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Mahler’s measure of a polynomial in terms

of the number of its monomials

by

Edward Dobrowolski (Prince George, BC)

1. Introduction and statement of the results. Mahler’s measure
M(f) of a polynomial f can be defined by either side of the equality

exp
( 1\

0

log |f(e2πiθ)| dθ
)

= |a0|
n∏

i=1

max(1, |αi|),

where a0 is the leading coefficient of f , and the product runs over all its
(possibly multiple) zeros.

Although the question of Lehmer, whether Mahler’s measure of a poly-
nomial with integral coefficients that is not a product of cyclotomic factors
is bounded below, i.e. M(f) > c > 1 with an absolute constant c, remains
still open, multiple lower bounds on M(f) depending on various parameters
of f or valid for special classes of polynomials have been found. Here, we
are dealing with bounds depending exclusively on the number k of nonzero
coefficients of f. The first result of that kind was presented in [4],

M(f) ≥ 1 +
1

expk+1 2k2
.

Later, in [2] it was improved to

M(f) ≥ 1 +
1

a exp(bkk)

with explicit constants a ≤ 13911 and b ≤ 2.27. The aim of this paper is to
further sharpen this result. We shall prove
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Theorem 1. If f ∈ Z[x] is a polynomial that is not a product of cyclo-

tomic factors then

M(f) ≥ 1 +
1

exp(a3⌊(k−2)/4⌋k2 log k)
,

where k > 1 is the number of monomials in f , and a < 0.785.

This theorem is based on Theorem 2 and Lemma 1 below. Before stat-
ing these results we need to introduce some basic notation. We assume that
in the expression f(x) =

∑k
i=1 aix

ni of a polynomial with k nonzero co-
efficients, the exponents n1, . . . , nk are strictly decreasing; fc denotes the
product of all cyclotomic factors of f, fn the product of its noncyclotomic
factors and possibly a constant, so that f = fcfn. We say that f has recipro-

cal exponents if the exponents of x in xdeg ff(x−1) are the same as in f(x).
A polynomial f that satisfies a stronger condition, xdeg ff(x−1) = ±f(x),
is called reciprocal. Throughout this work, Φq denotes the qth cyclotomic
polynomial, and θ > 1.32 denotes the real zero of the polynomial x3−x+1.
C. J. Smyth [10] proved that M(f) ≥ θ for every polynomial with integral
coefficients that is not reciprocal.

Theorem 2. Let f ∈ Z[x], f(0) 6= 0, be a polynomial with k nonzero

coefficients. There are positive constants c1 and c2, depending only on k,
and polynomials f0, f2 ∈ Z[x] such that if

deg fc ≥
(

1 − 1

c1

)
deg f

then either

(1) f(x) = f0(x
l), where deg f0 ≤ c2,

or

(2) f(x) =
( ∏

i

Φqi
(xli)

)
f2(x), where min

i
{li}≥max

{
1

2c1
deg f, deg f2

}
.

The sizes of the constants are: ci ≤ exp(3⌊(k−2)/4⌋sik
2 log k) with s1 = 0.636

and s2 = 1.06 for f with reciprocal exponents; ci ≤ exp(3⌈(k−2)/2⌉tik
2 log k)

with t1 = 1.81 and t2 = 2.841 for f that does not have reciprocal exponents.

Corollary 1. Let f(x) =
∑k

i=1 aix
ni ∈ Z[x], f(0) 6= 0, be a polyno-

mial with k nonzero coefficients. If case (2) of Theorem 2 occurs then

f2(x) = ±∑k
i=j aix

ni with some j, 1 < j ≤ k.

Proof. Let g(x) =
∏

i Φqi
(xli) =

∑N
j=1 bjx

mj with nonzero b1, . . . , bN .
Then mN = 0, bN = ±1, and mN−1 ≥ mini li ≥ deg f2. Thus ±f2(x) must
occur in the expression of f(x) = g(x)f2(x).

Since fn must divide f2, as an immediate consequence we get
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Corollary 2. Suppose that f satisfies the conditions of Theorem 2,
including deg fc ≥ (1 − 1/c1) deg f. If the exponents of f have no common

factor , i.e., f(x) 6= f0(x
l) for l > 1, then fn divides a polynomial with inte-

gral coefficients that has fewer than k terms and the same Mahler’s measure

as f.

The other lemma used in the proof of Theorem 1 is stated below.

Lemma 1. Let f ∈ Z[x] be a polynomial with k > 1 nonzero coefficients.

If g divides f, g ∈ Z[x], g(0) 6= 0, g is monic and has no cyclotomic factors

then

M(g) ≥ 1 +
0.31 deg g

k! deg f
.

Hence, by taking g = f, we have

Corollary 3. If f ∈ Z[x] is a polynomial with k > 1 nonzero coeffi-

cients and f has no cyclotomic factors then

M(f) ≥ 1 +
0.31

k!
.

It seems that a bound of that type was not previously stated in an explicit
way. Lemma 8 from [4] implies only M(f) ≥ 1 + 1/exp(2kk) in that context.
That is essentially the same as the bound in [2], obtained for polynomials
that allow cyclotomic factors. Interestingly, the bound in Corollary 3 is
slightly stronger than a bound obtained in [3] for a much easier case of an
irreducible polynomial,

M(f) ≥ 1 +
log 2e

ekk+1
.

This can also be slightly strengthened:

Proposition 1. Let f ∈ Z[x] be a monic irreducible polynomial with k
nonzero terms. If f is not cyclotomic then

M(f) ≥ 1 +
0.17

2mm!
,

where m = ⌈k/2⌉.
Finally, it is helpful in the computations below to start with a larger k.

For that reason we find bounds for polynomials with a very small number
of terms more directly. For quadrinomials we have

Proposition 2. Let f ∈ Z[x], f(0) 6= 0, be a monic quadrinomial that

is not a product of cyclotomic factors. Then M(f) ≥ θ.

2. Notation. If α is an algebraic number then we define M(α) = M(f),
where f ∈ Z[x] is the minimal polynomial of α.

If f is a polynomial in one variable then |f | = deg f.
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Φm denotes the mth cyclotomic polynomial and ϕ(x) denotes Euler’s
totient function, so that |Φm| = ϕ(m).

For a vector a = (a1, . . . , an) ∈ Rn, ‖a‖ denotes the ordinary Euclidean
norm, l(a) = |a1|+ · · ·+ |an| its length, and h(a) = max1≤i≤n |ai| its height.
For two vectors a,b ∈ Rn, ab denotes the ordinary dot product a · b.

For a fixed list of exponents (n1, . . . , nk), there is an obvious one-to-one
correspondence between vectors a = (a1, . . . , ak) ∈ Rk and polynomials,

a ↔ a(x) =
k∑

i=1

aix
ni .

In that case a norm of a polynomial refers to the corresponding norm of the
vector of its coefficients, e.g., l(a) = l(a).

A Laurent polynomial in n variables x = (x1, . . . , xn) is an expression of
the form

(3) F (x) =
∑

j∈J

ajx
j,

where J = JF is a finite set of multi-exponents j = (j1, . . . , jn) ∈ Zn,

J = |J | is the number of elements in J , and xj =
∏n

i=1 x
ji

i . Further, we
write j ∈ JF only if aj 6= 0, so that JF is unambiguously determined by F.

If r = (r1, . . . , rn) is a vector in Zn then the following operation defines
a (Laurent) polynomial in one variable:

Fr(x) = F (xr1 , . . . , xrn) =
∑

j∈J

ajx
jr.

In order to convert a Laurent polynomial F into an ordinary polynomial,
let

jF = (min
j∈J

(j)1, . . . ,min
j∈J

(j)n),

where (j)i denotes the ith component of j, and define

IF (x) = x−jFF (x).

Clearly, IF (x) is a polynomial. Moreover, IF (0) 6= 0, unless F ≡ 0 itself. We
shall denote by R0[[x]] the ring of Laurent polynomials in n variables x =
(x1, . . . , xn) and with coefficients in an integral domain R. The divisibility
properties of R0[[x]] are almost the same as those of R0[x], except that in
R0[[x]] the units are of the form uxj, where u is a unit of R. For example,
if f, g ∈ R0[[x]], g has no multiple zeros, and γ is a positive integer, then

(4) g(x)γ | f(x) ⇔ g(x) | f (m)(x) for 0 ≤ m ≤ γ − 1,

where f (0) = f and f (m) = (dm/dxm)f. To verify this claim, consider the
relation between f (m) and (If)(m).
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An extended Laurent cyclotomic polynomial in n variables is a Laurent
polynomial Φm(xv), where xv =

∏n
i=1 x

vi

i and v = (v1, . . . , vn) ∈ Zn. An
extended cyclotomic polynomial is a polynomial of the form IΦm(xv).

For a fixed positive integer k, P =
∏

p≤k p, where the product runs over

prime numbers. It is known that P ≤ 3k (see [6] for a reference).
Finally, e(m/n) = ζm

n = exp(2πim/n).

