A note on the Diophantine equation $(a^n x^m \pm 1)/(a^n x \pm 1) = y^n + 1$

by

JIAGUI LUO (Chengdu)

1. Introduction. Let \mathbb{Z}, \mathbb{N} denote the sets of integers and positive integers respectively. Le Mao Hua [4] has proved that the following equation has no solution (x, y, m, n):

(1)
$$\frac{x^m - 1}{x - 1} = y^n + 1, \quad x, y, m, n \in \mathbb{N}, \ x > 1,$$
$$y > 1, \ m > 2, \ n \text{ an odd prime.}$$

In this note, we investigate a more general equation applying another method. For

(2)
$$\frac{a^n x^m + \delta}{a^n x + \delta} = y^n + 1, \quad \delta \in \{1, -1\}, \ x, y \in \mathbb{Z}, \ a, m, n \in \mathbb{N},$$

 $m > 2, \ n > 1, \ |x| > 1,$

we prove the following results.

THEOREM 1. For $\delta = -1, x > 1$ all solutions of equation (2) are given by $(a, x, y, m, n) = (u^{m-2}, u^n, u^{m-1}, m, n)$ with $u \in \mathbb{N} > 1$.

For $\delta = -1$, x < -1 all solutions of equation (2) are given by $(a, x, y, m, n) = (u^{2k-2}, -u^{2l-1}, -u^{2k-1}, 2k, 2l-1)$ with $k, l, u \in \mathbb{N} > 1$.

THEOREM 2. For $\delta = 1, x > 1$ equation (2) has no solution.

For $\delta = 1, x < -1$ all solutions of equation (2) are given by $(a, x, y, m, n) = (u^{2k-3}, -u^n, u^{2k-2}, 2k-1, n)$ with $k, n, u \in \mathbb{N} > 1$.

COROLLARY 1. The Diophantine equation

(3)
$$\frac{x^m - 1}{x - 1} = y^n + 1, \quad x, y \in \mathbb{Z}, \ m, n \in \mathbb{N}, \ |x| > 1, \ m > 2, \ n > 1,$$

has no solution (x, y, m, n).

2000 Mathematics Subject Classification: Primary 11D61.

COROLLARY 2. The Diophantine equation

(4)
$$\frac{x^m+1}{x+1} = y^n+1, \quad x, y \in \mathbb{Z}, \ m, n \in \mathbb{N}, \ |x| > 1, \ m > 2, \ n > 1,$$

has no solution (x, y, m, n).

Corollary 1 is a substantial generalization of Le's result [4] for the equation (1).

2. Lemmas. Throughout this section, we assume that D and n are positive integers.

LEMMA 1 ([3]). If $n \ge 5$, then the equation

 $X^n - DY^n = \pm 1, \quad X, Y \in \mathbb{N},$

has at most one solution (X, Y) except possibly when D = 2 or $D = 2^n \pm 1$ and $n \in \{5, 6\}$.

LEMMA 2 ([5]). If D > 1, then the equation

 $X^3 + DY^3 = 1, \quad X, Y \in \mathbb{Z},$

has at most one solution (X, Y) other than X = 1, Y = 0.

LEMMA 3. Let D be not a perfect square and $x, y \in \mathbb{N}$ a solution of Pell's equation

(5)
$$x^2 - Dy^2 = 1, \quad x, y \in \mathbb{Z}.$$

Let (x_0, y_0) be the fundamental solution of (5) and $\varepsilon = x_0 + y_0 \sqrt{D}$. If x_0 is divisible by all prime divisors of x, then $x + y\sqrt{D} = \varepsilon$.

Proof. We may assume

(6)
$$x + y\sqrt{D} = (x_0 + y_0\sqrt{D})^n, \quad n \ge 1.$$

The result is clear for n = 1. We assume n > 1, then x > 1.

(1) If n is even, by (6) we get

(7)
$$x = \sum_{j=0}^{n/2} \binom{n}{2j} x_0^{n-2j} (y_0^2 D)^j.$$

Let p be a prime divisor of x. Under our assumption $p | x_0$. By (7) we get $p | (Dy_0^2)^{n/2}$. This is impossible.

