A note on the Diophantine equation
 $\left(a^{n} x^{m} \pm 1\right) /\left(a^{n} x \pm 1\right)=y^{n}+1$

by
Jiagui Luo (Chengdu)

1. Introduction. Let \mathbb{Z}, \mathbb{N} denote the sets of integers and positive integers respectively. Le Mao Hua [4] has proved that the following equation has no solution (x, y, m, n) :

$$
\begin{align*}
\frac{x^{m}-1}{x-1}=y^{n}+1, & x, y, m, n \in \mathbb{N}, x>1 \tag{1}\\
& y>1, m>2, n \text { an odd prime. }
\end{align*}
$$

In this note, we investigate a more general equation applying another method. For

$$
\begin{align*}
\frac{a^{n} x^{m}+\delta}{a^{n} x+\delta}=y^{n}+1, & \delta \in\{1,-1\}, x, y \in \mathbb{Z}, a, m, n \in \mathbb{N} \tag{2}\\
& m>2, n>1,|x|>1
\end{align*}
$$

we prove the following results.
Theorem 1. For $\delta=-1, x>1$ all solutions of equation (2) are given by $(a, x, y, m, n)=\left(u^{m-2}, u^{n}, u^{m-1}, m, n\right)$ with $u \in \mathbb{N}>1$.

For $\delta=-1, x<-1$ all solutions of equation (2) are given by (a, x, y, m, n) $=\left(u^{2 k-2},-u^{2 l-1},-u^{2 k-1}, 2 k, 2 l-1\right)$ with $k, l, u \in \mathbb{N}>1$.

Theorem 2. For $\delta=1, x>1$ equation (2) has no solution.
For $\delta=1, x<-1$ all solutions of equation (2) are given by (a, x, y, m, n) $=\left(u^{2 k-3},-u^{n}, u^{2 k-2}, 2 k-1, n\right)$ with $k, n, u \in \mathbb{N}>1$.

Corollary 1. The Diophantine equation

$$
\begin{equation*}
\frac{x^{m}-1}{x-1}=y^{n}+1, \quad x, y \in \mathbb{Z}, m, n \in \mathbb{N},|x|>1, m>2, n>1 \tag{3}
\end{equation*}
$$

has no solution (x, y, m, n).

[^0]Corollary 2. The Diophantine equation
(4) $\frac{x^{m}+1}{x+1}=y^{n}+1, \quad x, y \in \mathbb{Z}, m, n \in \mathbb{N},|x|>1, m>2, n>1$, has no solution (x, y, m, n).

Corollary 1 is a substantial generalization of Le's result [4] for the equation (1).
2. Lemmas. Throughout this section, we assume that D and n are positive integers.

Lemma 1 ([3]). If $n \geq 5$, then the equation

$$
X^{n}-D Y^{n}= \pm 1, \quad X, Y \in \mathbb{N}
$$

has at most one solution (X, Y) except possibly when $D=2$ or $D=2^{n} \pm 1$ and $n \in\{5,6\}$.

Lemma 2 ([5]). If $D>1$, then the equation

$$
X^{3}+D Y^{3}=1, \quad X, Y \in \mathbb{Z}
$$

has at most one solution (X, Y) other than $X=1, Y=0$.
Lemma 3. Let D be not a perfect square and $x, y \in \mathbb{N}$ a solution of Pell's equation

$$
\begin{equation*}
x^{2}-D y^{2}=1, \quad x, y \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Let $\left(x_{0}, y_{0}\right)$ be the fundamental solution of (5) and $\varepsilon=x_{0}+y_{0} \sqrt{D}$. If x_{0} is divisible by all prime divisors of x, then $x+y \sqrt{D}=\varepsilon$.

Proof. We may assume

$$
\begin{equation*}
x+y \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{n}, \quad n \geq 1 \tag{6}
\end{equation*}
$$

The result is clear for $n=1$. We assume $n>1$, then $x>1$.
(1) If n is even, by (6) we get

$$
\begin{equation*}
x=\sum_{j=0}^{n / 2}\binom{n}{2 j} x_{0}^{n-2 j}\left(y_{0}^{2} D\right)^{j} . \tag{7}
\end{equation*}
$$

Let p be a prime divisor of x. Under our assumption $p \mid x_{0}$. By (7) we get $p \mid\left(D y_{0}^{2}\right)^{n / 2}$. This is impossible.
(2) If n is odd, we may write

$$
x+y \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{n}=x_{n}+y_{n} \sqrt{D}
$$