3. Proof of Theorem 1. We proceed by induction on k. For k = 2, we
trivially have M(f) ≥ 2. For k = 3, in the case of a reciprocal polynomial f,
we trivially get M(f) ≥ (3 +

√
5)/2, while for nonreciprocal polynomials,

M(f) ≥ θ by Smyth’s result [10]. Finally, by Proposition 1, we also have
M(f) ≥ θ for k = 4. This shows the statement of the theorem for k ≤ 4. Let
k ≥ 5, and suppose the theorem is true for all k′ < k. In view of Smyth’s
result we also assume that f is reciprocal. There are two possibilities:

Case 1: |fc| ≤ (1−1/c1)|f |. In that case, by putting g = fn in Lemma 1,
we get

M(f) ≥ 1 +
0.31

k!c1
≥ 1 +

1

exp(a3⌊(k−2)/4⌋k2 log k)

with a < 0.785 for k ≥ 5.

Case 2: |fc| > (1 − 1/c1)|f |. By Theorem 2 and Corollary 2, we have
still two possibilities:

Case 2.1: f(x) = f0(x
l) with |f0| ≤ c2. Now we have |fn| < (1/c1)|f |,

fn(x) = f0n(x
l), fc(x) = f0c(x

l), with suitable f0n, f0c ∈ Z[x]. Consequently,
|f0n| < (1/c1)|f0|. Hence,

logM(f) = logM(f0) = logM(f0n) ≥
1

4

(
log log(c2/c1)

log(c2/c1)

)3

.

The first equality in this formula is an obvious consequence of the definition
of Mahler’s measure; the inequality is due to Voutier’s result [11]. This bound
is much stronger than required.

Case 2.2: fn divides a polynomial f2 with fewer than k terms and

M(fn) = M(f2). Now, the theorem follows by the induction hypothesis.

4. Proof of Theorem 2

4.1. An outline of the proof. Let f(x) = ak +
∑k−1

i=1 aix
ni . Consider the

vector of nonzero exponents of f , n = (n1, . . . , nk−1). An integer relation

on n is a vector b ∈ Zk−1 such that bn = 0. Let Λ ⊂ Zk−1 be the (k − 2)-
dimensional lattice of all integer relations of n. For a t-dimensional sublat-
tice Γ < Λ, vol(Γ ) denotes the t-dimensional volume of its fundamental
region ∆Γ .
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Further, for 1 ≤ t ≤ k − 2, let

ht = min
Γ<Λ

dim Γ=t

vol(Γ ).

Thus, we have a mapping

f 7→ (h1, . . . , hk−2).

Let j0 be a positive integer, and Hj0 , Hj0+1, . . . , Hk−2 real positive constants
such that hj0 ≤ Hj0 < Hj0+1 < · · · < Hk−2. The exact values of j0 and
the constants Hj0 , . . . , Hk−2 will be determined later, separately for f with
reciprocal exponents, and for f with nonreciprocal exponents. For each of
these cases, define c2 by putting

(5) c2 = Hk−2.

One of the following cases must occur:

C1: vol(Λ) = hk−2 ≤ c2, or
C2: hj ≤ Hj , but hj+1 > Hj+1 for some j with j0 ≤ j ≤ k − 3.

In Section 4.3 we show that C1 immediately implies formula (1) of Theo-
rem 2. The treatment of C2 is more complicated. The sizes of the constants
Hj0 , Hj0+1, . . . , Hk−2 control the bounds in Theorem 2: the smaller the con-
stants, the sharper bounds we get. However, the constants are defined re-
cursively and form a rapidly increasing sequence. In Section 4.4 we shorten
the length of this sequence, by showing the existence of a relatively large j0
with not too large hj0 . This provides a good starting point for the sequence.
In Section 4.5 we show that the gap between hj and hj+1, assumed in C2,
in conjunction with the condition |fc| ≥ (1 − 1/c1)|f |, implies formula (2)
of Theorem 2. Finally, in Section 4.6, we compute the constants.

4.2. The tools. Here, we state the technical lemmas used in the proof.
The key lemma employed when dealing with cyclotomic factors of a poly-
nomial is Mann’s result [7, Theorem 1], quoted here as

Lemma 2. Let a1, . . . , aR be distinct nonzero integers, let q be an integer ,
and suppose that (a1, . . . , aR, q) = 1. Put a0 = 0. Let br, 0 ≤ r ≤ R, be

nonzero integers. Suppose that

R∑

r=0

bre(2πiar/q) = 0,

and that no subsum of this sum vanishes. Then q is square-free, and is

composed entirely of primes p ≤ R+ 1.

The following is a version of Siegel’s lemma due to Bombieri and Vaaler.

Lemma 3 ([1, Theorem C]). Let
∑n

j=1 aijxj = 0, i ∈ {1, . . . ,m}, be a

linear system of m linearly independent equations in n > m unknowns, with
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integer coefficients aij . Then there are n−m linearly independent solutions

xl = (x1l, . . . , xnl) ∈ Zn, l ∈ {1, . . . , n−m}, with

n−m∏

l=1

h(xl) ≤ D−1
√

|det(AAT )|,

where A denotes the m × n matrix A = (aij), A
T is its transpose and D

is the greatest common divisor of the determinants of all minors of A of

order m.

Note. In the notation of the lemma, let ΛA be them-dimensional lattice
in Zn spanned by the rows of the matrix A = {aij}, and let Λx be the lattice
spanned by the solutions xl, l ∈ {1, . . . , n−m}. Then these solutions form
a basis of dΛ⊥

A, where d = [Λ⊥
A : Λx].

We also need a modified version of Lemma 9 from [4].

Lemma 4. Let a ∈ Zn, a 6= 0, be a vector , Bi > 1, i = 1, . . . , n, real

numbers, T = B1 · · ·Bn, and l = h(a). Then there are vectors c, r ∈ Zn and

t ∈ Z such that

(1) 1 ≤ t ≤ T,
(2) ta = r + lc,
(3) |ri| ≤ lB−1

i ,
(4) c 6= 0 and |ci| ≤ B−1

i + T for i = 1, . . . , n.

Proof. Consider a system of n+1 linear forms |τ | ≤ T, |τai/l−xi| ≤ B−1
i ,

i = 1, . . . , n, in n+ 1 unknowns τ, x1, . . . , xn. Its determinant is 1 and also
B−1

1 · · ·B−1
n T = 1. Hence, by Minkowski’s theorem on linear forms, the

system has a nontrivial integer solution τ = t, xi = ci, i = 1, . . . , n. We can
also assume that t ≥ 0. Let c = (c1, . . . , cn) and r = ta − lc. Then (1)–(3)
are obvious. (1) and |tai/l− ci| ≤ B−1

i imply the second part of (4). For the
first part let |ai0 | = h(a); then |tai0/l−ci0 | = |tai0/|ai0 |−ci0 | ≤ B−1

i0
implies

that ci0 6= 0, since t ≥ 1.

We also need some facts from the proofs of Lemmas 1 and 2 from [2].
Unfortunately, the proofs presented there are not very transparent and have
a number of typos. For the convenience of the reader, Lemmas 5 to 8 repro-
duce this material here in a more detailed way. These ideas originated in
the work of Montgomery and Schinzel [8].

Let F (x) be a polynomial of the form (3), and r ∈ Zn be a fixed vector.
Define a derivative depending on r by

DrF (x) =
n∑

i=1

rixi
∂

∂xi
F (x).

The mth order derivative is denoted Dm
r F. For convenience, we agree that
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D0
rF = F. The derivative Dr is defined in such a way that JDm

r F ⊂ JF . It
also has many properties of an ordinary derivative. For example, the product
rule

Dr(FG) = (DrF )G+ F (DrG)

holds. Two other important properties are shown in Lemmas 5 and 6 below.

Lemma 5. Let F ∈ Z0[[x]] be a Laurent polynomial in n variables, g(x) ∈
Z[x] a polynomial with no multiple nonzero roots, γ a positive integer , and

v, r ∈ Zn be vectors such that vr 6= 0. If g(xv) |Dm
r F (x) for m = 0, . . . , γ−1,

then g(xv)γ |F (x).

Proof. Let g(xv) =
∏N

i=1(x
v − αi). It suffices to prove the lemma for a

single factor xv −α of g(xv), where α = αi 6= 0 is one of the roots of g. The
factors of g(xv) corresponding to αi = 0 are units in Z0[[x]] and obviously
divide F (x). We shall proceed by induction on γ. For γ = 1, the claim of
the lemma is assumed by its hypothesis. Suppose that the lemma is true
for γ = t, and that (xv − α) |Dm

r F (x) for m = 0, . . . , t. Then by induction
hypothesis,

(6) F (x) = (xv − α)tG(x),

where G(x) ∈ C0[[x]]. We also have (xv −α) |Dt
rF (x). We verify easily that

Dr(x
v − α) = (rv)xv. Hence, by the product rule and successive differenti-

ation of (6), we get

Dt
rF (x) ≡ t!(rv)txtvG(x) mod (xv − α).

Since α 6= 0, (xv − α) |G(x). Consequently, (xv − α)t+1 |F (x).

Lemma 6. Let F ∈ Z0[[x]] be a Laurent polynomial in n variables,
g(x) ∈ Z[x] be a polynomial with no multiple zeros, γ a positive integer ,
and r ∈ Zn. If g(x)γ |Fr(x) then g(x) | (Dt

rF )r(x) for t = 0, 1, . . . , γ − 1.

Proof. Let F (x) =
∑

j∈J ajx
j and let f(x) = Fr(x) =

∑
j∈J ajx

jr. Then

(7) Dt
rF (x) =

∑

j∈J

(rv)tajx
j.