(2) If n is odd, we may write

$$x + y\sqrt{D} = (x_0 + y_0\sqrt{D})^n = x_n + y_n\sqrt{D}.$$

If $r \mid n$, then $x_r + y_r \sqrt{D} = (x_0 + y_0 \sqrt{D})^r$, $x_r \mid x_n$. Therefore x_r also satisfies the assumption of the lemma. Now let p be any prime divisor of n. We have

$$x_p + y_p \sqrt{D} = (x_0 + y_0 \sqrt{D})^p.$$

Then

(8)
$$x_p/x_0 = \sum_{j=0}^{(p-1)/2} {p \choose 2j} x_0^{p-2j-1} (y_0^2 D)^j.$$

Assume q is any prime divisor of x_p/x_0 . Then $q | x_0$, by assumption. By (8), we get $q | p(y_0^2 D)^{(p-1)/2}$. Since $(q, y_0 D) = 1$, we have q = p. Furthermore we claim that x_p/x_0 is square-free. Otherwise, $p^2 | x_p/x_0$. By (8) we have $p^2 | p(y_0^2 D)^{(p-1)/2}$. This is impossible. Therefore, $x_p/x_0 = p$. On the other hand, when p > 3, we find from (8) that

$$x_p/x_0 > p(p-1)/2 \ge p.$$

This contradicts $x_p/x_0 = p$. It shows that *n* has no prime divisor other than 3. Thus $n = 3^f, f \ge 1$. Therefore $x_3 | x_n$, and we have $3 = x_3/x_0 = x_0^2 + 3Dy_0^2 = 4x_0^2 - 3$, which is impossible.

Combining these results yields n = 1. The proof is complete.

DEFINITION. Let p be a prime and n a nonzero integer. Then $\operatorname{ord}_p n$ is defined to be the unique nonnegative integer t such that $p^t \mid n$ and $p^{t+1} \nmid n$.

LEMMA 4. Let n > 1, p be the largest prime divisor of n, $\operatorname{ord}_p n = t \ge 1$, $r \in \mathbb{N}, \ 1 \le r \le t$. Then $(2^{p^r} - 1, (2^n - 1)/(2^{p^r} - 1)) = 1$.

Proof. Let $n = p^r s$. If $(2^{p^r} - 1, (2^n - 1)/(2^{p^r} - 1)) > 1$, then there is an odd prime q such that $2^{p^r} \equiv 1 \pmod{q}$, $(2^n - 1)/(2^{p^r} - 1) \equiv 0 \pmod{q}$. We can find $s \equiv 0 \pmod{q}$ and so $q \mid n$. Since $2^{q-1} \equiv 1 \pmod{q}$, we have $q \mid (2^{p^r} - 1, 2^{q-1} - 1) = 2^{(p^r, q-1)} - 1$ whence $(p^r, q - 1) > 1$. It follows that $p \mid q - 1$, whence q > p, which is not true because p is the largest prime divisor of n. The lemma is proved.

3. Proofs

Proof of Theorem 1. By (2), we have

(9)
$$a^n x (x^{m-1} - 1) = (a^n x - 1) y^n$$

Assume first x > 1. Let $x = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ be the prime decomposition of x, $r \ge 1$, $\alpha_i \ge 1$ such that $\operatorname{ord}_{p_i} x = \alpha_i$. Since $(x, x^{m-1} - 1) = (x, a^n x - 1) = 1$, we have $\operatorname{ord}_{p_i}(x^{m-1} - 1) = \operatorname{ord}_{p_i}(a^n x - 1) = 0$. From (9) we get $n \operatorname{ord}_{p_i} a + \alpha_i = n \operatorname{ord}_{p_i} y$. Then $\alpha_i = n(\operatorname{ord}_{p_i} y - \operatorname{ord}_{p_i} a) = nv_i$ for all i. Put $u = p_1^{v_1} \dots p_r^{v_r}$. We obtain $x = u^n$. Replacing x by u^n in (9), we get

