Corrigendum to the paper "Limit theorems for the Mellin transform of the square of the Riemann zeta-function. I"

(Acta Arith. 122 (2006), 173-184)
by
Antanas LaurinčIkas (Vilnius)

Let

$$
\mathcal{Z}_{1}(s)=\int_{1}^{\infty}|\zeta(1 / 2+i x)|^{2} x^{-s} d x, \quad s=\sigma+i t
$$

denote the modified Mellin transform of $|\zeta(1 / 2+i x)|^{2}$, where $\zeta(s)$ is the Riemann zeta-function.

In [4], a limit theorem in the sense of weak convergence of probability measures on the complex plane for the function $\mathcal{Z}_{1}(s)$ has been considered. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let, for $T>0$,

$$
\nu_{T}(\ldots)=\frac{1}{T} \operatorname{meas}\{t \in[0, T]: \ldots\}
$$

where in place of the dots a condition satisfied by t is to be written. Denote by $\mathcal{B}(S)$ the class of Borel subsets of the space S. Then the main result of [4] is the following statement.

Theorem 1. Let $\sigma>1 / 2$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ there exists a probability measure P_{σ} such that the probability measure

$$
\nu_{T}\left(\mathcal{Z}_{1}(\sigma+i t) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to P_{σ} as $T \rightarrow \infty$.
However, the proof of Theorem 1 uses Theorem 2 of 44 whose proof is not correct. Let $a>1, g(x)$ be an integrable function on $[1, a]$, and

$$
\mathcal{Z}_{g, a}(s)=\int_{1}^{a} g(x) x^{-s} d x
$$

[^0]Then Theorem 2 of [4] states that there exists a probability measure $P_{\sigma, a}$ on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that the probability measure

$$
\nu_{T}\left(\mathcal{Z}_{g, a}(\sigma+i t) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to $P_{\sigma, a}$ as $T \rightarrow \infty$.
Denote by $\gamma=\{s \in \mathbb{C}:|s|=1\}$ the unit circle on the complex plane, and define

$$
\Omega_{a}=\prod_{u \in[1, a]} \gamma_{u}
$$

where $\gamma_{u}=\gamma$ for each $u \in[1, a]$. With the product topology and pointwise multiplication Ω_{a} is a compact topological Abelian group. By Lemma 3 of [4], on $\left(\Omega_{a}, \mathcal{B}\left(\Omega_{a}\right)\right)$ there exists a probability measure Q_{a} such that the probability measure

$$
Q_{T, a}(A)=\nu_{T}\left(\left\{u^{-i t}: u \in[1, a]\right\} \in A\right), \quad A \in \mathcal{B}\left(\Omega_{a}\right)
$$

converges weakly to Q_{a} as $T \rightarrow \infty$.
For the proof of Theorem 2, Lemma 3 of [4] and Theorem 5.1 of [3] are applied. However, the function $h: \Omega_{a} \rightarrow \mathbb{C}$ defined by the formula

$$
h\left(y_{x}\right)=\int_{1}^{a} g(x) x^{-\sigma} y_{x}^{-1} d x, \quad y_{x} \in \Omega_{a}
$$

and used in the proof of Theorem 2 is not continuous.
This gap can be corrected as follows. We start with a limit theorem for an integral sum. Divide the interval $[1, a]$ by points $1=x_{0}<x_{1}<\cdots<x_{n}=a$ into n subintervals of the same length $(a-1) / n$. In each interval $\left[x_{j-1}, x_{j}\right]$, we take a point ξ_{j} and define the sum

$$
S_{n, a}(s)=\sum_{j=1}^{n} g\left(\xi_{j}\right) \xi_{j}^{-s} \Delta x_{j}
$$

with $\Delta x_{j}=x_{j}-x_{j-1}$. Define

$$
Q_{T, n, \sigma, a}(A)=\nu_{T}\left(S_{n, a}(\sigma+i t) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

Proposition 2. On $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure $Q_{n, \sigma, a}$ such that the probability measure $Q_{T, n, \sigma, a}$ converges weakly to $Q_{n, \sigma, a}$ as $T \rightarrow \infty$.