Clearly, xf ′(x) = (DrF )r(x). To obtain a formula for an arbitrary order
ofDr, put f0 = f and fi+1(x) = xf ′i(x) for i ≥ 0. Hence, by (7), (Dt

rF )r(x) =
ft(x) for all t ≥ 0. On the other hand, (4) implies that g(x) | f (t)(x) for
0 ≤ t ≤ γ − 1. The definition of ft implies that ft(x) =

∑t
i=0 cix

if (i), where
the coefficients ci are positive integers. Hence, we also have g(x) | ft(x) for
0 ≤ t ≤ γ − 1.

Lemma 7. Let F ∈ Z0[[x]] be a Laurent polynomial in n variables, and

r ∈ Zn be a vector such that Fr has the same number of terms as F . Suppose

that 0 ∈ JF , and that F = F1F2 where F1, F2 ∈ Z0[[x]]; F2 is not divisible

by any extended Laurent cyclotomic polynomial , but Φm(x) |F2,r(x). Then
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there are linearly independent vectors v(1) = j(1) and v(2) = j(2)− j(3), where

j(i) ∈ JF , i = 1, 2, 3, for which

m | (v(1)r,v(2)r)P,

where P =
∏

p≤|JF | p.

Proof. Let γ be the multiplicity of Φm(x) in Fr(x). Then by Lemma 6,

Φm(x) | (Dt
rF )r(x) for t = 0, 1, . . . , γ − 1.

Further, since 0 ∈ JF ,

Fr(x) =
∑

j∈JF

ajx
jr, (Dt

rF )r(x) =
∑

j∈JF \{0}

(jr)tajx
jr for t ≥ 1.

With agreement that (0r)0 represents 1, we can treat these formulas simul-
taneously. Hence,

∑

j∈JF

(jr)taje(jr/m) = 0 for 0 ≤ t ≤ γ − 1.

Put J0 = JF and Jt = JF \{0} for t ≥ 1. Let

Jt =

It⋃

s=1

Jts for 1 ≤ t ≤ γ − 1

be partitions such that
∑

j∈Jts

(jr)taje(jr/m) = 0 for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It,

and no subsum of these sums vanishes.

One of the sets J0s, say J0ŝ, contains 0. Put j∗0ŝ = 0, and choose arbitrary
j∗ts ∈ Jts for all (t, s) 6= (0, ŝ). Then

(8)
∑

j∈Jts

(jr)taje((j− j∗ts)r/m) = 0 for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It.

Consider the set

S = {j − j∗ts | j ∈ Jts, 0 ≤ t ≤ γ − 1, 1 ≤ s ≤ It}.
If S = {0} then the lemma is vacuously true. Suppose then that S 6= {0}.
We shall show that S has two linearly independent vectors. Suppose to the
contrary that S spans a one-dimensional lattice, and let v be its generator.
Then each vector of S is of the form j − j∗ts = cjv, where cj is an integer.
Equations (8) now take form

∑

j∈Jts

(jr)taje(cjvr/m) = 0 for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It.
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We have vr 6= 0, since otherwise Fr would reduce to a single term. Let
l = m/(m,vr) and λ = vr/(m,vr). Then (λ, l) = 1 and

∑

j∈Jts

(jr)taje(cjλ/l) = 0 for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It.

Hence,

Φl(y)
∣∣ ∑

j∈Jts

(jr)tajy
cj for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It.

Since we also have

Dt
rF (x) =

It∑

s=1

xj∗ts
∑

j∈Jts

(jr)tajx
j−j∗ts for 0 ≤ t ≤ γ − 1,

by substituting y = xv, we conclude that

Φl(x
v) |Dt

rF (x) for 0 ≤ t ≤ γ − 1.

ByLemma5,Φl(x
v)γ |F (x).Hence, bydefinitionofF1 andF2,Φl(x

v)γ |F1(x).
Further, since m | lvr, Φm(x) |Φ(xvr). Hence, Φm(x)γ |F1,r(x). On the
other hand, we have assumed that Φm(x) divides F2,r(x). Therefore,
Φm(x)γ+1 |Fr(x). This contradicts the choice of γ, and we conclude that
S has two linearly independent vectors.

Clearly, in selecting a pair of linearly independent vectors from S, we
can always start by selecting any nonzero vector from this set. By (8), the
component J0ŝ that contains 0 must also contain at least one nonzero vector.
Let v(1) = j(1) be such a vector. Select v(1) and complete the pair by choosing
any vector v(2) = j(2) − j(3) from S that is not a multiple of v(1). Let
gts = gcd((j − j∗ts)r | j ∈ Jts), qts = m/(m, gts), and mj = (j − j∗ts)r/gts.
Then equations (8) take the form

∑

j∈Jts

(jr)taje(mj/qts) = 0 for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It.

Each of these equations satisfies the conditions of Lemma 2. It follows that
qts |

∏
p≤|Jts|

p. Together with definition of qts this gives

m |P (m, gts) for 0 ≤ t ≤ γ − 1 and 1 ≤ s ≤ It,

where P =
∏

p≤|JF
p. Consequently, m | (v(1)r,v(2)r)P.

Lemma 8. Let F ∈ Z0[[x]] be a Laurent polynomial in n variables and

r ∈ Zn be a vector such that Fr has the same number of terms as F . Suppose

that 0 ∈ JF , and that F = F1F2, where F1, F2 ∈ Z0[[x]]. Let ∆ = |IFr|
and ∆2 = |IF2,r|. If F2 is not divisible by any extended Laurent cyclotomic

polynomial , but the sum of the degrees of all cyclotomic factors of IF2,r(x)
counted with multiplicities exceeds 1

2 |IF2,r(x)|, then vr = 0 for some nonzero

vector v of the form v = a(j(2) − j(3)) − bj(1), where j(i) ∈ JF , i = 1, 2, 3,
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and a, b are integers such that max{|a|, |b|} < PJ4∆/∆2, where J = |JF |
and P =

∏
p≤J p.

Proof. Let γm be the multiplicity of Φm in IF2,r. The conditions of the
lemma imply that

∑

Φm|IF2,r

γmϕ(m) >
1

2
|IF2,r| =

1

2
∆2.

By Lemma 7, for every factor Φm of IF2,r, there are linearly independent
vectors v(1) = j(1) and v(2) = j(2) − j(3) such that m | (v(1)r,v(2)r)P. For
each factor Φm, select a pair of such vectors. Clearly, only one of the pairs:
(v(1),v(2)) or (v(1),−v(2)), has to be selected. Hence, we need to select no
more than (J − 1)

(
J
2

)
≤ 1

2J
3 distinct pairs. Let P be the set of all selected

pairs, and let

g = max{(v(1)r,v(2)r) | (v(1),v(2)) ∈ P}.
We have γm ≤ J − 1 by Hajós’ lemma [5]. Hence,

1

2
J3(J − 1)gP > (J − 1)

∑

(v(1),v(2))∈P

(v(1)r,v(2)r)P

= (J − 1)
∑

(v(1),v(2))∈P

∑

m|(v(1)r,v(2)r)P

ϕ(m) ≥
∑

Φm|IF2,r

γmϕ(m) >
1

2
∆2.

Therefore, for some pair of linearly independent vectors (v(1),v(2)) ∈ P,

g = (v(1)r,v(2)r) >
∆2

PJ4
.

Put a = v(2)r/g, b = v(1)r/g, and v = av(1) − bv(2). Clearly, vr = 0, v 6= 0,
and also

max{|v(1)r|, |v(2)r|} ≤ max
j(1), j(2), j(3)∈JF

{|j(1)r|, |(j(2) − j(3))r|} = ∆.

Hence,
max{|a|, |b|} < ∆/g ≤ PJ4∆/∆2.

4.3. The case of small vol(Λ). We have

Lemma 9. Let f(x) =
∑k

i=1 aix
ni ∈ Z[x], f(0) 6= 0, be a polynomial

with k nonzero terms and let Λ be the lattice of integer relations of n =
(n1, . . . , nk−1). If |f | ≤ vol(Λ) then there exist a positive integer l and a

polynomial f0 ∈ Z[x] such that

f(x) = f0(x
l) and |f0| ≤ vol(Λ).

Proof. Let A be a (k−2)× (k−1) matrix whose rows form a basis of Λ.

Then
√
AAT = vol(Λ). By Lemma 3, the system Ax = 0 has a nontrivial

solution x = (m1, . . . ,mk−1) ∈ Zk−1 with h(x) ≤ vol(Λ). Without loss of
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generality we can assume that x is a basis of the one-dimensional lattice
of solutions of the system. By definition of Λ, n is another solution of that
system. Hence n = lx, where l is a nonzero integer. By replacing x by −x,
if necessary, we can assume that l is positive. The lemma follows by putting
f0(x) = ak +

∑k−1
i=1 aix

mi .

Since c2 = Hk−2 ≥ vol(Λ), case (1) of Theorem 2 follows.

4.4. The initial lattice of integer relations of n. First, we need to estab-
lish a simple fact about the rank of a sparse matrix.

Lemma 10. Suppose that A is an m×n matrix with entries in an arbi-

trary field , such that

(1) Every row of A has one or two nonzero entries.

(2) Every column of A has at least one nonzero entry.

