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1. Introduction. Let ω = ω1ω2 . . . be a sequence with values in a finite
alphabet A. For each m ≥ 0 let Lm(ω) = {ωkωk+1 . . . ωk+m−1 : k ≥ 1}
denote the set of factors of ω of length m, and set L(ω) =

⋃
m≥0 Lm(ω).

The complexity function pω : N → N assigns to each m the cardinality
of Lm(ω). A fundamental result due to Morse and Hedlund states that a
sequence ω is ultimately periodic if and only if for some m the complexity
satisfies pω(m) ≤ m (see [20]). Sequences of complexity p(m) = m + 1 are
called Sturmian sequences or Sturmian words. The best known example is
the so-called Fibonacci sequence

12112121121121211212112112121121121211212112112121121 . . .

fixed by the morphism 1 7→ 12 and 2 7→ 1. It is well known that all Sturmian
words can be realized geometrically by an irrational rotation on the circle
(see [11, 20]). More precisely, every Sturmian word is obtained by coding
the symbolic orbit of a point x on the circle (of circumference one) under
a rotation by an irrational angle α where the circle is partitioned into two
complementary intervals, one of length α and the other of length 1−α. And
conversely, every such coding gives rise to a Sturmian word. The irrational
number α is called the slope. In [4] V. Berthé showed that the frequencies of
factors of the same length in a Sturmian word assume at most three values.
Moreover it is shown in [4] that each allowable frequency, as well as the
number of factors with a given frequency, can be described in terms of the
continued fraction expansion of the slope α of the Sturmian word (1). More
precisely:

Theorem 1.1 (V. Berthé [4]). Let ω be a Sturmian word with slope α
and m ≥ 1. Then ω contains
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• m− q2 + 1 factors of length m with frequency p2 − q2α,

• m− q1 + 1 factors of length m with frequency q1α− p1,
• (q1 +q2)−m−1 factors of length m with frequency (q1−q2)α+p2−p1

where p1/q1 and p2/q2 are consecutive m-Farey numbers with p1/q1 < α <
p2/q2.

In [4] Berthé showed that Theorem 1.1 is intimately connected with the
so-called three distance theorem in diophantine analysis [23]. Subsequently
Alessandri and Berthé [1] exhibited broader connections between more gen-
eral distance theorems and combinatorics of words arising from rotations on
the circle. In this paper we extend Berthé’s result to a class of sequences of
complexity p(m) = (k−1)m+1 originally defined and studied by P. Arnoux
and G. Rauzy in [3]:

Definition 1.2. Let Ak = {1, . . . , k} with k ≥ 2. A sequence ω in the
alphabet Ak is called an Arnoux–Rauzy sequence if it satisfies the following
four conditions:

• ω is uniformly recurrent, i.e., each (finite) factor v of ω occurs in ω
with bounded gaps,
• the complexity function satisfies p(m) = (k − 1)m+ 1,
• each factor in Lm(ω) is a prefix of exactly one factor in Lm+1(ω) except

for one which is a prefix of k factors in Lm+1(ω),
• each factor in Lm(ω) is a suffix of exactly one factor in Lm+1(ω) except

for one which is a suffix of k factors in Lm+1(ω).

Arnoux–Rauzy sequences are a natural generalization of Sturmian words;
in fact Sturmian words correspond to taking k = 2 in the above definition.
For k = 3 the combinatorial conditions listed in Definition 1.2 distinguish
them from other sequences of complexity 2n + 1 such as those obtained
by coding trajectories of 3-interval exchange transformations [15, 16, 17] or
those of Chacon type, i.e., topologically isomorphic to the subshift generated
by the Chacon sequence [7, 14].

Arnoux and Rauzy showed that each such sequence may be geometrically
realized by an interval exchange on 2k intervals on the circle, and is uniquely
ergodic. Perhaps the best known example on three letters is the so-called
Tribonacci sequence defined as the fixed point of the morphism τ(1) = 12,
τ(2) = 13 and τ(3) = 1. In [21] Rauzy showed that the subshift generated
by τ is isomorphic (in measure) to an exchange of three fractal domains
in R2 which generate a tiling of the plane. Arnoux–Rauzy sequences have
since been extensively studied from many different points of view including
dynamical systems (see [2], [3], [8], [9]), number theory (see [8], [10], [18],
[22], [24]) and combinatorics (see [5], [6], [8], [13], [22]).
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In order to extend Theorem 1.1 to Arnoux–Rauzy sequences we use a
vectorial division algorithm originally defined by the second author in [24].
This algorithm is a generalization of the continued fraction process and
associates with each Arnoux–Rauzy sequence ω on Ak, an infinite array
of k × k rational numbers. In the special case k = 2 these fractions are
consecutive Farey numbers arising from the continued fraction expansion of
the frequencies of the letters {1, 2}. In this paper we give a reformulation
of the construction in [24] by organizing the sequence of k × k rational
numbers into two sequences of matrices (Pn) and (Qn) where Pn is the
matrix of numerators and Qn the matrix of denominators. We show that for
each m, the frequencies of factors in Lm(ω) assume at most k + 1 values,
each of which can be expressed as an integral linear combination of the base
frequencies of the letters {1, . . . , k} where the coefficients are computed from
the matrix Pn. We use the matrices Qn to determine the number of factors
with a given frequency (see Theorem 4.5).