If $r \mid n$, then $x_{r}+y_{r} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{r}, x_{r} \mid x_{n}$. Therefore x_{r} also satisfies the assumption of the lemma. Now let p be any prime divisor of n. We have

$$
x_{p}+y_{p} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{p} .
$$

Then

$$
\begin{equation*}
x_{p} / x_{0}=\sum_{j=0}^{(p-1) / 2}\binom{p}{2 j} x_{0}^{p-2 j-1}\left(y_{0}^{2} D\right)^{j} \tag{8}
\end{equation*}
$$

Assume q is any prime divisor of x_{p} / x_{0}. Then $q \mid x_{0}$, by assumption. By (8), we get $q \mid p\left(y_{0}^{2} D\right)^{(p-1) / 2}$. Since $\left(q, y_{0} D\right)=1$, we have $q=p$. Furthermore we claim that x_{p} / x_{0} is square-free. Otherwise, $p^{2} \mid x_{p} / x_{0}$. By (8) we have $p^{2} \mid p\left(y_{0}^{2} D\right)^{(p-1) / 2}$. This is impossible. Therefore, $x_{p} / x_{0}=p$. On the other hand, when $p>3$, we find from (8) that

$$
x_{p} / x_{0}>p(p-1) / 2 \geq p
$$

This contradicts $x_{p} / x_{0}=p$. It shows that n has no prime divisor other than 3. Thus $n=3^{f}, f \geq 1$. Therefore $x_{3} \mid x_{n}$, and we have $3=x_{3} / x_{0}=$ $x_{0}^{2}+3 D y_{0}^{2}=4 x_{0}^{2}-3$, which is impossible.

Combining these results yields $n=1$. The proof is complete.
Definition. Let p be a prime and n a nonzero integer. Then $\operatorname{ord}_{p} n$ is defined to be the unique nonnegative integer t such that $p^{t} \mid n$ and $p^{t+1} \nmid n$.

Lemma 4. Let $n>1, p$ be the largest prime divisor of $n, \operatorname{ord}_{p} n=t \geq 1$, $r \in \mathbb{N}, 1 \leq r \leq t$. Then $\left(2^{p^{r}}-1,\left(2^{n}-1\right) /\left(2^{p^{r}}-1\right)\right)=1$.

Proof. Let $n=p^{r} s$. If $\left(2^{p^{r}}-1,\left(2^{n}-1\right) /\left(2^{p^{r}}-1\right)\right)>1$, then there is an odd prime q such that $2^{p^{r}} \equiv 1(\bmod q),\left(2^{n}-1\right) /\left(2^{p^{r}}-1\right) \equiv 0(\bmod q)$. We can find $s \equiv 0(\bmod q)$ and so $q \mid n$. Since $2^{q-1} \equiv 1(\bmod q)$, we have $q \mid\left(2^{p^{r}}-1,2^{q-1}-1\right)=2^{\left(p^{r}, q-1\right)}-1$ whence $\left(p^{r}, q-1\right)>1$. It follows that $p \mid q-1$, whence $q>p$, which is not true because p is the largest prime divisor of n. The lemma is proved.

3. Proofs

Proof of Theorem 1. By (2), we have

$$
\begin{equation*}
a^{n} x\left(x^{m-1}-1\right)=\left(a^{n} x-1\right) y^{n} \tag{9}
\end{equation*}
$$

Assume first $x>1$. Let $x=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ be the prime decomposition of x, $r \geq 1, \alpha_{i} \geq 1$ such that $\operatorname{ord}_{p_{i}} x=\alpha_{i}$. Since $\left(x, x^{m-1}-1\right)=\left(x, a^{n} x-1\right)$ $=1$, we have $\operatorname{ord}_{p_{i}}\left(x^{m-1}-1\right)=\operatorname{ord}_{p_{i}}\left(a^{n} x-1\right)=0$. From (9) we get $n \operatorname{ord}_{p_{i}} a+\alpha_{i}=n \operatorname{ord}_{p_{i}} y$. Then $\alpha_{i}=n\left(\operatorname{ord}_{p_{i}} y-\operatorname{ord}_{p_{i}} a\right)=n v_{i}$ for all i. Put $u=p_{1}^{v_{1}} \ldots p_{r}^{v_{r}}$. We obtain $x=u^{n}$. Replacing x by u^{n} in (9), we get

$$
\begin{equation*}
(a u)^{n}\left(u^{n(m-1)}-1\right)=\left((a u)^{n}-1\right) y^{n} . \tag{10}
\end{equation*}
$$