Proof. Let the function $h_{n, \sigma, a}: \Omega_{a} \rightarrow \mathbb{C}$ be given by the formula

$$
h_{n, \sigma, a}(f)=\sum_{j=1}^{n} g\left(\xi_{j}\right) \xi_{j}^{-\sigma} f_{\xi_{j}} \Delta x_{j}, \quad f \in \Omega_{a}
$$

Since in the definition of $h_{n, \sigma, a}(f)$ only a finite number of values of f occur,
the function $h_{n, \sigma, a}$ is continuous in the product topology. Moreover,

$$
h_{n, \sigma, a}\left(x^{-i t}\right)=\sum_{j=1}^{n} g\left(\xi_{j}\right) \xi_{j}^{-\sigma-i t} \Delta x_{j}=S_{n, a}(\sigma+i t)
$$

Hence from Theorem 5.1 of [3] and the weak convergence of the measure $Q_{T, a}$ we find that the probability measure $Q_{T, n, \sigma, a}=Q_{T, a} h_{n, \sigma, a}^{-1}$ converges weakly to the measure $Q_{a} h_{n, \sigma, a}^{-1}$ as $T \rightarrow \infty$.

Proposition 3. We have the equality

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)-\mathcal{Z}_{g, a}(\sigma+i t)\right| d t=0
$$

Proof. By the Cauchy-Schwarz inequality,

$$
\begin{align*}
& \frac{1}{T} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)-\mathcal{Z}_{g, a}(\sigma+i t)\right| d t \tag{1}\\
& \ll\left(\frac{1}{T} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)-\mathcal{Z}_{g, a}(\sigma+i t)\right|^{2} d t\right)^{1 / 2}
\end{align*}
$$

It is easily seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} S_{n, a}(\sigma+i t) \overline{S_{n, a}(\sigma+i t)} d t=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathcal{Z}_{g, a}(\sigma+i t) \overline{\mathcal{Z}_{g, a}(\sigma+i t)} d t=0 \tag{3}
\end{equation*}
$$

Since

$$
\begin{align*}
& \frac{1}{T} \int_{0}^{T} S_{n, a}(\sigma+i t) \overline{\mathcal{Z}_{g, a}(\sigma+i t)} d t \tag{4}\\
& \quad \ll\left(\frac{1}{T} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)\right|^{2} d t\right)^{1 / 2}\left(\frac{1}{T} \int_{0}^{T}\left|\mathcal{Z}_{g, a}(\sigma+i t)\right|^{2} d t\right)^{1 / 2}
\end{align*}
$$

and the same estimate is true for the mean value of $\overline{S_{n, a}(\sigma+i t)} \mathcal{Z}_{g, a}(\sigma+i t)$, the proposition follows from (1)-(4).

Proof of Theorem 2 of [4]. Let θ_{T} be the random variable defined in the proof of Theorem 5 of 4]. Define

$$
U_{T, n, a}(\sigma)=S_{n, a}\left(\sigma+i \theta_{T}\right)
$$

Then Proposition 2 implies the relation

$$
\begin{equation*}
U_{T, n, a}(\sigma) \xrightarrow[T \rightarrow \infty]{\mathcal{D}} U_{n, a}(\sigma) \tag{5}
\end{equation*}
$$

where $U_{n, a}(\sigma)$ is a complex-valued random variable having the distribution $Q_{n, \sigma, a}$, and $\xrightarrow{\mathcal{D}}$ means convergence in distribution. We will show that the family $\left\{Q_{n, \sigma, a}: n \in \mathbb{N}\right\}$ of probability measures is tight.

We take an arbitrary $M>0$. Then, by the Chebyshev inequality,

$$
\mathbb{P}\left(\left|U_{T, n, a}(\sigma)\right|>M\right) \leq \frac{1}{T M} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)\right| d t
$$

where θ_{T} is defined on the probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$. This together with Proposition 3 shows that
(6) $\quad \limsup _{T \rightarrow \infty} \mathbb{P}\left(\left|U_{T, n, a}(\sigma)\right|>M\right) \leq \sup _{n \in \mathbb{N}} \limsup _{T \rightarrow \infty} \frac{1}{T M} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)\right| d t$

$$
\begin{aligned}
\leq & \sup _{n \in \mathbb{N}} \limsup _{T \rightarrow \infty} \frac{1}{T M} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)-\mathcal{Z}_{g, a}(\sigma+i t)\right| d t \\
& +\limsup _{T \rightarrow \infty} \frac{1}{T M} \int_{0}^{T}\left|\mathcal{Z}_{g, a}(\sigma+i t)\right| d t \\
\leq & \frac{1}{M}+\limsup _{T \rightarrow \infty} \frac{1}{T M} \int_{0}^{T}\left|\mathcal{Z}_{g, a}(\sigma+i t)\right| d t \leq \frac{R_{\sigma, a}}{M}
\end{aligned}
$$

with $R_{\sigma, a}<\infty$. Let ε be an arbitrary positive number. Then, taking $M=$ $M_{\varepsilon}=R_{\sigma, a} \varepsilon^{-1}$, we deduce from (5) and (6) that, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left(\left|U_{n, a}(\sigma)\right|>M_{\varepsilon}\right) \leq \varepsilon \tag{7}
\end{equation*}
$$