In addition to the classical theory of continued fractions, Berthé’s result
relied on a careful analysis of the evolution of the Rauzy graphs of words.
A similar analysis was undertaken by N. Chekhova in [8] and [9] in the
context of Arnoux–Rauzy sequences. In particular in [9] the author also
studies frequencies of factors of Arnoux–Rauzy sequences in connection with
covering numbers. Our approach does not make use of Rauzy graphs. Instead
we rely on the combinatorial approach developed by R. Risley and the second
author in [22] for generating the bispecial factors.

2. Preliminaries. Let ω be an Arnoux–Rauzy sequence on the alphabet
Ak = {1, . . . , k}. According to Definition 1.2 there is exactly one factor in
Lm(ω) which is a prefix (resp. suffix) of more than one factor in Lm+1(ω). We
call this factor right special (resp. left special). A factor which is both right
special and left special is called bispecial. Clearly any suffix of a right special
factor of ω is also a right special factor of ω and similarly any prefix of a left
special factor is also left special. In [22] it is shown that v = v1v2 . . . vn ∈
L(ω) if and only if v ∈ L(ω) where v = vnvn−1 . . . v1 denotes the reverse
word of v. Hence, w ∈ L(ω) is right special (resp. left special) if and only if
w is left special (resp. right special). If w is bispecial, then w = w.

Let (wn)n≥1 denote the set of bispecial factors of ω ordered by increasing
length, i.e., |wn| < |wn+1| for all n. We set w0 equal to the empty word.
For each n ≥ 1 there exists a unique letter in ∈ {1, . . . , k} so that inwn−1 is
right special. The sequence (in)n≥1 is called the coding sequence of ω (see [3],
[22] and [13] in the context of episturmian sequences). Any sequence (in) ∈
{1, . . . , k}N with the property that each letter occurs an infinite number of
times is the coding sequence of an Arnoux–Rauzy sequence (see Theorem
III.5 of [22]). In the case of the Fibonacci sequence, the coding sequence is
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the periodic sequence 121212 . . . while in the case of Tribonacci it is given by
the periodic sequence 123123123 . . . In the Sturmian case, the slope α of a
Sturmian word ω completely determines the coding sequence of ω. In fact, if
α = [0, a1, a2, . . .] is the continued fraction expansion of the slope, then the
coding sequence of ω is given by 0a1−11a20a31a4 . . . (see [3]). More generally,
given an Arnoux–Rauzy sequence ω on {1, . . . , k}, the coding sequence is
determined by the multi-dimensional continued fraction expansion (defined
in [3] for k = 3 and for all k ≥ 2 in [24]) of the frequencies of the first
k − 1 letters (see also the algorithms of Sections 3 and 4). Unfortunately,
this multi-dimensional continued fraction expansion is only defined on a set
of measure zero in Rk−1.

If u, v ∈ L(ω) with u a prefix (resp. suffix) of v we write u ` v (resp.
v a u) if for all w ∈ L(ω) with |w| = |v|, if u is a prefix (resp. suffix) of w
then w = v. Thus for instance we have wn−1in ` wn and wn a inwn−1 for
all n ≥ 1.

For each v ∈ L(ω) we denote by f(v) the frequency of v in ω, i.e.,

f(v) = lim
n→∞

|ω1ω2 . . . ωn|v
n

where |w|v denotes the number of occurrences of v in w. Frequencies of
factors exist in all Arnoux–Rauzy sequences and by minimality are all pos-
itive; in fact subshifts generated by Arnoux–Rauzy sequences are uniquely
ergodic [3]. For all u, v ∈ L(ω) if u ` v or if v a u then f(u) = f(v). If v is
right special, then f(v) =

∑
a∈Ak f(va) and similarly if v is left special then

f(v) =
∑
a∈Ak f(av). Set Fm(ω) = {f(v) : v ∈ Lm(ω)}.

Lemma 2.1. Suppose v ∈ L(ω). Then f(v) = f(v).

P r o o f. We proceed by induction on |v|. If |v| = 1, then v = v. Assume
the property holds for all factors of length m. Let v ∈ Lm+1(ω). We write
v = aub, with a, b ∈ Ak and u ∈ Lm−1(ω). If au is not right special, then

f(aub) = f(au) = f(ua) = f(bua).

