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A note on the Diophantine equation
(anxm ± 1)/(anx± 1) = yn + 1

by

Jiagui Luo (Chengdu)

1. Introduction. Let Z,N denote the sets of integers and positive in-
tegers respectively. Le Mao Hua [4] has proved that the following equation
has no solution (x, y,m, n):

xm − 1
x− 1

= yn + 1, x, y,m, n ∈ N, x > 1,(1)

y > 1, m > 2, n an odd prime.

In this note, we investigate a more general equation applying another
method. For

anxm + δ

anx+ δ
= yn + 1, δ ∈ {1,−1}, x, y ∈ Z, a,m, n ∈ N,(2)

m > 2, n > 1, |x| > 1,

we prove the following results.

Theorem 1. For δ = −1, x > 1 all solutions of equation (2) are given
by (a, x, y,m, n) = (um−2, un, um−1,m, n) with u ∈ N > 1.

For δ=−1, x<−1 all solutions of equation (2) are given by (a, x, y,m, n)
= (u2k−2,−u2l−1,−u2k−1, 2k, 2l − 1) with k, l, u ∈ N > 1.

Theorem 2. For δ = 1, x > 1 equation (2) has no solution.
For δ = 1, x < −1 all solutions of equation (2) are given by (a, x, y,m, n)

= (u2k−3,−un, u2k−2, 2k − 1, n) with k, n, u ∈ N > 1.

Corollary 1. The Diophantine equation

(3)
xm − 1
x− 1

= yn + 1, x, y ∈ Z, m, n ∈ N, |x| > 1, m > 2, n > 1,

has no solution (x, y,m, n).
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Corollary 2. The Diophantine equation

(4)
xm + 1
x+ 1

= yn + 1, x, y ∈ Z, m, n ∈ N, |x| > 1, m > 2, n > 1,

has no solution (x, y,m, n).

Corollary 1 is a substantial generalization of Le’s result [4] for the equa-
tion (1).

2. Lemmas. Throughout this section, we assume that D and n are
positive integers.

Lemma 1 ([3]). If n ≥ 5, then the equation

Xn −DY n = ±1, X, Y ∈ N,
has at most one solution (X,Y ) except possibly when D = 2 or D = 2n± 1
and n ∈ {5, 6}.

Lemma 2 ([5]). If D > 1, then the equation

X3 +DY 3 = 1, X, Y ∈ Z,
has at most one solution (X,Y ) other than X = 1, Y = 0.

Lemma 3. Let D be not a perfect square and x, y ∈ N a solution of Pell’s
equation

(5) x2 −Dy2 = 1, x, y ∈ Z.
Let (x0, y0) be the fundamental solution of (5) and ε = x0 + y0

√
D. If x0

is divisible by all prime divisors of x, then x+ y
√
D = ε.

P r o o f. We may assume

(6) x+ y
√
D = (x0 + y0

√
D)n, n ≥ 1.

The result is clear for n = 1. We assume n > 1, then x > 1.
(1) If n is even, by (6) we get

(7) x =
n/2∑

j=0

(
n

2j

)
xn−2j

0 (y2
0D)j .

Let p be a prime divisor of x. Under our assumption p |x0. By (7) we get
p | (Dy2

0)n/2. This is impossible.
(2) If n is odd, we may write

x+ y
√
D = (x0 + y0

√
D)n = xn + yn

√
D.

If r |n, then xr + yr
√
D = (x0 + y0

√
D)r, xr |xn. Therefore xr also satisfies

the assumption of the lemma. Now let p be any prime divisor of n. We have

xp + yp
√
D = (x0 + y0

√
D)p.
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Then

(8) xp/x0 =
(p−1)/2∑

j=0

(
p

2j

)
xp−2j−1

0 (y2
0D)j .