(10)
$$(au)^n (u^{n(m-1)} - 1) = ((au)^n - 1)y^n$$

Since $((au)^n, (au)^n - 1) = 1$, we get $au \mid y$ from (10). Replace y by auy_1 in (10). Then

(11)
$$u^{n(m-1)} - ((au)^n - 1)y_1^n = 1, \quad u > 1, y_1 > 0.$$

(1) If 2 | n, we see from (11) that $(u^{n(m-1)/2}, y_1^{n/2})$ is a solution of Pell's equation $X^2 - ((au)^n - 1)Y^2 = 1$. But $((au)^{n/2}, 1)$ is its fundamental solution. By Lemma 3 we get $u^{n(m-1)/2} = (au)^{n/2}$, $y_1 = 1$. It follows that $a = u^{m-2}$, $y = u^{m-1}$. Thus in this case, the assertion of Theorem 1 is true.

(2) If n = 3, by (11) we see that $(u^{m-1}, -y_1)$ is a solution of the equation $X^3 + ((au)^3 - 1)Y^3 = 1$. But (au, -1) also is a solution of this equation. By Lemma 2, we get $u^{m-2} = a$, $y_1 = 1$. Hence in this case, the assertion of Theorem 1 is also true.

(3) If $2 \nmid n$ and $n \geq 5$, we find from (11) that (u^{m-1}, y_1) is a solution of the equation

(12)
$$X^n - ((au)^n - 1)Y^n = 1, \quad X, Y \in \mathbb{N}, \ n \ge 5, \ 2 \nmid n.$$

By Lemma 1, (12) has at most one solution (X, Y) except possibly when $(au)^n - 1 = 2^n \pm 1$ and n = 5 or $(au)^n - 1 = 2$. The latter is impossible.

When n = 5, $(au)^n - 1 = 2^n + 1$ is clearly not true.

When
$$n = 5$$
 and $(au)^n - 1 = 2^n - 1$, we have $a = 1, u = 2$. Thus, by (11),
(13) $2^{5(m-1)} - 1 = 31y_1^5$.

Put s = m - 1. Let p be the largest prime divisor of s. Let $p \neq 5$. By Lemma 4, $(2^p - 1, (2^s - 1)/(2^p - 1)) = 1$. Notice that $(2^{5s} - 1)/(2^s - 1) \equiv 2^{4s} + 2^{3s} + 2^{2s} + 2^s + 1 \equiv 5 \pmod{2^p - 1}$ and $(2^p - 1, 5) = 1$. We get $(2^p - 1, (2^{5s} - 1)/(2^p - 1)) = 1$. Therefore we find from (13) that $2^p - 1 = z_1^5$, which is impossible by [2]. Let p = 5. By Lemma 4, $(2^{25} - 1, (2^{5s} - 1)/(2^{25} - 1))$ = 1. We find from (13) that $2^{25} - 1 = 31z_1^5$. Then $z_1^5 = 1082401$, which is impossible. We conclude that (au, 1) is the only solution of (12). Hence $u^{m-1} = au, y_1 = 1$. Thus $a = u^{m-2}, y = u^{m-1}$.

Combining the above results, Theorem 1 is proved in the case of x > 1.

Consider the case of x < -1. When $2 \mid m$ and $2 \mid n$, the equation (2) clearly has no solution. When $2 \nmid m$, putting $x = -x_1$, the problem is changed into the case x > 1 of Theorem 2 and we refer to the proof of Theorem 2. When $2 \mid m$ and $2 \nmid n$, i.e. m = 2k and n = 2l - 1 with $k, l \in \mathbb{N} > 1$, as at the beginning of the proof, we may write $x = -u^n$, $y = -auy_1$ with u > 1, $y_1, u \in \mathbb{N}$. By (2), we get

(14)
$$u^{n(m-1)} - ((au)^n + 1)y_1^n = -1.$$

If n = 3, we find from (14) that $(-u^{m-1}, y_1)$ is a solution of the equation $X^3 + ((au)^3 + 1)Y^3 = 1$. But so is (-au, 1). By Lemma 2, $a = u^{m-2}$, $y = -u^{m-1}$.