Then rank(A) ≥ ⌈n/2⌉.
Proof. We proceed by induction on n. Obviously, the lemma is true for

n ≤ 2. Suppose that n ≥ 3 and that the lemma is true for n′ < n. There are
two possibilities:

1. A has a row with only one nonzero entry.
2. Every row of A has exactly two nonzero entries.

In the first case, suppose that aij is the only nonzero entry of the ith
row. Delete from A every row with a single nonzero entry occurring in the
jth column as well as the jth column itself. This ensures that the resulting
matrix A′ with n−1 columns satisfies both conditions of the lemma. Hence,
by induction hypothesis

rank(A) ≥ 1 + rank(A′) ≥ 1 +
⌈n− 1

2

⌉
≥

⌈n
2

⌉
.

In the second case, suppose that the two nonzero entries of the first row
of A occur in the pth and rth columns. Delete from A every row that has
nonzero entries in both of these columns as well as the columns themselves.
Again, the resulting matrix A′, this time with n − 2 columns, satisfies the
conditions of the lemma, and by induction hypothesis

rank(A) ≥ 1 + rank(A′) ≥ 1 +

⌈
n− 2

2

⌉
≥

⌈
n

2

⌉
.

Lemma 11.

Part I. Let k ≥ 4. If the conditions of Theorem 2 are satisfied , in

particular |fc| ≥ (1 − 1/c1)|f |, then n has at least k0 ≥ ⌊(k − 1)/2⌋ lin-

early independent integer relations bi with h(bi) ≤ k3k⌊k/2⌋k, i = 1, . . . , k0.
Moreover , each of the vectors bi has exactly two or three nonzero compo-

nents.
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Part II. If in additions to the conditions listed in Part I , f has recip-

rocal exponents, then we have:

For k even, n has at least ⌈(3k − 10)/4⌉ linearly independent integer

relations, (k − 2)/2 of which has height 1.

For k odd , n has at least ⌈(3k − 9)/4⌉ linearly independent relations,
one of the relations has height 2 and (k − 3)/2 have height 1.

In either case the remaining relations have height no greater than

k3k⌊k/2⌋k.

Proof of Part I. For better clarity we distinguish two separate steps.

Step 1. Recall that f(x) = ak +
∑k−1

i=1 aix
ni , and consider the set of

exponents of f, J = {n1, . . . , nk−1, 0}.

The condition |fc| ≥ (1 − 1/c1)|f | implies that there is a positive integer

g ≥ |f |/k3k⌊k/2⌋k
and a partition J =

⋃I
t=1 Jt of J into subsets Jt, each

of cardinality at least two, such that the exponents ni within each of the

components Jt are congruent modulo g.

It is more convenient to work with the set {1, . . . , k} of subscripts of the
exponents ni ∈ J rather than with the set J itself. Suppose that Φm | f , so

that
∑k

i=1 aie(ni/m) = 0. Clearly, there is a partition πm = {Jt | 1 ≤ t ≤ I}
of the set {1, . . . , k} into subsets Jt such that

(9)
∑

i∈Jt

aie(ni/m) = 0 for 1 ≤ t ≤ I,

and no subsum of these sums vanishes. Let it ∈ Jt be the index such that
nit = min{ni | i ∈ Jt}. Put n̂t = nit , gt = gcd(ni − n̂t | i ∈ Jt), qt =
m/(m, gt), and mi = (ni − n̂t)/gt. Then

∑

i∈Jt

aie(mi/qt) = 0 for 1 ≤ t ≤ I.

Each of these sums satisfies the conditions of Lemma 2. We have R+1 ≤ k,
so that qt |P , where P =

∏
p≤k p. Consequently, m | (gt,m)P. As this is true

for all t, we conclude that

m | gπP,

where gπ = gcd(g1, . . . , gI). For each factor Φm of f select a partition sat-
isfying (9). Let Π denote the set of all selected partitions. The equations
(9) imply that every component Jt of each partition from Π has at least

two elements. Consequently, Π has at most ⌊k/2⌋k partitions. Suppose that
|fc| ≥ (1 − 1/c1)|f |, and let fc =

∏
Φγm

m . By Hajós’ lemma [5], the multi-
plicity of a zero in a polynomial with k terms is no greater than k− 1, thus
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γm ≤ k − 1 for each m. We have

(1 − 1/c1)|f | ≤ |fc| =
∑

Φm|f

γmϕ(m) ≤ (k − 1)
∑

Φm|f

ϕ(m)

≤ (k − 1)
∑

π∈Π

∑

m|gπP

ϕ(m) = (k − 1)
∑

π∈Π

gπP ≤ (k − 1)3k⌊k/2⌋kg,

where g = maxπ∈Π gπ. Hence, there is a partition π0 = {Jt | 1 ≤ t ≤ Iπ0} in
Π for which

(10) g = gπ0 ≥ (1 − 1/c1)|f |
(k − 1)3k⌊k/2⌋k

≥ |f |
k3k⌊k/2⌋k

.

The last inequality is valid by the choice of c1. This proves the claim of
Step 1.

Step 2. Recall that n = (n1, . . . , nk−1) and J = {n1, . . . , nk−1, 0}.

If there is a positive integer g and a partition J =
⋃I

t=1 Jt of J into sub-

sets Jt of cardinality at least two such that the exponents ni within each Jt

are congruent modulo g, then n has at least ⌊(k − 1)/2⌋ linearly independent

integer relations. The heights of the vectors representing the relations do not

exceed |f |/g, and each vector has exactly two or three nonzero components.

Suppose that such a partition of J exists. Let π0 =
⋃Iπ0

t=1 Jt be the parti-
tion of the set {1, . . . , k} of subscripts of the exponents ni ∈ J corresponding
to the partition of J . One of the subsets of π0, say Jt0 , must contain k and
at least one other element. In our notation, n̂t0 = nk = 0, and let p be any
fixed element of Jt0 different than k. We have

(11) g | (ni − n̂t, np) for 1 ≤ t ≤ Iπ0 and i ∈ Jt.

By taking a = np/g and bit = (ni − n̂t)/g we get integer relations

(12) ani − an̂t − bitnp = 0 for 1 ≤ t ≤ Iπ0 and i ∈ Jt \ {it},
where the integers a and bit have absolute values no greater than |f |/g. For
t 6= t0, vector representations of these relations are of the form

(13) (0, . . . , 0, a, 0, . . . , 0,−a, 0, . . . , 0,−bit, 0, . . . , 0) ∈ Zk−1,

where the only nonzero components a, −a, and −bit occur in the ith, itth
and pth positions, respectively. For t = t0, nt0 = 0, and since we do not
include that exponent in n, the corresponding vectors are of the form

(14) (0, . . . , 0, a, 0, . . . , 0,−bit0 , 0, . . . , 0) ∈ Zk−1,

with a in the ith and −bit0 in the pth positions.
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We now prove that these vectors are linearly independent. For this,
let M be the matrix whose rows consist of all the vectors (13) and (14).
Let Ma be the submatrix of M formed by the columns of M containing
the “+a” entries. From (12) and the fact that the sets Jt, 1 ≤ t ≤ Iπ0 ,
are disjoint, we conclude that each “+a” entry is the only nonzero entry
in its column and its row in Ma. Thus Ma is nonsingular and the rows
of M are linearly independent. Obviously, rankM = rankMa, and both
ranks are equal to the number of columns in Ma. For t 6= t0, each of
the sets Jt corresponds to |Jt| − 1 columns of Ma, while Jt0 corresponds
to only |Jt0| − 2 columns, since it contains both indices, p and it0 = k.
Hence,

rank(M) =
( Iπ0∑

t=1

(|Jt| − 1)
)
− 1 = k − Iπ0 − 1.

Finally, since each of the sets Jt has at least two elements and their union
is {1, . . . , k}, the number of such sets, Iπ0 , is ≤ ⌊k/2⌋. Hence, there are at
least k − ⌊k/2⌋ − 1 = ⌊(k − 1)/2⌋ linearly independent relations.

This, together with the bound on g given in Step 1, concludes the proof
of Part I of the lemma.

Proof of Part II. Part I guarantees the existence of k0 ≥ ⌊(k − 1)/2⌋
linearly independent relations. The additional condition of the reciprocity
of the exponents of f provides the extra relations

(15) n1 − ni − nk−i+1 = 0

for i = 2, . . . , ⌈k/2⌉. We now show that these sets of relations combined
together contain the required number of linearly independent relations. For
this, consider a (k0 + ⌈k/2⌉ − 1) × (k − 1) matrix M whose first k0 rows
are the vectors (13) and (14), constructed in the proof of Part I, and the
remaining rows are the vectors corresponding to the relations (15). Thus,
for k even, this matrix has the form




c11 . . . . . . . . . . . . . . . . . . . . . . c1,k−1

... . . . . . . . . . . . . . . . . . . . . . .
...

ck01 . . . . . . . . . . . . . . . . . . . . . . ck0,k−1

1 −1 −1

...
. . . . .

.

1 −1 −1




,
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and for k odd, the form



c11 . . . . . . . . . . . . . . . . . . . . . . . . . . . c1,k−1

... . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

ck01 . . . . . . . . . . . . . . . . . . . . . . . . . . . ck0,k−1

1 −1 −1
...

. . . . .
.

1 −1 −1

1 −2




.