Similarly if ub is not left special, then

f(aub) = f(ub) = f(bu) = f(bua).

Finally if au is right special and ub is left special, then u is bispecial or
empty. Thus u = u and a = b whence aub = bua.

Lemma 2.2. Suppose v ∈ Lm(ω) is either right special or left special.
Then f(v) ≥ f(u) for all u ∈ Lm(ω). If v is bispecial , then f(v) > f(u) for
all u 6= v in Lm(ω).

P r o o f. Suppose v ∈ Lm(ω) is left special and let u 6= v be in Lm(ω).
Let z be a first return word to u, that is zu ∈ L(ω) and u occurs exactly
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twice in zu, once as a prefix and once as a suffix. We will see that v appears
at least once in zu. Let z′ be a first return word to u distinct from z. (If the
only first return word to u were z, then ω would be periodic.) Since zu and
z′u are distinct and both end in u, they must have a common left special
suffix y with |y| > |u|. Since v is left special and |v| < |y|, v is a prefix of
y. Thus v appears at least once in zu. Hence between any two consecutive
occurrences of u in ω there is an occurrence of v, and therefore f(v) ≥ f(u).
A similar argument applies in case v is right special.

Now suppose v ∈ Lm(ω) is bispecial, and u ∈ Lm(ω) is distinct from v.
Then u ` ua for some a ∈ Ak, and hence f(u) = f(ua). Since v is right
special, we have f(v) = f(v1) + . . . + f(vk). Fix b ∈ Ak so that vb is left
special. Then f(v) = f(v1) + . . .+ f(vk) > f(vb) ≥ f(ua) = f(u).

Lemma 2.3. Let v ∈ L(ω) and let a, b ∈ Ak. Then if va and vb are in
L(ω) and f(va) = f(vb) then a = b.

P r o o f. Suppose va and vb are in L(ω) and f(va) = f(vb). Then v is
either right special or the empty factor. We suppose to the contrary that
a 6= b and consider two cases:

Case 1: va or vb is left special. Without loss of generality, we may assume
that va is left special. Thus v is either bispecial or empty. Thus v = v. Since
all frequencies are positive, we have f(va) > f(bva). Since avb a vb, we have
f(vb) = f(avb), and by Lemma 2.1, f(avb) = f(bva). But this implies that
f(va) > f(vb), a contradiction.

Case 2: Neither va nor vb is left special. Let u ∈ L(ω) be such that
uva a va and uvb a vb and either uva or uvb is left special. Since uva a va
and uvb a vb, we have f(uva) = f(va) = f(vb) = f(uvb). Thus we are back
in Case 1 and obtain a contradiction.

3. An algorithm for computing the frequencies of factors. Let ω
be an Arnoux–Rauzy sequence on the alphabet Ak = {1, . . . , k} with coding
sequence (in). Let (wn)n≥1 be the sequence of bispecial factors of ω arranged
in increasing length, i.e., |wn| < |wn+1| for all n. For each 1 ≤ p ≤ k+ 1 we
associate with ω a sequence of the form (f(m,p), s(m,p))m≥1 where f(m,p) ∈ R
and s(m,p) ∈ Z. The f(m,p) and s(m,p) are defined recursively as follows: For
m = 1 and 1 ≤ p ≤ k we set f(1,p) = f(p) and s(1,p) = 1 while for p = k + 1
we set

f(1,k+1) = f(1,i1) −
∑

1≤r≤k, r 6=i1
f(1,r)

and s(1,k+1) = 0. For m ≥ 1 we consider two cases:

Case 1: m 6= |wn| for all n. In this case let n be the greatest integer
such that m > |wn|. Then for all 1 ≤ p ≤ k + 1 we set
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(f(m+1,p), s(m+1,p)) =
{

(f(m,p), s(m,p) + 1) if p 6= in+1,
(f(m,p), s(m,p) − 1) if p = in+1.

Case 2 (critical case): m = |wn| for some n. For 1 ≤ p ≤ k set

(f(m+1,p), s(m+1,p)) =

{
(f(m,p), s(m,p) + 1) if p 6= in,

(f(m,k+1), s(m,k+1) + 1) if p = in

and for p = k + 1 set

f(m+1,k+1) = f(m+1,in+1) −
∑

1≤r≤k, r 6=in+1

f(m+1,r)

and s(m+1,k+1) = 0.

Note that for all 1 ≤ p ≤ k + 1 we have

(3.1) f(|wn|+1,p) = f(|wn|+2,p) = f(|wn|+3,p) = . . . = f(|wn+1|,p).

