A note on the Diophantine equation
\[(a^n x^m \pm 1)/(a^n x \pm 1) = y^n + 1\]

by

JIAGUI LUO (Chengdu)

1. Introduction. Let \(\mathbb{Z}, \mathbb{N}\) denote the sets of integers and positive integers respectively. Le Mao Hua [4] has proved that the following equation has no solution \((x, y, m, n)\):

\[(1) \quad \frac{x^m - 1}{x - 1} = y^n + 1, \quad x, y, m, n \in \mathbb{N}, \quad x > 1, \quad y > 1, \quad m > 2, \quad n \text{ an odd prime.}\]

In this note, we investigate a more general equation applying another method. For

\[(2) \quad \frac{a^n x^m + \delta}{a^n x + \delta} = y^n + 1, \quad \delta \in \{1, -1\}, \quad x, y \in \mathbb{Z}, \quad a, m, n \in \mathbb{N}, \quad m > 2, \quad n > 1, \quad |x| > 1,\]

we prove the following results.

Theorem 1. For \(\delta = -1, x > 1\) all solutions of equation (2) are given by \((a, x, y, m, n) = (u^{m-2}, u^n, u^{m-1}, m, n)\) with \(u \in \mathbb{N} > 1\).

For \(\delta = -1, x < -1\) all solutions of equation (2) are given by \((a, x, y, m, n) = (u^{2k-2}, -u^{2l-1}, -u^{2k-1}, 2k, 2l - 1)\) with \(k, l, u \in \mathbb{N} > 1\).

Theorem 2. For \(\delta = 1, x > 1\) equation (2) has no solution.

For \(\delta = 1, x < -1\) all solutions of equation (2) are given by \((a, x, y, m, n) = (u^{2k-3}, -u^n, u^{2k-2}, 2k - 1, n)\) with \(k, n, u \in \mathbb{N} > 1\).

Corollary 1. The Diophantine equation

\[(3) \quad \frac{x^m - 1}{x - 1} = y^n + 1, \quad x, y \in \mathbb{Z}, \quad m, n \in \mathbb{N}, \quad |x| > 1, \quad m > 2, \quad n > 1,\]

has no solution \((x, y, m, n)\).

2000 Mathematics Subject Classification: Primary 11D61.
Corollary 2. The Diophantine equation

\[
\frac{x^m + 1}{x + 1} = y^n + 1, \quad x, y \in \mathbb{Z}, \ m, n \in \mathbb{N}, \ |x| > 1, \ m > 2, \ n > 1,
\]
has no solution \((x, y, m, n)\).

Corollary 1 is a substantial generalization of Le’s result [4] for the equation (1).

2. Lemmas. Throughout this section, we assume that \(D\) and \(n\) are positive integers.

Lemma 1 ([3]). If \(n \geq 5\), then the equation

\[
X^n - DY^n = \pm 1, \quad X, Y \in \mathbb{N},
\]
has at most one solution \((X, Y)\) except possibly when \(D = 2\) or \(D = 2^n \pm 1\) and \(n \in \{5, 6\}\).

Lemma 2 ([5]). If \(D > 1\), then the equation

\[
X^3 + DY^3 = 1, \quad X, Y \in \mathbb{Z},
\]
has at most one solution \((X, Y)\) other than \(X = 1, Y = 0\).

Lemma 3. Let \(D\) be not a perfect square and \(x, y \in \mathbb{N}\) a solution of Pell’s equation

\[
x^2 - Dy^2 = 1, \quad x, y \in \mathbb{Z}.
\]

Let \((x_0, y_0)\) be the fundamental solution of (5) and \(\varepsilon = x_0 + y_0\sqrt{D}\). If \(x_0\)
is divisible by all prime divisors of \(x\), then \(x + y\sqrt{D} = \varepsilon\).

Proof. We may assume

\[
x + y\sqrt{D} = (x_0 + y_0\sqrt{D})^n, \quad n \geq 1.
\]
The result is clear for \(n = 1\). We assume \(n > 1\).