Since $\left((a u)^{n},(a u)^{n}-1\right)=1$, we get $a u \mid y$ from (10). Replace y by $a u y_{1}$ in (10). Then

$$
\begin{equation*}
u^{n(m-1)}-\left((a u)^{n}-1\right) y_{1}^{n}=1, \quad u>1, y_{1}>0 . \tag{11}
\end{equation*}
$$

(1) If $2 \mid n$, we see from (11) that $\left(u^{n(m-1) / 2}, y_{1}^{n / 2}\right)$ is a solution of Pell's equation $X^{2}-\left((a u)^{n}-1\right) Y^{2}=1$. But $\left((a u)^{n / 2}, 1\right)$ is its fundamental solution. By Lemma 3 we get $u^{n(m-1) / 2}=(a u)^{n / 2}, y_{1}=1$. It follows that $a=u^{m-2}$, $y=u^{m-1}$. Thus in this case, the assertion of Theorem 1 is true.
(2) If $n=3$, by (11) we see that $\left(u^{m-1},-y_{1}\right)$ is a solution of the equation $X^{3}+\left((a u)^{3}-1\right) Y^{3}=1$. But $(a u,-1)$ also is a solution of this equation. By Lemma 2, we get $u^{m-2}=a, y_{1}=1$. Hence in this case, the assertion of Theorem 1 is also true.
(3) If $2 \nmid n$ and $n \geq 5$, we find from (11) that $\left(u^{m-1}, y_{1}\right)$ is a solution of the equation

$$
\begin{equation*}
X^{n}-\left((a u)^{n}-1\right) Y^{n}=1, \quad X, Y \in \mathbb{N}, n \geq 5,2 \nmid n \tag{12}
\end{equation*}
$$

By Lemma $1,(12)$ has at most one solution (X, Y) except possibly when $(a u)^{n}-1=2^{n} \pm 1$ and $n=5$ or $(a u)^{n}-1=2$. The latter is impossible.

When $n=5,(a u)^{n}-1=2^{n}+1$ is clearly not true.
When $n=5$ and $(a u)^{n}-1=2^{n}-1$, we have $a=1, u=2$. Thus, by (11),

$$
\begin{equation*}
2^{5(m-1)}-1=31 y_{1}^{5} \tag{13}
\end{equation*}
$$

Put $s=m-1$. Let p be the largest prime divisor of s. Let $p \neq 5$. By Lemma 4, $\left(2^{p}-1,\left(2^{s}-1\right) /\left(2^{p}-1\right)\right)=1$. Notice that $\left(2^{5 s}-1\right) /\left(2^{s}-1\right) \equiv$ $2^{4 s}+2^{3 s}+2^{2 s}+2^{s}+1 \equiv 5\left(\bmod 2^{p}-1\right)$ and $\left(2^{p}-1,5\right)=1$. We get $\left(2^{p}-1,\left(2^{5 s}-1\right) /\left(2^{p}-1\right)\right)=1$. Therefore we find from (13) that $2^{p}-1=z_{1}^{5}$, which is impossible by [2]. Let $p=5$. By Lemma $4,\left(2^{25}-1,\left(2^{5 s}-1\right) /\left(2^{25}-1\right)\right)$ $=1$. We find from (13) that $2^{25}-1=31 z_{1}^{5}$. Then $z_{1}^{5}=1082401$, which is impossible. We conclude that $(a u, 1)$ is the only solution of (12). Hence $u^{m-1}=a u, y_{1}=1$. Thus $a=u^{m-2}, y=u^{m-1}$.

Combining the above results, Theorem 1 is proved in the case of $x>1$.
Consider the case of $x<-1$. When $2 \mid m$ and $2 \mid n$, the equation (2) clearly has no solution. When $2 \nmid m$, putting $x=-x_{1}$, the problem is changed into the case $x>1$ of Theorem 2 and we refer to the proof of Theorem 2. When $2 \mid m$ and $2 \nmid n$, i.e. $m=2 k$ and $n=2 l-1$ with $k, l \in \mathbb{N}>1$, as at the beginning of the proof, we may write $x=-u^{n}, y=-a u y_{1}$ with $u>1$, $y_{1}, u \in \mathbb{N}$. By (2), we get

$$
\begin{equation*}
u^{n(m-1)}-\left((a u)^{n}+1\right) y_{1}^{n}=-1 \tag{14}
\end{equation*}
$$

If $n=3$, we find from (14) that $\left(-u^{m-1}, y_{1}\right)$ is a solution of the equation $X^{3}+\left((a u)^{3}+1\right) Y^{3}=1$. But so is $(-a u, 1)$. By Lemma 2, $a=u^{m-2}$, $y=-u^{m-1}$.