We discuss the case of k odd only. The case of k even is almost identi-
cal and is left to the reader. We are going to estimate the rank of M.
For this, we decompose M into four blocks: Divide the row indices into
R1 = {1 ≤ i ≤ k0} and R2 = {k0 + 1 ≤ i ≤ k0 + (k − 1)/2}, and the column
indices into C1 = {1 ≤ j ≤ (k−1)/2} and C2 = {(k+1)/2 ≤ j ≤ k−1}\{p}.
Now, M decomposes into four blocks Bij , i, j ∈ {1, 2}, where Bij has the
row indices in Ri and column indices in Cj . Let p ∈ Jt0 be the index of the
nonzero exponent n̂t defined in Part I. If 1 ∈ Jt0 , delete the 1st and the pth
columns from M. This will produce a single row of zeros. Delete that row as
well. Let M′ be the resulting matrix. Since the pth column is deleted, the
rows of M′ with indices in C1 have the form (0, . . . , 0, a, 0, . . . , 0,−a, 0, . . . , 0)
or (0, . . . , 0, a, 0, . . . , 0). If p ≥ (k + 1)/2 we shall use the nonzero entries
from B22 in elementary row operations on M′ to eliminate all nonzero en-
tries from B12. If p < (k + 1)/2, we use the nonzero entries from B21 to
eliminate all nonzero entries from B11. Since these two cases are symmetric,
we assume without loss of generality that p ≥ (k + 1)/2. The process of
elimination is described below.

Let ̺i be the ith row of the matrix formed by B11 and B12. There are
three possibilities:

(1) All nonzero entries of ̺i are in B11.
(2) All nonzero entries of ̺i are in B12.
(3) One nonzero entry of ̺i is in B11 and the other in B12.

If (1) occurs, ̺i has no nonzero entries in B12, and no elimination is neces-
sary. Suppose that (2) occurs. There are three possibilities:

(i) ̺i has only one nonzero entry and it occurs in the (k + 1)/2th
column. This assumes that p 6= (k + 1)/2, otherwise this column
would be already deleted. The (k + 1)/2th column also contains −2
entry in the last row of M′. By adding an appropriate multiple of
the last row to ̺i, ̺i will change into a row of zeros. Delete that
row.
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(ii) ̺i has only one nonzero entry and it occurs in the jth column, where

j 6= (k + 1)/2. In that case there is an î ∈ R2 such that the îth row,

ˆ̺i, has a −1 entry in the jth column. The operation a ˆ̺i + ̺i 7→ ̺i

eliminates the nonzero entry a of ̺i in B12 and produces a −a entry
in the (k − j + 1)th column of B11.

(iii) ̺i has two nonzero entries a and −a in columns j1 and j2 of B12.
The elimination of these entries by two elementary operations as
in the previous step will produce two nonzero entries −a and a in
columns k − j1 + 1 and k − j2 + 1 of B11.

Suppose that (3) occurs. We have two possibilities:

(i) The nonzero entries a and −a of ̺i occur in columns j and k−j+1,
corresponding to the “reciprocal” exponents of f. There is a row with
index in R2 that has entries −1 in the same columns, i.e., below a
and −a. By adding a multiple of that row to eliminate the entry of
̺i occurring in B12 we will double the entry of ̺i occurring in B11.

(ii) The nonzero entries of ̺i occur in columns j1 and j2 6= k − j1 + 1.
Now, after elimination of the nonzero entry of ̺i occurring in B12,
̺i will have exactly two nonzero entries in B11.

The elimination of B12 by this process will modifyB11 into B′
11. Clearly, each

row of B′
11 will have exactly one or two nonzero entries. By (12)–(14), each

column of B11 has at least one nonzero entry. Since the elimination process
may only double or create new entries in B11, each column of B′

11 will also
have at least one nonzero entry. Further, B′

11 has at least ⌊(k − 1)/2⌋ − 1
columns. By Lemma 10, rankB′

11 ≥ ⌈(k − 3)/4⌉. Also rankB′
22 = (k − 3)/2,

where B′
22 denotes the block obtained from B22 by deleting the pth column.

Since B12 is deleted, we have

rankM ≥ rankB′
11 + rankB′

22 ≥
⌈
k − 3

4

⌉
+
k − 3

2
.

In the same way, for k even, we get

rankM ≥
⌈
k − 2

4

⌉
+
k − 4

2
.

In either case rankM ≥ ⌈(3k − 10)/4⌉. The claims about the heights of the
relations are obvious.

4.5. Consequences of the gap between hj and hj+1. For computational
reasons it is convenient to verify the theorem for small k. The theorem is
true for k = 2, since its conditions are satisfied only when f(x) = a(xn ∓ 1).
For k = 3, we have f(x) = axn+bxm+c. Let l = (m,n) and f0(x) = axn/l +
bxm/l + c. By Lemma 2, the only possible cyclotomic factors of f0 are x− 1,
x+1, and Φ3. Their multiplicity is at most 2. Hence, |fc| ≤ 2(1+1+2)l. This,
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together with the assumption |fc| ≥ (1 − 1/c1)|f |, gives l ≥ 1
8(1 − 1/c1)|f |,

thus implying case (1) of the theorem. Consequently, in the computation of
various constants below, we assume that k ≥ 4.

We now define j0 and the constants Hj0 , Hj0+1, . . . , Hk−2.

Consider first the case of nonreciprocal exponents. Put j0 = ⌊(k − 1)/2⌋.
By Lemma 11 and Hadamard’s inequality, we have

hj0 ≤ (31/2k3k⌊k/2⌋k)j0 ≤ (31/2k3k(k/2)k)(k−1)/2.

Define

(16) Hj0 = (31/2k3k(k/2)k)(k−1)/2.

Put j′ = k − 1 − j for j0 ≤ j ≤ k − 3, and define

(17) Hj+1 = 2
√

3 β3kk4(4j′)j′H3
j ,

where β = 1.0000000023.

Suppose now that f has reciprocal exponents. Put j0 = ⌈(3k − 10)/4⌉.
Now, by Lemma 11 and Hadamard’s inequality, we have

hj0 ≤ 51/23(k−3)/4(k3k⌊k/2⌋k)j0−(k−1)/2

for k odd. For k even, we have

hj0 ≤ 3(k−2)/4(k3k⌊k/2⌋k)j0−(k−2)/2.

In either case

hj0 ≤ 3(k−2)/4(k3k⌊k/2⌋k)(k−3)/4.

Define

(18) Hj0 = 3(k−2)/4(k3k(k/2)k)(k−3)/4.

For j0 ≤ j ≤ k−3, defineHj+1 again by (17), but this time with β = 1.00023.

Suppose that

(19) hj ≤ Hj , but hj+1 > Hj+1.

Select a lattice Γj < Λ such that vol(Γj) = hj . By Lemma 3, there are
linearly independent vectors x1, . . . ,xk−1−j in Zk−1 satisfying

(20)

k−1−j∏

i=1

h(xi) ≤ hj

and forming a basis of dΓ⊥
j , where d is a suitable positive integer. Form a

(k − 1 − j) × (k − 1) matrix M by taking x1, . . . ,xk−1−j as its rows. By
definition of Γj , n ∈ Γ⊥

j . Hence, there is a vector r ∈ Zk−1−j such that

(21) dn = rM.
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Let j(i), i = 1, . . . , k − 1, be the columns of M. Put

(22) F (x) = ak +
k−1∑

i=1

aix
j(i) ,

where x = (x1, . . . , xk−1−j) and j(i) = (j1i, . . . , jk−1−j,i). Then

Fr(x) = f(xd) = ak +
k−1∑

i=1

aix
dni .

Factor IF as follows: IF = F1F2, F1, F2 ∈ Z[x], F1 is a product of all
extended cyclotomic factors of IF , while F2 is not divisible by any such
factor. Let ∆ = |Fr| and ∆2 = |I(F2,r)|. We shall show that ∆2 is much
smaller than ∆.

For this, put n = j′ = k − 1 − j, a = r, and Bi = (4 + ε)j′ h(xi), where
xi, i = 1, . . . , j′, are the rows of M, and ε > 0, in Lemma 4. The value of ε
can be taken arbitrarily small and will be discussed later. We get

(i) tr = r′ + lc,
(ii) |r′i| ≤ ((4 + ε)j′ h(xi))

−1l,

(iii) |ci| ≤ B−1
i +B1 · · ·Bj′ ≤ 1/8 + ((4 + ε)j′)j′

∏j′

i=1 h(xi)

≤ 1/8 + ((4 + ε)j′)j′hj ,

where t is a positive integer, l = h(r), and c 6= 0. We claim that for some
column j of M we must have

(23) cj 6= 0.

Suppose not; then by (21) and (i), we have

tdn = trM = r′M.

Since the rows of M are linearly independent we have tr = r′. However, by
(ii), h(r′) < h(r). Since t ≥ 1, this gives a contradiction.

By (21), we have ∆ = d|f | = rj, where j is the first column of M. Hence,
by (i),

t∆ = cjl + r′j.

By the choice of the constants Bi and by (ii),

(24) r′j =

j′∑

i=1

riji <

j′∑

i=1

h(xi)
1

4j′ h(xi)
=

1

4
l.

Further, by (20),

cj ≤ h(c)hj + j′ − 1.

Hence,

(25) t∆ ≤ ((1/8 + ((4 + ε)j′)j′Hj)Hj + j′ − 1 + 1/4) ≤ β(4j′)j′H2
j l
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with suitable β. Since ε > 0 can be arbitrarily chosen, we calculate β by
putting ε = 0 and rounding up the values obtained for β. This guarantees
the existence of positive ε satisfying (25). The resulting values of β are given
in (16) and (18).