Assume q is any prime divisor of xp/x0. Then q |x0, by assumption. By (8),
we get q | p(y2

0D)(p−1)/2. Since (q, y0D) = 1, we have q = p. Furthermore
we claim that xp/x0 is square-free. Otherwise, p2 |xp/x0. By (8) we have
p2 | p(y2

0D)(p−1)/2. This is impossible. Therefore, xp/x0 = p. On the other
hand, when p > 3, we find from (8) that

xp/x0 > p(p− 1)/2 ≥ p.
This contradicts xp/x0 = p. It shows that n has no prime divisor other
than 3. Thus n = 3f , f ≥ 1. Therefore x3 |xn, and we have 3 = x3/x0 =
x2

0 + 3Dy2
0 = 4x2

0 − 3, which is impossible.
Combining these results yields n = 1. The proof is complete.

Definition. Let p be a prime and n a nonzero integer. Then ordp n is
defined to be the unique nonnegative integer t such that pt |n and pt+1 -n.

Lemma 4. Let n > 1, p be the largest prime divisor of n, ordp n = t ≥ 1,
r ∈ N, 1 ≤ r ≤ t. Then (2p

r − 1, (2n − 1)/(2p
r − 1)) = 1.

P r o o f. Let n = prs. If (2p
r − 1, (2n − 1)/(2p

r − 1)) > 1, then there is
an odd prime q such that 2p

r ≡ 1 (mod q), (2n − 1)/(2p
r − 1) ≡ 0 (mod q).

We can find s ≡ 0 (mod q) and so q |n. Since 2q−1 ≡ 1 (mod q), we have
q | (2pr − 1, 2q−1 − 1) = 2(pr,q−1) − 1 whence (pr, q − 1) > 1. It follows that
p | q − 1, whence q > p, which is not true because p is the largest prime
divisor of n. The lemma is proved.

3. Proofs

Proof of Theorem 1. By (2), we have

(9) anx(xm−1 − 1) = (anx− 1)yn.

Assume first x > 1. Let x = pα1
1 . . . pαrr be the prime decomposition of x,

r ≥ 1, αi ≥ 1 such that ordpi x = αi. Since (x, xm−1 − 1) = (x, anx − 1)
= 1, we have ordpi(x

m−1 − 1) = ordpi(a
nx − 1) = 0. From (9) we get

n ordpi a + αi = n ordpi y. Then αi = n(ordpi y − ordpi a) = nvi for all i.
Put u = pv1

1 . . . pvrr . We obtain x = un. Replacing x by un in (9), we get

(10) (au)n(un(m−1) − 1) = ((au)n − 1)yn.

Since ((au)n, (au)n − 1) = 1, we get au | y from (10). Replace y by auy1

in (10). Then

(11) un(m−1) − ((au)n − 1)yn1 = 1, u > 1, y1 > 0.
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(1) If 2 |n, we see from (11) that (un(m−1)/2, y
n/2
1 ) is a solution of Pell’s

equationX2−((au)n−1)Y 2 = 1. But ((au)n/2, 1) is its fundamental solution.
By Lemma 3 we get un(m−1)/2 = (au)n/2, y1 = 1. It follows that a = um−2,
y = um−1. Thus in this case, the assertion of Theorem 1 is true.

(2) If n = 3, by (11) we see that (um−1,−y1) is a solution of the equation
X3 + ((au)3 − 1)Y 3 = 1. But (au,−1) also is a solution of this equation.
By Lemma 2, we get um−2 = a, y1 = 1. Hence in this case, the assertion of
Theorem 1 is also true.

(3) If 2 -n and n ≥ 5, we find from (11) that (um−1, y1) is a solution of
the equation

(12) Xn − ((au)n − 1)Y n = 1, X, Y ∈ N, n ≥ 5, 2 -n.
By Lemma 1, (12) has at most one solution (X,Y ) except possibly when
(au)n − 1 = 2n ± 1 and n = 5 or (au)n − 1 = 2. The latter is impossible.