(1) If \(n\) is even, by (6) we get

\[
x = \sum_{j=0}^{n/2} \binom{n}{2j} x_0^{n-2j} (y_0^2 D)^j.
\]

Let \(p\) be a prime divisor of \(x\). Under our assumption \(p | x_0\). By (7) we get \(p | (Dy_0^2)^{n/2}\). This is impossible.

(2) If \(n\) is odd, we may write

\[
x + y\sqrt{D} = (x_0 + y_0\sqrt{D})^n = x_n + y_n\sqrt{D}.
\]

If \(r \mid n\), then \(x_r + y_r\sqrt{D} = (x_0 + y_0\sqrt{D})^r, x_r \mid x_n\). Therefore \(x_r\) also satisfies the assumption of the lemma. Now let \(p\) be any prime divisor of \(n\). We have

\[
x_p + y_p\sqrt{D} = (x_0 + y_0\sqrt{D})^p.
\]
Then
\[
x_p/x_0 = \sum_{j=0}^{(p-1)/2} \left(\frac{p}{2j}\right) x_0^{p-2j-1} (y_0^2 D)^j.
\]

Assume \(q \) is any prime divisor of \(x_p/x_0 \). Then \(q \mid x_0 \), by assumption. By (8), we get \(q \mid p(y_0^2 D)^{(p-1)/2} \). Since \((q, y_0 D) = 1 \), we have \(q = p \). Furthermore we claim that \(x_p/x_0 \) is square-free. Otherwise, \(p^2 \mid x_p/x_0 \). By (8) we have \(p^2 \mid p(y_0^2 D)^{(p-1)/2} \). This is impossible. Therefore, \(x_p/x_0 = p \). On the other hand, when \(p > 3 \), we find from (8) that
\[
x_p/x_0 > p(p-1)/2 \geq p.
\]
This contradicts \(x_p/x_0 = p \). It shows that \(n \) has no prime divisor other than \(3 \). Thus \(n = 3^f, f \geq 1 \). Therefore \(x_3 \mid x_n \), and we have \(3 = x_3/x_0 = x_0^2 + 3Dy_0^2 = 4x_0^2 - 3 \), which is impossible.

Combining these results yields \(n = 1 \). The proof is complete.

Definition. Let \(p \) be a prime and \(n \) a nonzero integer. Then \(\text{ord}_p n \) is defined to be the unique nonnegative integer \(t \) such that \(p^t \mid n \) and \(p^{t+1} \nmid n \).

Lemma 4. Let \(n > 1 \), \(p \) be the largest prime divisor of \(n \), \(\text{ord}_p n = t \geq 1 \), \(r \in \mathbb{N} \), \(1 \leq r \leq t \). Then \((2^r - 1, (2^n - 1)/(2^r - 1)) = 1 \).

Proof. Let \(n = p^r s \). If \((2^r - 1, (2^n - 1)/(2^r - 1)) > 1 \), then there is an odd prime \(q \) such that \(2^r \equiv 1 \pmod{q} \), \((2^n - 1)/(2^r - 1) \equiv 0 \pmod{q} \). We can find \(s \equiv 0 \pmod{q} \) and so \(q \mid n \). Since \(2^r - 1 \equiv 1 \pmod{q} \), we have \(q \mid (2^r - 1, 2^q - 1) = 2^r(q-1) - 1 \) whence \((p^r, q - 1) > 1 \). It follows that \(p \mid q - 1 \), whence \(q > p \), which is not true because \(p \) is the largest prime divisor of \(n \). The lemma is proved.