Concerning ∆2 = |I(F2,r)|, we note that

IF (x) =
k∑

i=1

aix
j(i)−jF ,

where j(k) = 0, so that

(26) (j(i) − jF )j ≤ 2 h(xj)

for any component of the exponents. The same must hold for the exponents
of F2, which is a polynomial factor of IF. If F2(x) =

∑
j∈JF2

bjx
j then

I(F2,tr) =
∑

j∈JF2
bjx

t(j−j0)r, where tj0r = jF2,tr
. Hence

(27) t∆2 = |I(F2,tr)| = max
j∈JF2

(c(j − j0)l + (j − j0)r
′).

We claim that

(28) c(j − j0) = 0 for all j ∈ JF2 .

Suppose the contrary. Since F2 ∈ Z[x], neither j nor j0 has negative compo-
nents, and again we have

(j − j0)i ≤ 2 h(xi).

Similarly to (24), this gives (j − j0)r
′ < l/2. Hence, by (27),

(29) t∆2 > l − l/2 = l/2.

From this and (25), we get

(30) ∆/∆2 < 2β(4j′)j′H2
j ≤ 2β64H2

k−3.

The last inequality is valid due to the formula (17). Define

(31) c1 = β64H2
k−3.

Then ∆2 > (2/c1)∆. Put ∆2,c = |(I(F2,r))c| and ∆c = |(I(Fr))c|. The
condition |fc| > (1 − 1/c1)|f | of the theorem implies that

∆c = (∆−∆2) +∆2,c > (1 − 1/c1)∆.

Hence, ∆2,c > ∆2 − (1/c1)∆ > 1
2∆2. Thus F, F1, and F2 satisfy the condi-

tions of Lemma 8. We have J = k and P ≤ 3k. Therefore, there is a nonzero
vector of the form v = a(j(2) − j(3)) − bj(1), where j(i) ∈ JF , i = 1, 2, 3, and
a, b are integers with max{|a|, |b|} < PJ4∆/∆2 < 2β3kk4(4j′)j′H2

j , such
that vr = 0.

On the other hand, we have
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Lemma 12. Let f(x) = ak +
∑k−1

i=1 aix
ni be a polynomial with k ≥ 4

nonzero terms and let j be a positive integer , 1 ≤ j ≤ k − 3. Further , let

F and r be defined by (22) and (21). If there is a nonzero vector v of the

form v = a(j(i2) − j(i3)) + bj(i1) or v = aj(i2) + bj(i1), where a and b are

integers, and j(i), 1 ≤ i ≤ 3, are exponents of F such that vr = 0, then

hj+1 ≤
√

3max{|a|, |b|}hj.

Proof. Let v̂ be the vector whose i1th component is b, i2th component
is a, i3th component is a or 0, according to the form of v, and all other
components are 0. Then v = Mv̂ and

(32) dnv̂ = rMv̂ = 0.

Since the rows of M lie in Γ⊥
j and Mv̂ = v 6= 0, we conclude that v̂ /∈ Γj .

Hence

hj+1 = vol(Γj+1) ≤ vol(span(Γj ∪{v̂})) ≤ ‖v̂‖ vol(Γj) ≤
√

3max{|a|, |b|}hj.

Returning to the proof of (28), by (19) and Lemma 12, we get

Hj+1 < hj+1 ≤
√

3max{|a|, |b|}hj < 2
√

3β3kk4(4j′)j′H3
j .

This contradicts the definition (17) of Hj+1.
Therefore, (28) holds. Since (23) is also true, we have

c(j − j0) = 0 for all j ∈ JF2 , but cj 6= 0 for some j ∈ JF .

This implies that F1 has at least one extended cyclotomic factor IΦq(x
v)

for which vc 6= 0. Let F̃1 be the product of all such factors of F1, and let
F̃2 = IF/F̃1. Thus, F̃2 is the product of F2 and all factors IΦq(x

v) of F1 for

which vc = 0. Let F̃1(x) =
∏

i IΦqi
(xvi). We have

f(xtd) = Ftr(x) = I(F̃1,tr(x))I(F̃2,tr(x)).

Let ψ(x) = Φq(x
v). Clearly, I((Iψ)tr(x)) = I(ψtr(x)). Hence,

I(F̃1,tr(x)) =
∏

i

I(Φqi
(xvitr)).

Put li = |vitr|. Then I(Φqi
(xvitr)) = Φq(x

li). Hence,

I(F̃1,tr(x)) =
∏

i

Φqi
(xli), where li = |vitr|.

By definition of F̃1, vic 6= 0. Also, since Φqi
(xvi) are factors of IF, by (26)

we have (v)i ≤ 2 h(xi). Hence, vr′ < l/2. Similarly to (29) we get

(33) li = |vitr| = |vcl + vir
′| > l − l/2 = l/2.

On the other hand,

|I(F̃2,tr(x))| = max
j∈J

F̃2

(j − j0)r
′ ≤ l/2.
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Put f̃2(x) = I(F̃2,tr(x)). Then

(34) f(xtd) =
( ∏

i

Φqi
(xli)

)
f̃2(x).

Thus, we have a decomposition of type (2) from Theorem 2, but with f(xtd)
in place of f. Fortunately, this obstacle can be removed. We have

Lemma 13. Let f ∈ Z[x], f(0) 6= 0, and d be a positive integer. If f(xd)
has a decomposition

f(xd) =
( ∏

i

Φqi
(xli)

)
f̃2(x),

where f̃2 ∈ Z[x] and li are positive integers such that mini li > |f̃2|, then

f̃2(x) = f2(x
d) with f2 ∈ Z[x], and

f(x) =
(∏

i

Φq̃i
(xl̃i)

)
f2(x)

with positive integers l̃i such that mini l̃i > |f2|. Moreover , mini l̃i ≥
(1/d) mini li.

Proof. First, note that if for some qi, p
t | qi, where p is a prime and t > 1,

then Φqi
(xli) = Φqi/pt−1(xlip

t−1
). Hence, without loss of generality, we can

assume that the numbers qi are squarefree.
The condition mini li > |f̃2| implies that ±f̃2 occurs in the expression

of f(xd). Consequently, f̃2(x) = f2(x
d) with suitable f2 ∈ Z[x]. Divide both

sides of the equation

f(xd) =
(∏

i

Φqi
(xli)

)
f2(x

d)

by f2(x
d) and by the product of those of Φqi

(xli) for which d | qi. We get

(35) g(xd) =
∏

i: d∤qi

Φqi
(xli)

with suitable g ∈ Z[x]. Let Ω(d) be the number of prime factors of d counted
with multiplicities. We now show by induction on Ω(d) that by deleting some
of the factors on the right-hand side of (35) and replacing li by their suitable

multiples l̃i, we can get

g(xd) =
∏

i: d∤qi

∗
Φqi

(xl̃i),

where d | l̃i for all i. The asterisk indicates that the set of indices in this
product might be a proper subset of the set of indices in (35).

If Ω(d) = 0 there is nothing to prove. Suppose that Ω(d) > 0 and let a
prime p divide d. If p | li in all the exponents in (35) then by dividing d and
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all li by p we are reduced to the case of Ω(d/p) = Ω(d) − 1. The statement
is then true by induction hypothesis. Otherwise, divide both sides of (35)
by those of the factors Φqi

(xli) in which p | qi. We get

(36) h(xp) =
∏

i: p∤qi

Φqi
(xli)

with a suitable h ∈ Z[x]. In order to investigate this equation, factor both
sides into products of irreducible polynomials. Let h(x) =

∏
i Φmi

(x). If
p |mi then Φmi

(xp) = Φpmi
(x), so that p2 | pmi; if p ∤ mi then Φmi

(xp) =
Φmi

(x)Φpmi
(x). To factor Φqi

(xli), let li = li1li2, where each prime factor of
li1 divides qi, while (li2, qi) = 1. Then

Φqi
(xli) =

∏

δ|li2

Φδli1qi
(x).

Since p ∤ li and qi is squarefree, p2 does not divide any of the indices of
polynomials Φδli1qi

(x) in this product. Consequently, p ∤ mi for every mi.
Hence,

h(xp) =
∏

i

(Φmi
Φpmi

(x)) =
∏

i

∏

δ|li2

Φδli1qi
(x).

By comparing both sides of this equation and because of uniqueness of
factorization, we deduce that each factor Φδli1qi

(x) with p ∤ qi in the product
on the right-hand side can be matched with a factor Φδli1q′i

(x), where qi′ =
pqi, also occurring in this product. Thus (36) can be written as

h(xp) =
∏

i: p∤qi

∗
Φqi

(xpli).

Again, the asterisk indicates that the set of indices in this product is not
the same as in (36). This proves the induction step. The inequality mini l̃i ≥
(1/d) mini li follows by the construction of l̃i.

Of course, we apply this lemma to (34) with td in place of d. It remains
to prove that

min
i
li >

1

2c1
|f |.

For this, by combining (33) and (25), we get

tli >
1

2
l ≥ t∆

β(4j′)j′H2
j

≥ t∆

2c1
.

Here ∆ and li refer to f(xd). By Lemma 13, the bound obtained carries over
to f(x).
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4.6. Computation of the constants. Recall that we assume k ≥ 4. By
(31), we have c1 = β64H2

k−3, and by (5), c2 = Hk−2. By (17),

Hj+1 = 2
√

3β3kk4(4j′)j′H3
j ≤ 2

√
3β3kk4(4(k − 1 − j0))

k−1−j0H3
j .