We will prove (see Theorem 3.2) that for each w ∈ Lm(ω) the frequency
f(w) is equal to f(m,p) for some 1 ≤ p ≤ k + 1. We will also show that for
each 1 ≤ p ≤ k+1 there are exactly s(m,p) factors of length m with frequency
f(m,p). In particular it will follow that f(m,p) is a positive real number and
s(m,p) a nonnegative integer for each m and p. We begin by illustrating the
above algorithm with an example:

Example 3.1. Let ω be an Arnoux–Rauzy sequence on the alphabet
A3 = {1, 2, 3} with coding sequence (in) beginning in 1213 . . . Set α = f(1)
and β = f(2) so that f(3) = 1 − (α + β). The steps defined as critical in
the recursive algorithm are marked with a C on the left. Note that in the
passage from a critical step to the next, one f(m,p) disappears and a new
one is introduced.

(3.2)

m (f(m,1), s(m,1)) (f(m,2), s(m,2)) (f(m,3), s(m,3)) (f(m,4), s(m,4))

C 1 (α, 1) (β, 1) (1− (α+ β), 1) (2α− 1, 0)
2 (2α− 1, 1) (β, 2) (1− (α+ β), 2) (2β − α, 0)

C 3 (2α− 1, 2) (β, 1) (1− (α+ β), 3) (2β − α, 1)
4 (2α− 1, 3) (2β − α, 2) (1− (α+ β), 4) (4α− β − 2, 0)
5 (2α− 1, 2) (2β − α, 3) (1− (α+ β), 5) (4α− β − 2, 1)

C 6 (2α− 1, 1) (2β − α, 4) (1− (α+ β), 6) (4α− β − 2, 2)
7 (4α− β − 2, 3) (2β − α, 5) (1− (α+ β), 7) (3− 4α− 2β, 0)
8 (4α− β − 2, 4) (2β − α, 6) (1− (α+ β), 6) (3− 4α− 2β, 1)
...

...
...

...
...

It will follow from Theorem 3.2 below that of the eleven factors of length
five, two have frequency 2α − 1, three have frequency 2β − α, five have
frequency 1− (α+ β) and one has frequency 4α− β − 2.
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Theorem 3.2. Suppose ω is an Arnoux–Rauzy sequence on the alphabet
Ak = {1, . . . , k} with coding sequence (in). Set Fm = Fm(ω). Define for
each 1 ≤ p ≤ k + 1 the sequence (f(m,p), s(m,p))m≥1 as above and set F ′m =
{f(m,p) : 1 ≤ p ≤ k + 1}. Then for each m we have Fm ⊆ F ′m and for all
1 ≤ p ≤ k + 1 the sequence ω contains exactly s(m,p) factors of length m
with frequency f(m,p). In particular Card(Fm) ≤ k + 1 for each m.

As an immediate consequence of Theorem 3.2 we have (2):

Corollary 3.3. For each n ≥ 0 we have

|wn| =
∑k
j=1 s(|wn|+1,j) − k

k − 1
.

P r o o f. Since s(|wn|+1,k+1) = 0, the sum of s(|wn|+1,j) over all 1 ≤ j ≤ k
is equal to the cardinality of L|wn|+1(ω), which equals (k−1)(|wn|+1)+1.

To prove Theorem 3.2 we will need the following lemma:

Lemma 3.4. Let p ∈ Ak and wn denote the nth bispecial factor of ω.
Then f(pwn) = f(|wn|+1,p). Hence, f(|wn|+1,in+1) is the greatest frequency in
F|wn|+1(ω).

P r o o f. The second claim of the lemma follows immediately from the
first using Lemma 2.2 since in+1wn is the right special factor of length
|wn| + 1. We prove the first claim by induction on n. For n = 1 we have
i1 = w1. If p 6= i1, then p ` pi1, so

f(pw1) = f(pi1) = f(p) = f(1,p) = f(|w1|+1,p).

On the other hand, for p = i1 we have

f(i1w1) = f(w1)−
∑

1≤r≤k, r 6=i1
f(rw1) = f(1,i1) −

∑

1≤r≤k, r 6=i1
f(1,r)

= f(1,k+1) = f(|w1|+1,i1).

This proves the case n = 1. We now suppose f(pwn) = f(|wn|+1,p) for all p
and show that f(pwn+1) = f(|wn+1|+1,p). We consider two cases:

Case 1: p 6= in+1. Then f(|wn+1|+1,p) = f(|wn+1|,p) = f(|wn|+1,p). So we
must show that f(pwn+1) = f(|wn|+1,p). Since p 6= in+1, we have pwn `
pwn+1. Thus f(pwn+1) = f(pwn) = f(|wn|+1,p) as required.

