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Let

Z1(s) =
∞�

1

|ζ(1/2 + ix)|2x−s dx, s = σ + it,

denote the modified Mellin transform of |ζ(1/2 + ix)|2, where ζ(s) is the
Riemann zeta-function.

In [4], a limit theorem in the sense of weak convergence of probability
measures on the complex plane for the function Z1(s) has been considered.
Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ R, and
let, for T > 0,

νT (. . .) =
1
T

meas{t ∈ [0, T ] : . . .},

where in place of the dots a condition satisfied by t is to be written. Denote
by B(S) the class of Borel subsets of the space S. Then the main result of [4]
is the following statement.

Theorem 1. Let σ > 1/2. Then on (C,B(C)) there exists a probability
measure Pσ such that the probability measure

νT (Z1(σ + it) ∈ A), A ∈ B(C),

converges weakly to Pσ as T →∞.

However, the proof of Theorem 1 uses Theorem 2 of [4] whose proof is
not correct. Let a > 1, g(x) be an integrable function on [1, a], and

Zg,a(s) =
a�

1

g(x)x−s dx.
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Then Theorem 2 of [4] states that there exists a probability measure Pσ,a
on (C,B(C)) such that the probability measure

νT (Zg,a(σ + it) ∈ A), A ∈ B(C),

converges weakly to Pσ,a as T →∞.
Denote by γ = {s ∈ C : |s| = 1} the unit circle on the complex plane,

and define
Ωa =

∏
u∈[1,a]

γu,

where γu = γ for each u ∈ [1, a]. With the product topology and pointwise
multiplication Ωa is a compact topological Abelian group. By Lemma 3
of [4], on (Ωa,B(Ωa)) there exists a probability measure Qa such that the
probability measure

QT,a(A) = νT ({u−it : u ∈ [1, a]} ∈ A), A ∈ B(Ωa),

converges weakly to Qa as T →∞.
For the proof of Theorem 2, Lemma 3 of [4] and Theorem 5.1 of [3] are

applied. However, the function h : Ωa → C defined by the formula

h(yx) =
a�

1

g(x)x−σy−1
x dx, yx ∈ Ωa,

and used in the proof of Theorem 2 is not continuous.
This gap can be corrected as follows. We start with a limit theorem for an

integral sum. Divide the interval [1, a] by points 1 = x0 < x1 < · · · < xn = a
into n subintervals of the same length (a− 1)/n. In each interval [xj−1, xj ],
we take a point ξj and define the sum

Sn,a(s) =
n∑
j=1

g(ξj)ξ−sj ∆xj

with ∆xj = xj − xj−1. Define

QT,n,σ,a(A) = νT (Sn,a(σ + it) ∈ A), A ∈ B(C).

Proposition 2. On (C,B(C)), there exists a probability measure Qn,σ,a
such that the probability measure QT,n,σ,a converges weakly to Qn,σ,a as
T →∞.

Proof. Let the function hn,σ,a : Ωa → C be given by the formula

hn,σ,a(f) =
n∑
j=1

g(ξj)ξ−σj fξj∆xj , f ∈ Ωa.

Since in the definition of hn,σ,a(f) only a finite number of values of f occur,
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the function hn,σ,a is continuous in the product topology. Moreover,

hn,σ,a(x−it) =
n∑
j=1

g(ξj)ξ−σ−itj ∆xj = Sn,a(σ + it).

Hence from Theorem 5.1 of [3] and the weak convergence of the measure
QT,a we find that the probability measure QT,n,σ,a = QT,ah

−1
n,σ,a converges

weakly to the measure Qah−1
n,σ,a as T →∞.

Proposition 3. We have the equality

lim
n→∞

lim sup
T→∞

1
T

T�

0

|Sn,a(σ + it)−Zg,a(σ + it)| dt = 0.

Proof. By the Cauchy–Schwarz inequality,

(1)
1
T

T�

0

|Sn,a(σ + it)−Zg,a(σ + it)| dt

�
(

1
T

T�

0

|Sn,a(σ + it)−Zg,a(σ + it)|2 dt
)1/2

.