Put B = 2
√

3β3kk4(4(k − 1 − j0))
k−1−j0. Then

(37) Hj0+m ≤ B(3m−1)/2H3m

j0 .

We need to consider two cases separately:

The case of reciprocal exponents. We have j0 = ⌈(3k − 10)/4⌉. Put m =
k−3−j0 = ⌊(k−2)/4⌋. By (18), Hj0 = 3(k−2)/4(k3k(k/2)k)(k−3)/4. Together
with (37) this gives

Hk−3 = exp(3⌊(k−2)/4⌋c(k)k2 log k),

where c(k) is defined by the equality and approaches 1/4 as k tends to
infinity. Hence,

c1 = β64H2
k−3 = exp(3⌊(k−2)/4⌋a(k)k2 log k),

where a(k) is defined by the equality and approaches 1/2 as k tends to in-
finity. Now we find a decreasing function b(k) with the same limit value 1/2,
and such that b(k) ≥ a(k). By a somewhat tedious, but simple calculation
we find that

b(k) = 0.5 +
0.203

log k
+

1.27

k log k
+

3.25

k2
+

1.53

k2 log k
+

log 64.1

3⌊(k−2)/4⌋k2
log k

satisfies these conditions. We find that b(14) < 0.632. On the other hand,
the maximum value of a(k) on the interval [4, 14] is approximately 0.6359.
This proves that

c1 = exp(3⌊(k−2)/4⌋0.636(k)k2 log k)

for k ≥ 4. Finally, we check that this estimate is also valid for smaller values
of k. In a similar way we find that

c2 = Hk−2 = 2
√

3 β3kk4(64)H3
k−3 ≤ exp(3⌊(k−2)/4⌋1.06k2 log k).

The case of nonreciprocal exponents. Now, we have j0 = ⌊(k − 1)/2⌋,
m = k − 1 − j0 = ⌈(k − 1)/2⌉, and Hj0 = (31/2k3k(k/2)k)(k−1)/2, defined
by (16). Similarly to the previous case, we get

c1 = β64H2
k−3 ≤ exp(3⌈(k−2)/2⌉2.84k2 log k),

c2 = Hk−2 ≤ exp(3⌈(k−2)/2⌉2.841k2 log k).

To prove Lemma 1, we will need yet another version of Lemma 9 from [4].

Lemma 14. Let a ∈ Zn be a vector , B > 1 a real number , T = n!Bn,
and q > T a rational integer. Then there are vectors c, r ∈ Zn and t ∈ Z
such that
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(1) 1 ≤ t ≤ T,
(2) ta = r + qc,
(3) l(r) ≤ qB−1,
(4) for a 6= 0 and q = l(a) we also have 0 < l(c) ≤ B−1 + T.

Proof. Let

C =
{

(τ, x1, . . . , xn) ∈ Rn+1
∣∣∣ |τ | ≤ T,

n∑

i=1

|τai/q − xi| ≤ B−1
}
.

The set C is closed, convex, symmetric, and has volume (2T )(2nB−n/n!)
= 2n+1. By Minkowski’s convex body theorem, C contains a nonzero vector
(t, c1, . . . , cn) ∈ Zn+1. Since C is symmetric, we can assume that t ≥ 0.
Then B > 1 implies that t ≥ 1; this proves (1). Set r = ta − qc. Then
(2) and (3) hold trivially. Further, if a 6= 0 and q = l(a) then (3) gives
l(r) ≤ l(a)B−1 < l(a) ≤ tl(a). From this, and by (2), 0 < l(c). Finally,∑n

i=1|ci| ≤ B−1 +
∑n

i=1 t|ai|/l(a) < B−1 + t ≤ B−1 + T shows (4).

Following [4], we deduce Lemma 1 from an analogous result for an alge-
braic integer rather than for a polynomial g:

Lemma 15. If α is a nonzero algebraic integer , not a root of unity ,
with deg(α) = n, and f is a polynomial with integer coefficients that has k
nonzero terms and f(α) = 0 then

M(α) ≥ 1 +
0.31n

k!|f | .

Proof of Lemma 1. We show that Lemma 15 immediately implies Lem-
ma 1. This argument is given in [4] (Lemma 7 implies Lemma 8 there). We
repeat it for the convenience of the reader.

Suppose that the conditions of Lemma 1 are satisfied and that γi is the
multiplicity of αi in g, where α1, . . . , αm are zeros of g representing all classes
of conjugate zeros of g. We have

M(g) =
m∏

i=1

M(αi)
γi ≥

m∏

i=1

(
1 +

0.31 degαi

k!|f |

)γi

≥ 1 +
0.31

∑m
i=1 γi degαi

k!|f | = 1 +
0.31|g|
k!|f | .

Proof of Lemma 15. Let f(x) =
∑k

i=1 aix
ni . If degα ≤ 2 thenM(α) ≥ 2.

The lemma is obviously true in these cases. Assume that degα ≥ 3. If α is
not reciprocal then M(α) ≥ θ. The lemma is then true, because we must
have k ≥ 3, |f | ≥ degα, and θ > 1+0.31/3!. Consequently, in what follows,
we assume that α is reciprocal.

We proceed by induction on k. The case of k = 1 is vacuous. For
k = 2, the conditions of the lemma are satisfied only when α is not a
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unit; then M(α) ≥ 2. For k = 3 and f reciprocal, we easily find that
M(α) ≥ (3 +

√
5)/2. The same holds for k = 3 and nonreciprocal f. To see

this, let f(x) = axn + bxm + c. We have aαn + bαm + c = 0. Hence, also
cαn + bαn−m + a = 0, because α is reciprocal. By eliminating αn from these
equations, we get bcαm − abαn−m + c2 − a2 = 0. The left-hand side of this
equation is not identically 0, because f was not reciprocal. Since α is not a
root of unity, none of the three coefficients in this equation can be 0. Thus,
α is a zero of a trinomial which has lower degree than f. Clearly, we can
continue that process until we obtain a reciprocal trinomial vanishing at α.
Hence, again M(α) ≥ (3 +

√
5)/2.

Let now k ≥ 4, and suppose that the lemma is true for all k′ < k. Further,
let α1 = α, α2, . . . , αn be the conjugates of α. Without loss of generality, at
each step of the induction process we can assume the following:

(1) f(0) 6= 0,
(2) gcd(n1, . . . , nk) = 1,
(3) l(f) ≤ k!Bk +B−1, where B = 1 + 0.31n/k!|f |.
For (1), replace f by If if necessary. Then If(0) 6= 0 and |If | ≤ |f |, so

that the bound improves.
For (2), suppose that gcd(n1, . . . , nk) = q. Then f(x) = f0(x

q), f0 satis-
fies (2), and |f0| = |f |/q. Replace f by f0, and α by αq, and suppose that
the lemma holds in the new situation. Let degαq = m. Then each conjugate
of αq occurs n/m times among the numbers αq

1, . . . , α
q
n, and we have

M(α) = M(αq)n/mq ≥
(

1 +
0.31mq

k!|f |

)n/mq

≥ 1 +
0.31n

k!|f | .

For (3), suppose that l(f) > k!Bk+B−1. Apply Lemma 14 by taking as a

the vector of coefficients of f, q = l(a), and B as above. We get ta = r+ qc,
1 ≤ t ≤ T, l(r) ≤ qB−1, and 0 < l(c) ≤ B−1 + T, where T = k!Bk.
The equation for the corresponding polynomials is tf(x) = r(x) + qc(x). At
x = α,

r(α) + qc(α) = 0.

If c(α) = 0 then we can replace f by c, since l(c) satisfies (3). If c(α) 6= 0
then also r(α) 6= 0, and r(α) = −qc(α). Hence, we get

l(r)nM(α)|f | ≥
∣∣∣

n∏

i=1

r(αi)
∣∣∣ =

∣∣∣
n∏

i=1

qc(αi)
∣∣∣ ≥ qn.

Since l(r) ≤ qB−1, this gives M(α) > B = 1 + 0.31n/k!|f |.
Consequently, in what follows we assume that (1)–(3) hold. Let p be a

prime such that

2(B−1 + k!Bk) ≤ p < 4(B−1 + k!Bk).



Mahler’s measure of a polynomial 227

Since f(α) = 0, we have p | f(αp). Two cases may occur.

Case 1: f(αp) 6= 0. Since (3) holds, the standard argument works:

l(f)nM(α)p|f | ≥
∣∣∣

n∏

i=1

f(αp
i )

∣∣∣ ≥ pn.

Hence, by the choice of p, we get

m(α) = logM(α) ≥ n(log p− log l(f))

|f |p ≥ n log 2

2|f |(B−1 + k!Bk)
,

where B = 1 + 0.31n/k!|f |. For k ≥ 4, this gives m(α) ≥ 0.31n/k!|f |.
Case 2: f(αp) = 0. Let g and gp be the minimal polynomials of α and

αp, respectively. Then gp 6= g, since α is not a root of unity. The polynomial f
factors as f = ggph. Hence, f ′ = g′gph+gg′ph+ggph

′. Since gp(α) ≡ 0 mod p,
we get

f ′(α) = f ′(α)fp(α)h(α) ≡ 0 mod p.