When n = 5, (au)n − 1 = 2n + 1 is clearly not true.
When n = 5 and (au)n−1 = 2n−1, we have a = 1, u = 2. Thus, by (11),

(13) 25(m−1) − 1 = 31y5
1 .

Put s = m − 1. Let p be the largest prime divisor of s. Let p 6= 5. By
Lemma 4, (2p − 1, (2s − 1)/(2p − 1)) = 1. Notice that (25s − 1)/(2s − 1) ≡
24s + 23s + 22s + 2s + 1 ≡ 5 (mod 2p − 1) and (2p − 1, 5) = 1. We get
(2p−1, (25s−1)/(2p−1)) = 1. Therefore we find from (13) that 2p−1 = z5

1 ,
which is impossible by [2]. Let p = 5. By Lemma 4, (225−1, (25s−1)/(225−1))
= 1. We find from (13) that 225 − 1 = 31z5

1 . Then z5
1 = 1082401, which is

impossible. We conclude that (au, 1) is the only solution of (12). Hence
um−1 = au, y1 = 1. Thus a = um−2, y = um−1.

Combining the above results, Theorem 1 is proved in the case of x > 1.
Consider the case of x < −1. When 2 |m and 2 |n, the equation (2)

clearly has no solution. When 2 -m, putting x = −x1, the problem is changed
into the case x > 1 of Theorem 2 and we refer to the proof of Theorem 2.
When 2 |m and 2 -n, i.e. m = 2k and n = 2l − 1 with k, l ∈ N > 1, as at
the beginning of the proof, we may write x = −un, y = −auy1 with u > 1,
y1, u ∈ N. By (2), we get

(14) un(m−1) − ((au)n + 1)yn1 = −1.

If n = 3, we find from (14) that (−um−1, y1) is a solution of the equation
X3 + ((au)3 + 1)Y 3 = 1. But so is (−au, 1). By Lemma 2, a = um−2,
y = −um−1.

If n ≥ 5, we find from (14) that (um−1, y1) is a solution of the equation

(15) Xn − ((au)n + 1)Y n = −1.

By Lemma 1, (15) has at most one solution except possibly when n = 5 and
(au)n + 1 = 2n ± 1 or (au)n + 1 = 2. The latter is impossible.
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Of course (au, 1) is a solution of (15). This yields um−1 = au, y1 = 1,
whence a = um−2 = u2k−2, y = −um−1 = −u2k−1. Since (au)n + 1 = 2n− 1
is clearly not true, there can only be an additional solution if n = 5 and
(au)n + 1 = 2n + 1. This implies a = 1, u = 2 whence x = −32. So (2)
reduces to the equation

(−32)m − 1
−32− 1

= (−2y1)5 + 1 with m even, y1 > 0

which we rewrite as 33y5
1 − 32(2m−2)5 = 1. According to [1] the equation

33X5 − 32Y 5 = 1 has only the solution X = Y = 1. Thus y1 = 1, m = 2,
contrary to the assumption m > 2. This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose x > 1. As in the proof of Theorem 1, we
may put x = un, y = auy1, u > 1, y1 > 0. By (2), we get

(16) un(m−1) − ((au)n + 1)yn1 = 1.

If 2 |n, we find from (16) that (un(m−1)/2, y
n/2
1 ) is a solution of Pell’s

equation X2 − ((au)n + 1)Y 2 = 1. But (2(au)n + 1, 2(au)n/2) is its funda-
mental solution. So we get

un(m−1)/2+yn/21

√
(au)n + 1 = [2(au)n+1+2(au)n/2

√
(au)n + 1]s, s ≥ 1.

When 2 - s, we find that

un(m−1)/2 =
(s−1)/2∑

j=0

(
s

2j

)
(2(au)n + 1)s−2j(4(au)n((au)n + 1))j .