(2) For k = 2 Corollary 3.3 should be compared with Proposition 3 of [4], while for
k = 3 Corollary 3.3 should be compared with the definition of 3-PER in [6] and with the
evolution of the Rauzy graphs of words developed in [9]. See also Corollary 4.2 in the next
section of this paper.
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Case 2: p = in+1. In this case pwn is right special and we have

f(|wn+1|+1,in+1) = f(|wn+1|,k+1) = f(|wn|+1,k+1)

= f(|wn|+1,in+1) −
∑

1≤r≤k, r 6=in+1

f(|wn|+1,r)

= f(in+1wn)−
∑

1≤r≤k, r 6=in+1

f(rwn)

= f(wnin+1)−
∑

1≤r≤k, r 6=in+1

f(rwnin+1)

= f(in+1wnin+1) = f(in+1wn+1).

The last equality follows since wnin+1 ` wn+1.

Proof of Theorem 3.2. We proceed by induction on m. The result is clear
for m = 1; in fact it is readily verified that for distinct letters a and b,
if the first occurrence of a in the coding sequence (in) precedes the first
occurrence of b in (in), then f(a) > f(b) (see the proof of Theorem III.5 in
[22]). In particular the frequencies of the letters are all distinct. We suppose
the theorem holds for all positive integers less than or equal to m and we
will show it holds for m+ 1.

Case 1: m 6= |wn| for each n ≥ 1. Let n be the greatest integer so that
m > |wn|. Since m < |wn+1| it follows from (3.1) that f(m+1,p) = f(|wn|+1,p)
for all 1 ≤ p ≤ k + 1. Let v0 ∈ Lm(ω) be right special. Then v0 a in+1wn.
Thus

f(v0) = f(in+1wn) = f(|wn|+1,in+1) = f(m+1,in+1).

If p 6= in+1 then

f(v0p) = f(in+1wnp) = f(wnp) = f(pwn) = f(|wn|+1,p) = f(m+1,p) ∈ F ′m+1.

On the other hand,

f(v0in+1) = f(in+1wnin+1) = f(in+1wn)−
∑

1≤r≤k, r 6=in+1

f(in+1wnr)

= f(in+1wn)−
∑

1≤r≤k, r 6=in+1

f(wnr)

= f(|wn|+1,in+1) −
∑

1≤r≤k, r 6=in+1

f(|wn|+1,r)

= f(|wn|+1,k+1) = f(m+1,k+1) ∈ F ′m+1.

Thus for all p ∈ Ak we have f(v0p) ∈ F ′m+1 \ {f(m+1,in+1)}.
On the other hand, if v ∈ Lm(ω) is not right special then v ` va for

some a ∈ Ak. By induction hypothesis f(v) = f(m,p) for some 1 ≤ p ≤ k+1.
Hence f(va) = f(v) = f(m,p) = f(m+1,p) ∈ F ′m+1. Having exhausted all
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factors of length m + 1 we have shown that Fm+1 ⊆ F ′m+1 and that the
number of factors of ω of length m + 1 having frequency f(m,p) = f(m+1,p)
is s(m,p) + 1 if p 6= in+1 and s(m,p) − 1 if p = in+1.

Case 2: m = |wn| for some n ≥ 1. In this case we show that Fm+1 ⊆
F ′m \ {f(m,in)} ⊂ F ′m+1. Let w 6= wn be a factor of length m. Then w ` wa
for some a ∈ Ak. Hence f(wa) = f(w), which, by induction hypothesis, is
in F ′m. But

f(w) < f(wn) = f(inwn−1) = f(|wn−1|+1,in) = f(|wn|,in).

Thus f(wa) ∈ F ′m \ {f(m,in)}. Also, for each 1 ≤ p ≤ k we have f(wnp) =
f(inwn−1p). If p 6= in then

f(wnp) = f(inwn−1p) = f(wn−1p) = f(|wn−1|+1,p) = f(|wn|,p).

On the other hand,

f(wnin) = f(inwn−1in) = f(inwn−1)−
∑

1≤r≤k, r 6=in
f(inwn−1r)

= f(inwn−1)−
∑

1≤r≤k, r 6=in
f(wn−1r)

= f(|wn−1|+1,in) −
∑

1≤r≤k, r 6=in
f(|wn−1|+1,r)

= f(|wn−1|+1,k+1) = f(|wn|,k+1).

Hence for each p ∈ Ak we have f(wnp) ∈ F ′m \ {f(m,in)}. Having exhausted
all factors of lengthm+1 we have shown that Fm+1 ⊆ F ′m\{f(m,in)} ⊂ F ′m+1
and that for all 1 ≤ p ≤ k + 1 different from in the number of factors of ω
of length m+ 1 with frequency f(m,p) is s(m,p) + 1 as required.