If $n \ge 5$, we find from (14) that (u^{m-1}, y_1) is a solution of the equation (15) $X^n - ((au)^n + 1)Y^n = -1.$

By Lemma 1, (15) has at most one solution except possibly when n = 5 and $(au)^n + 1 = 2^n \pm 1$ or $(au)^n + 1 = 2$. The latter is impossible.

Of course (au, 1) is a solution of (15). This yields $u^{m-1} = au, y_1 = 1$, whence $a = u^{m-2} = u^{2k-2}, y = -u^{m-1} = -u^{2k-1}$. Since $(au)^n + 1 = 2^n - 1$ is clearly not true, there can only be an additional solution if n = 5 and $(au)^n + 1 = 2^n + 1$. This implies a = 1, u = 2 whence x = -32. So (2) reduces to the equation

$$\frac{(-32)^m - 1}{-32 - 1} = (-2y_1)^5 + 1 \quad \text{with } m \text{ even, } y_1 > 0$$

which we rewrite as $33y_1^5 - 32(2^{m-2})^5 = 1$. According to [1] the equation $33X^5 - 32Y^5 = 1$ has only the solution X = Y = 1. Thus $y_1 = 1$, m = 2, contrary to the assumption m > 2. This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose x > 1. As in the proof of Theorem 1, we may put $x = u^n$, $y = auy_1$, u > 1, $y_1 > 0$. By (2), we get

(16)
$$u^{n(m-1)} - ((au)^n + 1)y_1^n = 1.$$

If 2 | n, we find from (16) that $(u^{n(m-1)/2}, y_1^{n/2})$ is a solution of Pell's equation $X^2 - ((au)^n + 1)Y^2 = 1$. But $(2(au)^n + 1, 2(au)^{n/2})$ is its fundamental solution. So we get

$$u^{n(m-1)/2} + y_1^{n/2}\sqrt{(au)^n + 1} = [2(au)^n + 1 + 2(au)^{n/2}\sqrt{(au)^n + 1}]^s, \quad s \ge 1.$$
When 2 k a use find that

When $2 \nmid s$, we find that

$$u^{n(m-1)/2} = \sum_{j=0}^{(s-1)/2} {\binom{s}{2j}} (2(au)^n + 1)^{s-2j} (4(au)^n ((au)^n + 1))^j.$$

Thus $u \mid [2(au)^n + 1]^s$, which is impossible.

When $2 \mid s$, we find that

$$u^{n(m-1)/2} = \sum_{j=0}^{s/2} \binom{s}{2j} (2(au)^n + 1)^{s-2j} (4(au)^n ((au)^n + 1))^j.$$

Thus $u | [2(au)^n + 1]^s$, which is impossible. In this case, the assertion of Theorem 2 is true.

If n = 3, we find from (16) that $(u^{m-1}, -y_1)$ is a solution of the equation $X^3 + ((au)^3 + 1)Y^3 = 1$. But so is (-au, 1). By Lemma 2, $y_1 = -1$, which is impossible.

If $n \geq 5$ and $2 \nmid n$, we find from (16) that (u^{m-1}, y_1) is a solution of the equation

(17)
$$X^n - ((au)^n + 1)Y^n = 1.$$

Notice that (au, 1) is a solution of the equation $X^n - ((au)^n + 1)Y^n = -1$. By Lemma 1, we see that either n = 5 and $(au)^n + 1 = 2^n \pm 1$ or $(au)^n + 1 = 2$. The latter is impossible.

When n = 5, $(au)^n + 1 = 2^n - 1$ is clearly not true.

When n = 5 and $(au)^n + 1 = 2^n + 1$, we have a = 1, u = 2. Thus, by (16),

(18)
$$2^{5(m-1)} - 1 = 33y_1^5.$$

If $2 \mid m$, we find from (18) that $\left(\frac{2}{3}\right) = 1$, which is not true because $\left(\frac{2}{3}\right) = -1$. If $2 \nmid m$, put 2s = 5(m-1). Since $(2^s - 1, 2^s + 1) = 1$ and $33 \mid 2^s + 1$, we find from (18) that $2^s - 1 = z_1^5, 2^s + 1 = 33z_2^5$. However $2^s - 1 = z_1^5$ is not true by [4]. We find that (16) is not true if $n \ge 5$ and $2 \nmid n$.