Define $K_{\varepsilon}=\left\{s \in \mathbb{C}:|s| \leq M_{\varepsilon}\right\}$. Then K_{ε} is a compact subset of \mathbb{C}, and, in view of (7),

$$
\mathbb{P}\left(U_{n, a}(\sigma) \in K_{\varepsilon}\right) \geq 1-\varepsilon
$$

for all $n \in \mathbb{N}$. Hence, for all $n \in \mathbb{N}$,

$$
Q_{n, \sigma, a}\left(K_{\varepsilon}\right) \geq 1-\varepsilon
$$

Thus, we proved that the family $\left\{Q_{n, \sigma, a}: n \in \mathbb{N}\right\}$ is tight. Hence, by the Prokhorov theorem (see, for example, [3]), it is relatively compact. Therefore, there exists a sequence $\left\{Q_{n_{k}, \sigma, a}\right\} \subset\left\{Q_{n, \sigma, a}\right\}$ such that $Q_{n_{k}, \sigma, a}$ converges weakly to a probability measure $Q_{\sigma, a}$ on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ as $k \rightarrow \infty$. Thus,

$$
\begin{equation*}
U_{n_{k}, a}(\sigma) \xrightarrow[k \rightarrow \infty]{\mathcal{D}} Q_{\sigma, a} \tag{8}
\end{equation*}
$$

Define

$$
X_{T, a}=\mathcal{Z}_{g, a}\left(\sigma+i \theta_{T}\right) .
$$

Then, taking into account Proposition 3, we find that, for every $\varepsilon>0$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} & \mathbb{P}\left(\left|X_{T, a}(\sigma)-U_{T, n, a}(\sigma)\right| \geq \varepsilon\right) \\
& \leq \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T \varepsilon} \int_{0}^{T}\left|S_{n, a}(\sigma+i t)-\mathcal{Z}_{g, a}(\sigma+i t)\right| d t=0 .
\end{aligned}
$$

This, (5), (8) and Theorem 4.2 of [3] show that

$$
X_{T, a}(\sigma) \xrightarrow[T \rightarrow \infty]{\stackrel{\mathcal{D}}{\longrightarrow}} Q_{\sigma, a} .
$$

This is equivalent to the assertion of Theorem 2 from [4].
The further part of 4 remains without changes.
Analogous corrections must be made in the proof of Theorem 6 of [1], and in [2], [5], 6].

References

[1] V. Balinskaitė and A. Laurinčikas, Discrete limit theorems for the Mellin transform of the Riemann zeta-function, Acta Arith. 131 (2008), 29-42.
[2] -, -, A two-dimensional discrete limit theorem in the space of analytic functions for Mellin transforms of the Riemann zeta-function, Nonlinear Anal. Model. Control 13 (2008), 159-167.
[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[4] A. Laurinčikas, Limit theorems for the Mellin transform of the square of the Riemann zeta-function. I, Acta Arith. 122 (2006), 173-184.
[5] -, Limit theorems for the Mellin transform of $|\zeta(1 / 2+i t)|^{2}$. II, in: Probability and Number Theory—Kanazawa 2005, S. Akiyama et al. (eds.), Adv. Stud. Pure Math. 49, Math. Soc. Japan, 2007, 185-198.
[6] -, A two-dimensional limit theorem for Mellin transforms of the Riemann zetafunction, Lith. Math. J. 49 (2009), 62-70.

Antanas Laurinčikas
Department of Mathematics and Informatics
Vilnius University
Naugarduko 24
LT-03225 Vilnius, Lithuania
E-mail: antanas.laurincikas@mif.vu.lt

[^0]: 2010 Mathematics Subject Classification: Primary 11M06; Secondary 11K99.
 Key words and phrases: limit theorem, Mellin transform, probability measure, Riemann zeta-function, weak convergence.