3. Proofs

Proof of Theorem 1. By (2), we have
\[
a^n x(x^{m-1} - 1) = (a^n x - 1)y^n.
\]
Assume first \(x > 1 \). Let \(x = p_1^{\alpha_1} \ldots p_r^{\alpha_r} \) be the prime decomposition of \(x \), \(r \geq 1 \), \(\alpha_i \geq 1 \) such that \(\text{ord}_{p_i} x = \alpha_i \). Since \((x, x^{m-1} - 1) = (x, a^n x - 1) = 1 \), we have \(\text{ord}_{p_i} (x^{m-1} - 1) = \text{ord}_{p_i} (a^n x - 1) = 0 \). From (9) we get
\[
n \text{ord}_{p_i} a + \alpha_i = n \text{ord}_{p_i} y. \quad \text{Then } \alpha_i = n(\text{ord}_{p_i} y - \text{ord}_{p_i} a) = nu_i \text{ for all } i.
\]
Put \(u = p_1^{v_1} \ldots p_r^{v_r} \). We obtain \(x = u^n \). Replacing \(x \) by \(u^n \) in (9), we get
\[
(au)^n (u^n(m-1) - 1) = ((au)^n - 1) y^n.
\]
Since \(((au)^n, (au)^n - 1) = 1 \), we get \(au \mid y \) from (10). Replace \(y \) by \(auy_1 \) in (10). Then
\[
u^{n(m-1)} - ((au)^n - 1)y_1^n = 1, \quad u > 1, y_1 > 0.
\]
(1) If $2 \mid n$, we see from (11) that $(u^{n(m-1)/2}, y_1^{n/2})$ is a solution of Pell’s equation $X^2 - ((au)^n - 1)Y^2 = 1$. But $((au)^n/2, 1)$ is its fundamental solution. By Lemma 3 we get $u^{n(m-1)/2} = (au)^{n/2}, y_1 = 1$. It follows that $a = u^{m-2}$, $y = u^{m-1}$. Thus in this case, the assertion of Theorem 1 is true.

(2) If $n = 3$, by (11) we see that $(u^{m-1}, -y_1)$ is a solution of the equation $X^3 + ((au)^3 - 1)Y^3 = 1$. But $(au, -1)$ also is a solution of this equation. By Lemma 2, we get $u^{m-2} = a, y_1 = 1$. Hence in this case, the assertion of Theorem 1 is also true.

(3) If $2 \nmid n$ and $n \geq 5$, we find from (11) that (u^{m-1}, y_1) is a solution of the equation

\begin{equation}
X^n - ((au)^n - 1)Y^n = 1, \quad X, Y \in \mathbb{N}, \quad n \geq 5, \quad 2 \nmid n.
\end{equation}

By Lemma 1, (12) has at most one solution (X, Y) except possibly when $(au)^n - 1 = 2^n \pm 1$ and $n = 5$ or $(au)^n - 1 = 2$. The latter is impossible.

When $n = 5$, $(au)^n - 1 = 2^n + 1$ is clearly not true.

When $n = 5$ and $(au)^n - 1 = 2^n - 1$, we have $a = 1, u = 2$. Thus, by (11),

\begin{equation}
2^{5(m-1)} - 1 = 31y_1^5.
\end{equation}

Put $s = m - 1$. Let p be the largest prime divisor of s. Let $p \neq 5$. By Lemma 4, $(2^p - 1, (2^s - 1)/(2^p - 1)) = 1$. Notice that $(2^{5s} - 1)/(2^s - 1) \equiv 2^4 + 2^3 + 2^3 + 2^2 + 2 + 1 \equiv 5 \pmod{2^p - 1}$ and $(2^p - 1, 5) = 1$. We get $(2^p - 1, (2^{5s} - 1)/(2^p - 1)) = 1$. Therefore we find from (13) that $2^p - 1 = z_1^5$, which is impossible by [2]. Let $p = 5$. By Lemma 4, $(2^{25} - 1, (2^{5s} - 1)/(2^{25} - 1)) = 1$. We find from (13) that $2^{25} - 1 = 31z_1^5$. Then $z_1^5 = 1082401$, which is impossible. We conclude that $(au, 1)$ is the only solution of (12). Hence $u^{m-1} = au, y_1 = 1$. Thus $a = u^{m-2}, y = u^{m-1}$.

Combining the above results, Theorem 1 is proved in the case of $x > 1$.

