R3 �f
H4

Ld
5/2
2

, ∆�f d2y
4
1, ∆0 �f 1.

So by Lemma 5, the number of solutions of (21) is

�f,ε

{
1 +

H4/3

L1/3d
1/6
2 d2y

4/3
1

}
Hε.(22)

Now since d1d2 > H5/4, we get

L1/3d
1/6
2 � H5/12d

−1/6
2 .

Combining this with the inequality d2 �f H
4/3 (which follows from (19)),

we find that the expression in (22) is

�f,ε

{
1 +

H41/36

d2y
4/3
1

}
Hε.

Then adding the contribution of all the dyadic blocks, we conclude that the
number of solutions with d2y1 ≤ H5/4 is at most Of,ε(H5/4+ε).

Now it remains to count the number of solutions of (16) with

d1d2 > H5/4 and d2y1 > H5/4.(23)

Multiplying the above inequalities we get d1y1d
2
2 > H5/2. From the size

restriction and equation (18) we get d1y
2
1 �f H2/d, and hence d1y1 �f

H/
√
d2. It follows that

Hd2
2√
d2
�f d1y1d

2
2 > H5/2,

i.e. d2 �f H. The number of possible values for z is at most H2/d�f H
3/4.

Also from the bound d1y1 �f H/
√
d2 �f

√
H, it follows that the number

of possible pairs (d1, y1) is

�f

∑
n≤
√
H

∑
d1y1=n

1�f,ε H
1/2+ε.

Hence under (23) the number of possible values that the triplet (d1, y1, z)
may take is at most Of,ε(H5/4+ε). Also we notice that x is uniquely de-
termined from the triplet using equation (18), and d2, y2 are uniquely de-
termined (as d2 is square-free) from equation (19). Hence the number of
solutions under the restriction (23) is bounded by Of,ε(H5/4+ε). The theo-
rem follows.
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