Combining the above results, Theorem 2 is proved in the case x > 1.

Consider the case x < -1. When $2 \nmid m$, putting $x = -x_1$, the problem is changed into the case x > 1 of Theorem 1 and we refer to the proof of Theorem 1. When $2 \mid m$ and $2 \mid n$, the equation (2) clearly has no solution. When $2 \mid m$ and $2 \nmid n$, as at the beginning of the proof we may write $x = -u^n$, $y = -auy_1, u > 1, y_1 > 0$. We see from (2) that

(19)
$$u^{n(m-1)} - ((au)^n - 1)y_1^n = -1.$$

If n = 3, we find from (19) that $(-u^{m-1}, y_1)$ is a solution of the equation $X^3 + ((au)^n - 1)Y^3 = 1$. But so is (au, -1). By Lemma 2, $y_1 = -1$, which contradicts $y_1 > 0$.

If $n \ge 5$, we find from (19) that (u^{m-1}, y_1) is a solution of the equation

(20)
$$X^n - ((au)^n - 1)Y^n = -1$$

Notice that (au, 1) is a solution of the equation $X^n - ((au)^n - 1)Y^n = 1$. By Lemma 1, we deduce that either n = 5 and $(au)^n - 1 = 2^n \pm 1$ or $(au)^n - 1 = 2$. The latter is impossible.

When n = 5, $(au)^n - 1 = 2^n + 1$ is clearly not true. When n = 5 and $(au)^n - 1 = 2^n - 1$, we have a = 1 and u = 2. We see from (19) that

$$2^{5(m-1)} + 1 = 31y_1^5.$$

Therefore $1 = \left(\frac{2}{31}\right) = \left(\frac{2^{5(m-1)}}{31}\right) = \left(\frac{-1}{31}\right) = -1$, which is impossible. This completes the proof of Theorem 2.

By putting a = 1 in Theorem 1 and in Theorem 2, we obtain Corollary 1 and Corollary 2, respectively.

REMARK 1. By using the same method, it can be proved that the equation

$$\frac{a^n x^m - 1}{a^n x - 1} = y^n, \quad a, m, n \in \mathbb{N}, \ x, y \in \mathbb{Z}, \ |x| > 1, \ m > 2, \ n > 1,$$

has no solution (a, x, y, m, n) which makes x an nth perfect power.

2. Also, it can be proved that the equation

$$a^{n}x\frac{a^{n}x^{m-1}-1}{a^{n}x-1} = y^{n}, \quad a, m, n \in \mathbb{N}, \ x, y \in \mathbb{Z}, \ |x| > 1, \ m > 2, \ n > 1,$$

has no solution.

The author would like to thank Professors Sun Qi and Pingzhi Yuan for their help. Also, appreciation is given to the referee for his valuable suggestions.

References

- [1] M. A. Bennett and B. M. M. de Weger, On the diophantine equation $|ax^n by^n| = 1$, Math. Comp. 67 (1998), 413-438.
- [2] J. W. S. Cassels, On the equation $a^x b^y = 1$. II, Proc. Cambridge Philos. Soc. 56 (1960), 97–103; Corrigendum, ibid. 57 (1961), 187.
- [3] Y. Domar, On the Diophantine equation $|Ax^n By^n| = 1$, $n \ge 5$, Math. Scand. 2 (1954), 29-32.
- [4] M. H. Le, A note on the Diophantine equation $(x^m 1)/(x 1) = y^n + 1$, Math. Proc. Cambridge Philos. Soc. 116 (1994), 385–389.
- [5] L. J. Mordell, *Diophantine Equations*, Academic Press, London, 1969.

Department of Mathematics Sichuan University Chengdu 610064, China E-mail: sszibbh@mail.sc.cninfo.net

> Received on 25.6.1999 and in revised form 16.12.1999 (3639)