Consider the case of $x < -1$. When $2 \mid m$ and $2 \nmid n$, the equation (2) clearly has no solution. When $2 \nmid m$, putting $x = -x_1$, the problem is changed into the case $x > 1$ of Theorem 2 and we refer to the proof of Theorem 2. When $2 \mid m$ and $2 \nmid n$, i.e. $m = 2k$ and $n = 2l - 1$ with $k, l \in \mathbb{N} > 1$, as at the beginning of the proof, we may write $x = -u^n, y = -auy_1$ with $u > 1, y_1, u \in \mathbb{N}$. By (2), we get

\begin{equation}
u^{n(m-1)} - ((au)^n + 1)y_1^n = -1.
\end{equation}

If $n = 3$, we find from (14) that $(-u^{m-1}, y_1)$ is a solution of the equation $X^3 + ((au)^3 + 1)Y^3 = 1$. But so is $(-au, 1)$. By Lemma 2, $a = u^{m-2}$, $y = -u^{m-1}$.

If $n \geq 5$, we find from (14) that (u^{m-1}, y_1) is a solution of the equation

\begin{equation}
X^n - ((au)^n + 1)Y^n = -1.
\end{equation}

By Lemma 1, (15) has at most one solution except possibly when $n = 5$ and $(au)^n + 1 = 2^n \pm 1$ or $(au)^n + 1 = 2$. The latter is impossible.
Of course \((au, 1)\) is a solution of (15). This yields \(u^{m-1} = au, y_1 = 1\), whence \(a = u^{m-2} = u^{2k-2}, y = -u^{m-1} = -u^{2k-1}\). Since \((au)^n + 1 = 2^n - 1\) is clearly not true, there can only be an additional solution if \(n = 5\) and \((au)^n + 1 = 2^n + 1\). This implies \(a = 1, u = 2\) whence \(x = -32\). So (2) reduces to the equation

\[
\frac{(-32)^m - 1}{-32 - 1} = (-2y_1)^5 + 1 \quad \text{with } m \text{ even}, \ y_1 > 0
\]

which we rewrite as \(33y_1^5 - 32(2^{m-2})^5 = 1\). According to [1] the equation \(33X^5 - 32Y^5 = 1\) has only the solution \(X = Y = 1\). Thus \(y_1 = 1, m = 2,\) contrary to the assumption \(m > 2\). This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose \(x > 1\). As in the proof of Theorem 1, we may put \(x = u^n, y = au^y_1, u > 1, y_1 > 0\). By (2), we get

\[(16) \quad u^{n(m-1)} - ((au)^n + 1)y_1^s = 1.\]

If \(2 \mid n\), we find from (16) that \((u^{n(m-1)/2}, y_1^{n/2})\) is a solution of Pell’s equation \(X^2 - ((au)^n + 1)Y^2 = 1\). But \((2(au)^n + 1, 2(au)^{n/2})\) is its fundamental solution. So we get

\[u^{n(m-1)/2} + y_1^{n/2}\sqrt{(au)^n + 1} = [2(au)^n + 1 + 2(au)^{n/2}\sqrt{(au)^n + 1}]^s, \quad s \geq 1.\]

When \(2 \nmid s\), we find that

\[u^{n(m-1)/2} = \sum_{j=0}^{(s-1)/2} \binom{s}{2j}(2(au)^n + 1)^{s-2j}(4(au)^n((au)^n + 1))^j.\]

Thus \(u \mid [2(au)^n + 1]^s\), which is impossible.

When \(2 \mid s\), we find that

\[u^{n(m-1)/2} = \sum_{j=0}^{s/2} \binom{s}{2j}(2(au)^n + 1)^{s-2j}(4(au)^n((au)^n + 1))^j.\]

Thus \(u \mid [2(au)^n + 1]^s\), which is impossible. In this case, the assertion of Theorem 2 is true.

If \(n = 3\), we find from (16) that \((u^{m-1}, -y_1)\) is a solution of the equation \(X^3 + ((au)^3 + 1)Y^3 = 1\). But so is \((-au, 1)\). By Lemma 2, \(y_1 = -1\), which is impossible.

If \(n \geq 5\) and \(2 \nmid n\), we find from (16) that \((u^{m-1}, y_1)\) is a solution of the equation

\[(17) \quad X^n - ((au)^n + 1)Y^n = 1.\]

Notice that \((au, 1)\) is a solution of the equation \(X^n - ((au)^n + 1)Y^n = -1\). By Lemma 1, we see that either \(n = 5\) and \((au)^n + 1 = 2^n \pm 1\) or \((au)^n + 1 = 2\). The latter is impossible.