Note that Fm+1(ω) 6= Fm(ω) only when m = |wn| for some n. Thus to
recover the allowable frequencies of factors it suffices to consider only the
sets Fm where m = |wn|+1, that is, to restrict the algorithm to those values
of m immediately following the critical case. We will refer to this restriction
as the multiplicative form of the algorithm. Applied to Example 3.1 where
the coding sequence begins in 12133 . . . it gives:

(3.3)

n m (f(m,1), s(m,1)) (f(m,2), s(m,2)) (f(m,3), s(m,3)) (f(m,4), s(m,4))

0 1 (α, 1) (β, 1) (1− (α+ β), 1) (2α− 1, 0)
1 2 (2α− 1, 1) (β, 2) (1− (α+ β), 2) (2β − α, 0)
2 4 (2α− 1, 3) (2β − α, 2) (1− (α+ β), 4) (4α− β − 2, 0)
3 7 (4α− β − 2, 3) (2β − α, 5) (1− (α+ β), 7) (3− 4α− 2β, 0)
4 14 (4α− β − 2, 10) (2β − α, 12) (3− 4α− 2β, 7) (5− 7α− 3β, 0)
...

...
...

...
...

...
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We may represent the multiplicative version of the algorithm in matrix
form as follows: Define a sequence of k × k matrices (Bn) recursively by
setting

(3.4) B0 =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




and for all n ≥ 1,

(3.5) Bn = Bn−1 −




~0
...∑

r 6=in Bn−1(r)
...
~0




k×k

inth row

where Bn−1(r) denotes the rth row vector of the matrix Bn−1, and the
nonzero row of the second matrix on the right hand side of (3.5) is the inth
row. It is evident that

(3.6)




f(|wn|+1,1)

f(|wn|+1,2)
...

f(|wn|+1,k)


 = Bn




f(1)
f(2)

...
f(k)


 .

In the matrix formulation, we have omitted the frequency f(|wn|+1,k+1).
But this frequency is determined in the next step when m = |wn+1|+1 since
f(|wn|+1,k+1) = f(|wn+1|+1,in+1). In fact the multiplicative formulation con-
tains the same information as the preceding additive version. To determine
the set of frequencies of factors of length m, where m 6= |wn| + 1 for all n,
we choose the smallest n such that m < |wn|+ 1. Then

Fm(ω) =
{
f(|wn|+1,1), f(|wn|+1,2), . . . , f(|wn|+1,k),

k∑

p=1

f(|wn|+1,p)

}
.

In the multiplicative formulation of the algorithm, the s(|wn|+1,p) satisfy
the following recursive relation:

Lemma 3.5. For each n ≥ 0 and 1 ≤ p ≤ k we have

s(|wn+1|+1,p) =
{
s(|wn|+1,p) + s(|wn|+1,in+1) if p 6= in+1,
s(|wn|+1,in+1) if p = in+1.

P r o o f. If p 6= in+1 then

s(|wn+1|+1,p) = s(|wn+1|,p) + 1 = s(|wn|+1,p) + |wn+1| − |wn|
= s(|wn|+1,p) + s(|wn|+1,in+1)
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while if p = in+1 then

s(|wn+1|+1,p) = s(|wn+1|,k+1) + 1 = |wn+1| − |wn| = s(|wn|+1,in+1).

4. Simultaneous rational approximations of the frequencies.
Equation (3.6) may be used to obtain simultaneous rational approximations
of the frequencies f(1), . . . , f(k). First we rewrite (3.6) in the form (3)

(4.1)




f(1)
f(2)

...
f(k)


 = B−1

n




f(|wn|+1,1)

f(|wn|+1,2)
...

f(|wn|+1,k)


 .

Then for each 1 ≤ p ≤ k we set the k−1 frequencies {f(|wn|+1,j) : j 6= p}
in (4.1) equal to zero and f(|wn|+1,p) equal to 1/s(|wn|+1,p). This gives a ratio-
nal approximation of each frequency f(1), . . . , f(k) by unreduced fractions
having a common denominator equal to s(|wn|+1,p). This method generates
an infinite array of k × k (unreduced) rational numbers. In the special case
k = 2, for each i ∈ {1, 2} the two rational numbers p1/q1, p2/q2 approximat-
ing f(i) are consecutive m-Farey numbers where

m = q1 + q2 − 1 = s(|wn|+1,1) + s(|wn|+1,2) − 1

and p1/q1 < f(i) < p2/q2 (see [4]). In general, the k×k array of fractions we
obtain from (4.1) coincides with the fraction generating algorithm associated
with Arnoux–Rauzy sequences in [24].

In this section we will be concerned with the reverse problem of ex-
pressing the quantities f(m,p) and s(m,p) in terms of the base frequencies
f(1), . . . , f(k) and the generalized Farey numbers defined in [24]. In fact
this was the point of view taken by Berthé in [4] where the frequencies of
factors in a Sturmian word, as well as the number of factors with a given
frequency, were each expressed in terms of the Farey numbers arising from
the continued fraction expansion of the slope α of the Sturmian word.