Thus u | [2(au)n + 1]s, which is impossible.
When 2 | s, we find that

un(m−1)/2 =
s/2∑

j=0

(
s

2j

)
(2(au)n + 1)s−2j(4(au)n((au)n + 1))j .

Thus u | [2(au)n + 1]s, which is impossible. In this case, the assertion of
Theorem 2 is true.

If n = 3, we find from (16) that (um−1,−y1) is a solution of the equation
X3 + ((au)3 + 1)Y 3 = 1. But so is (−au, 1). By Lemma 2, y1 = −1, which
is impossible.

If n ≥ 5 and 2 -n, we find from (16) that (um−1, y1) is a solution of the
equation

(17) Xn − ((au)n + 1)Y n = 1.

Notice that (au, 1) is a solution of the equation Xn−((au)n+1)Y n = −1. By
Lemma 1, we see that either n = 5 and (au)n + 1 = 2n± 1 or (au)n + 1 = 2.
The latter is impossible.

When n = 5, (au)n + 1 = 2n − 1 is clearly not true.
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When n = 5 and (au)n + 1 = 2n + 1, we have a = 1, u = 2.
Thus, by (16),

(18) 25(m−1) − 1 = 33y5
1 .

If 2 |m, we find from (18) that
(

2
3

)
= 1, which is not true because

(
2
3

)
= −1.

If 2 -m, put 2s = 5(m− 1). Since (2s− 1, 2s + 1) = 1 and 33 | 2s + 1, we find
from (18) that 2s − 1 = z5

1 , 2
s + 1 = 33z5

2 . However 2s − 1 = z5
1 is not true

by [4]. We find that (16) is not true if n ≥ 5 and 2 -n.
Combining the above results, Theorem 2 is proved in the case x > 1.
Consider the case x < −1. When 2 -m, putting x = −x1, the problem

is changed into the case x > 1 of Theorem 1 and we refer to the proof of
Theorem 1. When 2 |m and 2 |n, the equation (2) clearly has no solution.
When 2 |m and 2 -n, as at the beginning of the proof we may write x = −un,
y = −auy1, u > 1, y1 > 0. We see from (2) that

(19) un(m−1) − ((au)n − 1)yn1 = −1.

If n = 3, we find from (19) that (−um−1, y1) is a solution of the equation
X3 + ((au)n − 1)Y 3 = 1. But so is (au,−1). By Lemma 2, y1 = −1, which
contradicts y1 > 0.

If n ≥ 5, we find from (19) that (um−1, y1) is a solution of the equation

(20) Xn − ((au)n − 1)Y n = −1.

Notice that (au, 1) is a solution of the equation Xn − ((au)n − 1)Y n = 1.
By Lemma 1, we deduce that either n = 5 and (au)n − 1 = 2n ± 1 or
(au)n − 1 = 2. The latter is impossible.

When n = 5, (au)n − 1 = 2n + 1 is clearly not true.
When n = 5 and (au)n − 1 = 2n − 1, we have a = 1 and u = 2.
We see from (19) that

25(m−1) + 1 = 31y5
1 .

Therefore 1 =
(

2
31

)
=
(

25(m−1)

31

)
=
(−1

31

)
= −1, which is impossible.

This completes the proof of Theorem 2.

By putting a = 1 in Theorem 1 and in Theorem 2, we obtain Corollary 1
and Corollary 2, respectively.

Remark 1. By using the same method, it can be proved that the equa-
tion

anxm − 1
anx− 1

= yn, a,m, n ∈ N, x, y ∈ Z, |x| > 1, m > 2, n > 1,

has no solution (a, x, y,m, n) which makes x an nth perfect power.
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2. Also, it can be proved that the equation

anx
anxm−1 − 1
anx− 1

= yn, a,m, n ∈ N, x, y ∈ Z, |x| > 1, m > 2, n > 1,

has no solution.

The author would like to thank Professors Sun Qi and Pingzhi Yuan
for their help. Also, appreciation is given to the referee for his valuable
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