When \(n = 5\), \((au)^n + 1 = 2^n - 1\) is clearly not true.
When \(n = 5 \) and \((au)^n + 1 = 2^n + 1\), we have \(a = 1, u = 2\).

Thus, by (16),
\[
2^{5(m-1)} - 1 = 33y_1^5.
\]

If \(2 \mid m \), we find from (18) that \(\left(\frac{2}{3} \right) = 1 \), which is not true because \(\left(\frac{2}{3} \right) = -1 \).

If \(2 \nmid m \), put \(2s = 5(m-1) \). Since \((2^s - 1, 2^s + 1) = 1 \) and \(33 \mid 2^s + 1 \), we find from (18) that \(2^s - 1 = z_1^5, 2^s + 1 = 33z_2^5 \). However \(2^s - 1 = z_1^5 \) is not true by [4]. We find that (16) is not true if \(n \geq 5 \) and \(2 \nmid n \).

Combining the above results, Theorem 2 is proved in the case \(x > 1 \).

Consider the case \(x < 1 \). When \(2 \nmid m \), putting \(x = -x_1 \), the problem is changed into the case \(x > 1 \) of Theorem 1 and we refer to the proof of Theorem 1. When \(2 \mid m \) and \(2 \nmid n \), the equation (2) clearly has no solution.

When \(2 \mid m \) and \(2 \mid n \), as at the beginning of the proof we may write \(x = -u^n, y = -auy_1, u > 1, y_1 > 0 \). We see from (2) that
\[
(n(m-1)) - ((au)^n - 1)y_1^n = -1.
\]

If \(n = 3 \), we find from (19) that \((-u^{-1}, y_1)\) is a solution of the equation \(X^3 + ((au)^n - 1)Y^3 = 1 \). But so is \((au, -1)\). By Lemma 2, \(y_1 = -1 \), which contradicts \(y_1 > 0 \).

If \(n \geq 5 \), we find from (19) that \((u^{-1}, y_1)\) is a solution of the equation
\[
X^n - ((au)^n - 1)Y^n = -1.
\]

Notice that \((au, 1)\) is a solution of the equation \(X^n - ((au)^n - 1)Y^n = 1 \). By Lemma 1, we deduce that either \(n = 5 \) and \((au)^n - 1 = 2^n \pm 1\) or \((au)^n - 1 = 2\). The latter is impossible.

When \(n = 5, (au)^n - 1 = 2^n + 1 \) is clearly not true.

When \(n = 5 \) and \((au)^n - 1 = 2^n - 1 \), we have \(a = 1 \) and \(u = 2 \).

We see from (19) that
\[
2^{5(m-1)} + 1 = 31y_1^5.
\]

Therefore \(1 = \left(\frac{2}{31} \right) = \left(\frac{2^{5(m-1)}}{31} \right) = \left(\frac{-1}{31} \right) = -1 \), which is impossible.

This completes the proof of Theorem 2.

By putting \(a = 1 \) in Theorem 1 and in Theorem 2, we obtain Corollary 1 and Corollary 2, respectively.

RemarK 1. By using the same method, it can be proved that the equation
\[
\frac{a^n x^m - 1}{a^n x - 1} = y^n, \quad a, m, n \in \mathbb{N}, \ x, y \in \mathbb{Z}, \ |x| > 1, \ m > 2, \ n > 1,
\]
has no solution \((a, x, y, m, n)\) which makes \(x \) an \(n \)th perfect power.
2. Also, it can be proved that the equation
\[a^n x \frac{a^n x^{m-1} - 1}{a^n x - 1} = y^n, \quad a, m, n \in \mathbb{N}, \; x, y \in \mathbb{Z}, \; |x| > 1, \; m > 2, \; n > 1, \]
has no solution.

The author would like to thank Professors Sun Qi and Pingzhi Yuan for their help. Also, appreciation is given to the referee for his valuable suggestions.

References

Department of Mathematics
Sichuan University
Chengdu 610064, China
E-mail: sszibbh@mail.sc.cninfo.net

Received on 25.6.1999
and in revised form 16.12.1999

(3639)