We begin with a reformulation of the construction in [24] by organizing
the sequence of k× k rational numbers into two sequences of matrices (Pn)
and (Qn) where Pn is the matrix of numerators and Qn the matrix of de-
nominators. We then give a formula relating the matrices Bn and Pn. Via
(3.6) we can then express each of the frequencies f(|wn|+1,p) as integer linear
combinations of the base frequencies f(1), . . . , f(k) where the coefficients
are determined from the entries of Pn. On the other hand, the matrices Qn
are used to determine the quantities s(m,p).

(3) In a slightly different formulation, a similar expression was obtained by N. Che-
khova in [9] for k = 3.



272 N. Wozny and L. Q. Zamboni

Let ω be an Arnoux–Rauzy sequence on Ak with coding sequence (in).
Following [24], for all 1 ≤ i, j ≤ k and n ≥ 0 we define integers p(n)

ij and q(n)
ij

recursively using the coding sequence (in). Set

p
(0)
ij = δij =

{
1 if i = j,

0 if i 6= j

and q
(0)
ij = 1. For n ≥ 1, set

p
(n)
ij =




p

(n−1)
ij + p

(n−1)
inj

if i 6= in,

p
(n−1)
inj

otherwise

and

q
(n)
ij =




q

(n−1)
ij + q

(n−1)
inj

if i 6= in,

q
(n−1)
inj

otherwise.

We represent this algorithm by fixing a value of j and writing the unre-
duced fraction p(n)

ij /q
(n)
ij in the ith row and nth column of an infinite array.

For example if j = 1, and the coding sequence (in) begins in 121332 . . . then
we have

(4.2)

1
1 → 1

1
2
3 → 2

3
6
10

10
17

21
36 . . .

0
1

1
2 → 1

2
3
5

7
12

11
19 → 11

19 . . .

0
1

1
2

2
4

4
7 → 4

7 → 4
7

15
26 . . .

The positions of the arrows correspond to the values of in. If ω is a Sturmian
sequence, then p

(n)
1j /q

(n)
1j and p

(n)
2j /q

(n)
2j are consecutive m-Farey numbers

where m = q
(n)
1j + q

(n)
2j − 1 and the subsequence of fractions followed by

an arrow are precisely the convergents of the continued fraction expansion
of f(j).

For each n ≥ 0 define matrices Pn and Qn by Pn = (p(n)
ij ) and Qn =

(q(n)
ij ). Thus

(4.3) P0 =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




and for n ≥ 1,
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(4.4) Pn = Pn−1 +




Pn−1(in)
...
~0
...

Pn−1(in)




k×k

inth row

while

(4.5) Q0 =




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1




and for n ≥ 1,

(4.6) Qn = Qn−1 +




Qn−1(in)
...
~0
...

Qn−1(in)




k×k

inth row

We note that all entries in a given row in Qn are equal. We denote by
qn(i) the value of each entry in row i of Qn. It is also evident by induction
that the sum of the entries in each row i of Pn is equal to qn(i).

Lemma 4.1. For each n ≥ 0 and 1 ≤ i ≤ k we have qn(i) = s(|wn|+1,i).

P r o o f. For n = 0 we have q0(i) = 1 = s(1,i) for all 1 ≤ i ≤ k. For n ≥ 0
it follows from (4.6) that

qn+1(i) =
{
qn(i) + qn(in+1) if i 6= in+1,
qn(in+1) if i = in+1

which is the same recursive relation in Lemma 3.5 satisfied by the
s(|wn|+1,i).

Combining Lemma 4.1 and Corollary 3.3 gives:

Corollary 4.2. For each n ≥ 0 we have

|wn| =
∑k
j=1 qn(j)− k
k − 1

.

Lemma 4.3. For each n ≥ 0 we have (Bn)−1 = (Pn)t.

P r o o f. We prove this by induction on n. Let I denote the k×k identity
matrix. For n = 0 we have B0 = P0 = I, so (B0)(P0)t = I. Now suppose that
(Bn)(Pn)t = I. Then the dot product Bn(r)·Pn(r) = 1 and Bn(r)·Pn(s) = 0
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if r 6= s. We will show that (Bn+1)(Pn+1)t = I. By equations (3.5) and (4.4),
(Bn+1)(Pn+1)t is equal to

(Bn)(Pn)t +Bn




Pn(in+1)
...
~0
...

Pn(in+1)




t

−




~0
...∑

r 6=in+1
Bn(r)

...
~0



P tn

−




~0
...∑

r 6=in+1
Bn(r)

...
~0







Pn(in+1)
...
~0
...

Pn(in+1)




t

.

The first product is I by induction hypothesis. We claim that the second
and third products are equal and the fourth product is the zero matrix. In
fact

Bn




Pn(in+1)
...
~0
...