It is easily seen that

lim
n→∞

lim sup
T→∞

1
T

T�

0

Sn,a(σ + it)Sn,a(σ + it) dt = 0(2)

and

lim sup
T→∞

1
T

T�

0

Zg,a(σ + it)Zg,a(σ + it) dt = 0.(3)

Since

(4)
1
T

T�

0

Sn,a(σ + it)Zg,a(σ + it) dt

�
(

1
T

T�

0

|Sn,a(σ + it)|2 dt
)1/2( 1

T

T�

0

|Zg,a(σ + it)|2 dt
)1/2

,

and the same estimate is true for the mean value of Sn,a(σ + it)Zg,a(σ+ it),
the proposition follows from (1)–(4).

Proof of Theorem 2 of [4]. Let θT be the random variable defined in the
proof of Theorem 5 of [4]. Define

UT,n,a(σ) = Sn,a(σ + iθT ).
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Then Proposition 2 implies the relation

(5) UT,n,a(σ) D−−−−→
T→∞

Un,a(σ),

where Un,a(σ) is a complex-valued random variable having the distribution

Qn,σ,a, and D−→ means convergence in distribution. We will show that the
family {Qn,σ,a : n ∈ N} of probability measures is tight.

We take an arbitrary M > 0. Then, by the Chebyshev inequality,

P(|UT,n,a(σ)| > M) ≤ 1
TM

T�

0

|Sn,a(σ + it)| dt,

where θT is defined on the probability space (Ω,B(Ω),P). This together
with Proposition 3 shows that

(6) lim sup
T→∞

P(|UT,n,a(σ)| > M) ≤ sup
n∈N

lim sup
T→∞

1
TM

T�

0

|Sn,a(σ + it)| dt

≤ sup
n∈N

lim sup
T→∞

1
TM

T�

0

|Sn,a(σ + it)−Zg,a(σ + it)| dt

+ lim sup
T→∞

1
TM

T�

0

|Zg,a(σ + it)| dt

≤ 1
M

+ lim sup
T→∞

1
TM

T�

0

|Zg,a(σ + it)| dt ≤ Rσ,a
M

with Rσ,a < ∞. Let ε be an arbitrary positive number. Then, taking M =
Mε = Rσ,aε

−1, we deduce from (5) and (6) that, for all n ∈ N,

(7) P(|Un,a(σ)| > Mε) ≤ ε.

Define Kε = {s ∈ C : |s| ≤Mε}. Then Kε is a compact subset of C, and, in
view of (7),

P(Un,a(σ) ∈ Kε) ≥ 1− ε

for all n ∈ N. Hence, for all n ∈ N,

Qn,σ,a(Kε) ≥ 1− ε.

Thus, we proved that the family {Qn,σ,a : n ∈ N} is tight. Hence, by the
Prokhorov theorem (see, for example, [3]), it is relatively compact. There-
fore, there exists a sequence {Qnk,σ,a} ⊂ {Qn,σ,a} such that Qnk,σ,a converges
weakly to a probability measure Qσ,a on (C,B(C)) as k →∞. Thus,

(8) Unk,a(σ) D−−−→
k→∞

Qσ,a.
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Define
XT,a = Zg,a(σ + iθT ).

Then, taking into account Proposition 3, we find that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P(|XT,a(σ)− UT,n,a(σ)| ≥ ε)

≤ lim
n→∞

lim sup
T→∞

1
Tε

T�

0

|Sn,a(σ + it)−Zg,a(σ + it)| dt = 0.

This, (5), (8) and Theorem 4.2 of [3] show that

XT,a(σ) D−→
T→∞

Qσ,a.

This is equivalent to the assertion of Theorem 2 from [4].
The further part of [4] remains without changes.
Analogous corrections must be made in the proof of Theorem 6 of [1],

and in [2], [5], [6].
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