In our notation, f ′(x) =
∑k−1

i=1 niaix
ni−1. Put a′ = (n1a1, . . . , nk−1ak−1),

q = p, and B1 = k1/(k−1) in Lemma 14. We get ta′ = r + pc, l(r) ≤ B−1
1 p,

and t ≤ (k − 1)!Bk−1
1 . For the corresponding polynomials we get

tf ′(α) = r(α) + pc(α) ≡ 0 mod p.

Hence,
r(α) ≡ 0 mod p.

This relation can be useful only if r(x) is not identically 0. We shall show
that it is indeed so. Suppose to the contrary that r(x) ≡ 0. The relation
ta′ = r + pc implies that p | ta′. By our choice of p,B and B1,

p ≥ 2(B−1 + k!Bk) > (k − 1)!Bk−1
1 ≥ t.

Thus p ∤ t. Similarly, by (3), p ≥ 2(B−1 + k!Bk) > l(a), so that p ∤ ai for
1 ≤ i ≤ k − 1. Also, by (2), p ∤ (n1, . . . , nk−1). Consequently, p ∤ niai for
some i, a contradiction with p | ta′.

Therefore, r(x) 6≡ 0. Again two cases are possible.

Case 2.1: r(α) = 0. It suffices to notice that r was obtained from f ′, so
that r(x) has at most k−1 terms. The lemma holds by induction hypothesis.

Case 2.2: r(α) 6= 0. Now, we use the fact that r(α) ≡ 0 mod p. We
have

(l(r)M(α))|r| ≥
∣∣∣

n∏

i=1

r(α)
∣∣∣ ≥ pn.

Since l(r) ≤ B−1
1 p and |r| < |f |, this gives

M(α) ≥ B
n/|f |
1 ≥ 1 +

n log k

k − 1
> 1 +

0.31n

k!|f | .
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5. Proof of Proposition 1. Without loss of generality, we can assume
that f is reciprocal. Obviously, we can also assume that all zeros of f that
are not roots of unity have degree at least 3. The polynomial f has the form

f(x) = xn+m + εηaxn + εaxm + η,

where n,m, and a are positive integers, n > m, ε = ±1, and η = ±1. We
can also assume that (m,n) = 1. If a = 1 then f(x) = (xn ± 1)(xm ± 1) is a
product of cyclotomic polynomials. Hence, a ≥ 2. If f(α) = 0 then

(38) αn+m + η = −εηa(xn−m + η).

Hence,

(39) a | (αn+m + η).

Consider the case of a ≥ 3. First, we determine which roots of unity can
be among zeros of f. For this, suppose that ξ is a root of unity and f(ξ) = 0.
Since a ≥ 3, (39) implies that ξn+m + η = 0. Hence, by (38), ξn−m + η = 0
as well. Since (m,n) = 1, both equations together imply that ξ = ±1. The
multiplicity of ξ is at most 3. Hence, |fc| ≤ 6. By (38), (39), and because f
has at least one zero of degree at least 3 which is not a root of unity,

(40) 2m+n−|fc|M(f)m+n ≥
∏

α

|(αm+n + η)| ≥ amax{3,m+n−|fc|},

where the product runs over all zeros of f that are not roots of unity. Hence,

M(f) ≥ max{(a/2)3/|f |, (a/2)1−6/|f |} ≥ (a/2)1/3.

For a ≥ 5, this gives M(f) > θ. On the other hand, the inequality M(f) ≥
(a/2)1−6/|f | implies that M(f) > θ: for a = 4 if |f | ≥ 11, and for a = 3
if |f | ≥ 20. This leaves out a finite number of polynomials for which the
statement of the proposition was checked by direct computation of M(f).

Consider now the case of a = 2. We need a slightly better use of (38).
We have

2 | (αm+n + η) ⇒ 2 | (αm+n − η),

so that

(41) 4 | (α2|f | − 1).

By Lemma 2, the possible cyclotomic zeros of f are ±1, ζ3, and ζ6. Consider
their multiplicity. If ζ is a root of unity and f(ζ) = f ′(ζ) = 0 then

(n+m)ζn + εηnaζn−m + εma = 0.

This is possible only if n +m = 2(n−m). Since (n,m) = 1, we must have
m = 1 and n = 3. Hence,

f(x) = x3 + 2εηx2 + 2εx+ η.
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For such polynomials M(f) > 2.6. Consequently, we can assume that the
roots are single. Suppose now that ζ = ζ3 or ζ = ζ6. By (38), 2 | (ζn+m + η).
However, we cannot have ζn+m+η = 0, since this would imply that 3 | (m,n).
Hence, ζn+m + η = 2η. Now, again by (38), we get

(42) ζn + ηζm + ε = 0.

This is only possible if 3 ∤ nm. Suppose that ζ = ζ3. By taking traces in
(42), we get −1 − η + 2ε = 0. Hence, ε = η = 1. Suppose now that ζ = ζ6.
Since (m,n) = 1, m and n cannot be both even. Now, by taking traces
we get ±1 ± η + 2ε = 0, where the combination of ± signs does not allow
−1−η+2ε = 0. Hence, we cannot have ε = η = 1 in this case. Consequently,
ζ3 or ζ6 is not a zero of f. Hence, |fc| ≤ 4, and (41) gives

2|f |−|fc|M(f)2|f | ≥
∏

α

|α2|f | − 1| ≥ 4|f |−|fc|,

where the product runs over the zeros of f that are not roots of unity. Thus,
M(f) ≥ 2(1−4/|f |)/2. For |f | ≥ 22, this givesM(f) > θ. Again, this leaves out
a finite number of polynomials for which the statement of the proposition
was checked by direct calculation of M(f).

6. Proof of Proposition 2. Without loss of generality we can assume
that f is reciprocal. The improvement of the bound is due to the fact that the
vector of coefficients of a reciprocal polynomial is symmetric, so it suffices
to work with half of them only. Let f(x) =

∑k
i=1 aix

ni . If k = 2m − 1

is odd then l(f) = |am| + 2
∑m−1

i=1 |ai|, if k = 2m is even then l(f) =
2
∑m

i=1 |ai|. Put B = 2(1 + 0.17/2mm!), n = m, a = (2a1, . . . , 2am−1, am)
or a = (2a1, . . . , 2am−1, 2am), according to the parity of k, and q = l(a), in
Lemma 14. Then T = m!Bm and ta = r + lc.

Suppose first that r = 0. Since f is monic, the content of a is either
1 or 2. Hence, a = c1 or a = 2c1, and c is a multiple of c1. In either
case l(f) = l(a) ≤ 2(B−1 + T ). Following [3], choose a prime p such that
T ≤ p ≤ 2T. We have

l(f)|f |M(f)p|f | ≥
∣∣∣

∏

α: f(α)=0

f(αp)
∣∣∣ ≥ p|f |.

The product does not vanish because f is irreducible and not cyclotomic.
From this, we get

M(f) ≥ 1 +
log 2

4(B−1 + T )
≥ 1 +

0.17

2mm!
,

where the last inequality is valid for m ≥ 3. This can be assumed due to
Proposition 1.

Now, suppose that r 6= 0. Let fr(x) =
∑m

i=1 ri(x
ni + xnk−i+1) or fr(x) =
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2rmx
nm +

∑m−1
i=1 ri(x

ni + xnk−i+1), for k even or odd, respectively. Define
in an analogous way a polynomial fc, with respect to c. Then 2f(x) =
fr(x) + lfc(x), and l(fr) = 2l(r) ≤ 2B−1l < l(a) = l(f). Hence, f does not
divide fr, and fr(α) = −lfc(α) if α is a zero of f. Therefore,

(2l(r)M(f))|f | ≥
∣∣∣

∏

α:f(α)=0

fr(α)
∣∣∣ ≥ l|f |.

This gives m(f) ≥ 1
2B = 1 + 0.17/2mm!.

7. Final remarks. The proof of Proposition 2 shows that the smallest
measure of a reciprocal quadrinomial that is not a product of cyclotomic
factors is larger than the smallest measure of a nonreciprocal quadrinomial.
Numerical evidence suggests that the former occurs for f(x) = x7 − 2x5 −
2x2+1, M(f) ∼= 1.55603, while the latter occurs for f(x) = x4−x3−x2+1 =
(x− 1)(x3 − x− 1), M(f) = θ.

In view of Theorem 1, two questions seem to be interesting:

Question 1. Let α be an algebraic integer and suppose that f(α) = 0,
f ∈ Z[x]. What is the minimum number of nonzero coefficients of f?

Question 2. What is the minimum number of nonzero coefficients of f
that satisfy an extra condition M(f) = M(α)?

Concerning Question 1, it was kindly pointed to the author by A. Schinzel
that already M. Schacher and E. G. Straus [9] noticed, that when α has many
real conjugates then the Descartes rule of signs implies that the number of
terms in f cannot be small. However, in the most interesting case, i.e., when
M(α) is small, it is known that α cannot have many real conjugates.

Concerning Question 2, suppose that a polynomial f with k terms is
optimal. If f(x) 6= f0(x

l) then Corollary 2 immediately provides a bound
|fc| ≤ (c1 − 1) degα. If f(x) = f0(x

l) then M(α) = M(αl) and l divides
degα. By applying Corollary 2 to f0 we obtain the same bound again. Thus
the number of possible cyclotomic factors of f is finite. This provides an
algorithm allowing one to answer Question 2 for a given α. Unfortunately,
the bounds involved are still too large for practical use.
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