If $n \geq 5$, we find from (14) that $\left(u^{m-1}, y_{1}\right)$ is a solution of the equation

$$
\begin{equation*}
X^{n}-\left((a u)^{n}+1\right) Y^{n}=-1 \tag{15}
\end{equation*}
$$

By Lemma 1, (15) has at most one solution except possibly when $n=5$ and $(a u)^{n}+1=2^{n} \pm 1$ or $(a u)^{n}+1=2$. The latter is impossible.

Of course $(a u, 1)$ is a solution of (15). This yields $u^{m-1}=a u, y_{1}=1$, whence $a=u^{m-2}=u^{2 k-2}, y=-u^{m-1}=-u^{2 k-1}$. Since $(a u)^{n}+1=2^{n}-1$ is clearly not true, there can only be an additional solution if $n=5$ and $(a u)^{n}+1=2^{n}+1$. This implies $a=1, u=2$ whence $x=-32$. So (2) reduces to the equation

$$
\frac{(-32)^{m}-1}{-32-1}=\left(-2 y_{1}\right)^{5}+1 \quad \text { with } m \text { even, } y_{1}>0
$$

which we rewrite as $33 y_{1}^{5}-32\left(2^{m-2}\right)^{5}=1$. According to [1] the equation $33 X^{5}-32 Y^{5}=1$ has only the solution $X=Y=1$. Thus $y_{1}=1, m=2$, contrary to the assumption $m>2$. This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose $x>1$. As in the proof of Theorem 1, we may put $x=u^{n}, y=a u y_{1}, u>1, y_{1}>0$. By (2), we get

$$
\begin{equation*}
u^{n(m-1)}-\left((a u)^{n}+1\right) y_{1}^{n}=1 . \tag{16}
\end{equation*}
$$

If $2 \mid n$, we find from (16) that $\left(u^{n(m-1) / 2}, y_{1}^{n / 2}\right)$ is a solution of Pell's equation $X^{2}-\left((a u)^{n}+1\right) Y^{2}=1$. But $\left(2(a u)^{n}+1,2(a u)^{n / 2}\right)$ is its fundamental solution. So we get
$u^{n(m-1) / 2}+y_{1}^{n / 2} \sqrt{(a u)^{n}+1}=\left[2(a u)^{n}+1+2(a u)^{n / 2} \sqrt{(a u)^{n}+1}\right]^{s}, \quad s \geq 1$.
When $2 \nmid s$, we find that

$$
u^{n(m-1) / 2}=\sum_{j=0}^{(s-1) / 2}\binom{s}{2 j}\left(2(a u)^{n}+1\right)^{s-2 j}\left(4(a u)^{n}\left((a u)^{n}+1\right)\right)^{j}
$$

Thus $u \mid\left[2(a u)^{n}+1\right]^{s}$, which is impossible.
When $2 \mid s$, we find that

$$
u^{n(m-1) / 2}=\sum_{j=0}^{s / 2}\binom{s}{2 j}\left(2(a u)^{n}+1\right)^{s-2 j}\left(4(a u)^{n}\left((a u)^{n}+1\right)\right)^{j}
$$

Thus $u \mid\left[2(a u)^{n}+1\right]^{s}$, which is impossible. In this case, the assertion of Theorem 2 is true.

If $n=3$, we find from (16) that $\left(u^{m-1},-y_{1}\right)$ is a solution of the equation $X^{3}+\left((a u)^{3}+1\right) Y^{3}=1$. But so is $(-a u, 1)$. By Lemma $2, y_{1}=-1$, which is impossible.

If $n \geq 5$ and $2 \nmid n$, we find from (16) that $\left(u^{m-1}, y_{1}\right)$ is a solution of the equation

$$
\begin{equation*}
X^{n}-\left((a u)^{n}+1\right) Y^{n}=1 \tag{17}
\end{equation*}
$$

Notice that $(a u, 1)$ is a solution of the equation $X^{n}-\left((a u)^{n}+1\right) Y^{n}=-1$. By Lemma 1, we see that either $n=5$ and $(a u)^{n}+1=2^{n} \pm 1$ or $(a u)^{n}+1=2$. The latter is impossible.

When $n=5,(a u)^{n}+1=2^{n}-1$ is clearly not true.

When $n=5$ and $(a u)^{n}+1=2^{n}+1$, we have $a=1, u=2$.
Thus, by (16),

$$
\begin{equation*}
2^{5(m-1)}-1=33 y_{1}^{5} . \tag{18}
\end{equation*}
$$

If $2 \mid m$, we find from (18) that $\left(\frac{2}{3}\right)=1$, which is not true because $\left(\frac{2}{3}\right)=-1$. If $2 \nmid m$, put $2 s=5(m-1)$. Since $\left(2^{s}-1,2^{s}+1\right)=1$ and $33 \mid 2^{s}+1$, we find from (18) that $2^{s}-1=z_{1}^{5}, 2^{s}+1=33 z_{2}^{5}$. However $2^{s}-1=z_{1}^{5}$ is not true by [4]. We find that (16) is not true if $n \geq 5$ and $2 \nmid n$.

Combining the above results, Theorem 2 is proved in the case $x>1$.
Consider the case $x<-1$. When $2 \nmid m$, putting $x=-x_{1}$, the problem is changed into the case $x>1$ of Theorem 1 and we refer to the proof of Theorem 1. When $2 \mid m$ and $2 \mid n$, the equation (2) clearly has no solution. When $2 \mid m$ and $2 \nmid n$, as at the beginning of the proof we may write $x=-u^{n}$, $y=-a u y_{1}, u>1, y_{1}>0$. We see from (2) that

$$
\begin{equation*}
u^{n(m-1)}-\left((a u)^{n}-1\right) y_{1}^{n}=-1 . \tag{19}
\end{equation*}
$$

If $n=3$, we find from (19) that $\left(-u^{m-1}, y_{1}\right)$ is a solution of the equation $X^{3}+\left((a u)^{n}-1\right) Y^{3}=1$. But so is $(a u,-1)$. By Lemma $2, y_{1}=-1$, which contradicts $y_{1}>0$.

If $n \geq 5$, we find from (19) that (u^{m-1}, y_{1}) is a solution of the equation

$$
\begin{equation*}
X^{n}-\left((a u)^{n}-1\right) Y^{n}=-1 . \tag{20}
\end{equation*}
$$

Notice that $(a u, 1)$ is a solution of the equation $X^{n}-\left((a u)^{n}-1\right) Y^{n}=1$. By Lemma 1, we deduce that either $n=5$ and $(a u)^{n}-1=2^{n} \pm 1$ or $(a u)^{n}-1=2$. The latter is impossible.

When $n=5,(a u)^{n}-1=2^{n}+1$ is clearly not true.
When $n=5$ and $(a u)^{n}-1=2^{n}-1$, we have $a=1$ and $u=2$.
We see from (19) that

$$
2^{5(m-1)}+1=31 y_{1}^{5} .
$$

Therefore $1=\left(\frac{2}{31}\right)=\left(\frac{2^{5(m-1)}}{31}\right)=\left(\frac{-1}{31}\right)=-1$, which is impossible.
This completes the proof of Theorem 2.
By putting $a=1$ in Theorem 1 and in Theorem 2, we obtain Corollary 1 and Corollary 2 , respectively.

Remark 1. By using the same method, it can be proved that the equation

$$
\frac{a^{n} x^{m}-1}{a^{n} x-1}=y^{n}, \quad a, m, n \in \mathbb{N}, x, y \in \mathbb{Z},|x|>1, m>2, n>1,
$$

has no solution (a, x, y, m, n) which makes x an nth perfect power.
2. Also, it can be proved that the equation

$$
a^{n} x \frac{a^{n} x^{m-1}-1}{a^{n} x-1}=y^{n}, \quad a, m, n \in \mathbb{N}, x, y \in \mathbb{Z},|x|>1, m>2, n>1
$$

has no solution.
The author would like to thank Professors Sun Qi and Pingzhi Yuan for their help. Also, appreciation is given to the referee for his valuable suggestions.

References

[1] M. A. Bennett and B. M. M. de Weger, On the diophantine equation $\left|a x^{n}-b y^{n}\right|$ $=1$, Math. Comp. 67 (1998), 413-438.
[2] J. W. S. Cassels, On the equation $a^{x}-b^{y}=1$. II, Proc. Cambridge Philos. Soc. 56 (1960), 97-103; Corrigendum, ibid. 57 (1961), 187.
[3] Y. Domar, On the Diophantine equation $\left|A x^{n}-B y^{n}\right|=1, n \geq 5$, Math. Scand. 2 (1954), 29-32.
[4] M. H. Le, A note on the Diophantine equation $\left(x^{m}-1\right) /(x-1)=y^{n}+1$, Math. Proc. Cambridge Philos. Soc. 116 (1994), 385-389.
[5] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
Department of Mathematics
Sichuan University
Chengdu 610064, China
E-mail: sszibbh@mail.sc.cninfo.net

[^0]: 2000 Mathematics Subject Classification: Primary 11D61.