Pn(in+1)




t

=




Bn(1) · Pn(in+1) . . . 0 . . . Bn(1) · Pn(in+1)
Bn(2) · Pn(in+1) . . . 0 . . . Bn(2) · Pn(in+1)

...
...

...
Bn(k) · Pn(in+1) . . . 0 . . . Bn(k) · Pn(in+1)




=




0 0 . . . 0 . . . 0
0 0 . . . 0 . . . 0
...

...
...

...
1 1 . . . 0 . . . 1
...

...
...

...
0 0 . . . 0 . . . 0




where the nonzero row is the in+1th row and the column of all 0’s is the
in+1th column. This is equal to the third matrix product:



0 0 . . . 0
...

...
...∑

r 6=in+1

Bn(r) · Pn(1)
∑

r 6=in+1

Bn(r) · Pn(2) . . .
∑

r 6=in+1

Bn(r) · Pn(k)

...
...

...
0 0 . . . 0



.
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Finally the fourth matrix product is given by


0 0 . . . 0
...

...
...∑

r 6=in+1

Bn(r) · Pn(in+1)
∑

r 6=in+1

Bn(r) · Pn(in+1) . . .
∑

r 6=in+1

Bn(r) · Pn(in+1)

...
...

...
0 0 . . . 0




which is the zero matrix as required.

Corollary 4.4. For each n we have Bn = cof(Pn) and Pn = cof(Bn)
where cof denotes the cofactor matrix , i.e., the transpose of the adjoint.

P r o o f. This follows immediately from Lemma 4.3 and the fact that the
determinant of Bn and Pn are each equal to one.

We summarize our results as follows:

Theorem 4.5. Suppose ω is an Arnoux–Rauzy sequence on Ak. Fix m ≥
1 and let n be the smallest positive integer such that m ≤ |wn|+ 1. Let Bn
be defined recursively according to the coding sequence of ω as in (3.5) and
set Pn = cof(Bn). Let Qn be the k × k matrix whose ith row is of the form
(a, a, . . . , a) where a is the sum of the entries of the ith row of Pn. Then

Fm(ω) ⊆
{
f(|wn|+1,1), f(|wn|+1,2), . . . , f(|wn|+1,k),

k∑

i=1

f(|wn|+1,i)

}
,

where

(4.7)




f(|wn|+1,1)
f(|wn|+1,2)

...
f(|wn|+1,k)


 = cof(Pn)




f(1)
f(2)

...
f(k)


 .

Moreover for each 1 ≤ i ≤ k, Lm(ω) contains s′(m,i) factors with frequency
f(|wn|+1,i) where

s′(m,i) = qn(i) +m−
(

[
∑k
j=1 qn(j)]− k
k − 1

+ 1
)

and s′(m,k+1) factors with frequency
∑k
i=1 f(|wn|+1,i) where

s′(m,k+1) = (k − 1)m+ 1−
k∑

i=1

s′(m,i).

Example 4.6 (the Sturmian case). We show how Theorem 4.5 may be
used to recover the main result of Berthé in [4] on frequencies of factors
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in Sturmian words. Let ω be a Sturmian word on A2 = {1, 2}, and set α
equal to the frequency of 2 in ω. For each m ≥ 1 we compute the set Fm
of frequencies of factors of length m and the number of factors s(m,p) with
frequency f(m,p). Let n be the smallest integer such that m ≤ |wn|+ 1. The
matrices Pn and Qn are of the form

Pn =
(
q1 − p1 p1

q2 − p2 p2

)
, Qn =

(
q1 q1

q2 q2

)

where
p1

q1
≤ α ≤ p2

q2
and

q1 − p1

q1
≤ 1− α ≤ q2 − p2

q2
.

Moreover, p1/q1 and p2/q2 are consecutive q-Farey numbers where q = q1 +
q2 − 1, as are (q1 − p1)/q1 and (q2 − p2)/q2. Then

Bn = cof Pn =
(
p2 p2 − q2

−p1 q1 − p1

)

and hence(
f(|wn|+1,1)

f(|wn|+1,2)

)
=
(
p2 p2 − q2

−p1 q1 − p1

)(
1− α
α

)
=
(
p2 − q2α
q1α− p1

)
.

Thus by Theorem 4.5 we obtain:

Fm ⊆ {p2 − q2α, q1α− p1, (q1 − q2)α+ p2 − p1}.
Also by Theorem 4.5 we deduce that s′(m,1) = q1+m−(q1+q2−1) = m−q2+1
and s′(m,2) = q2 + m − (q1 + q2 − 1) = m − q1 + 1 and s′(m,3) = m + 1 −
s′(m,1) − s′(m,2) = (q1 + q2)−m− 1.

In other words, Lm(ω) has

• m− q2 + 1 factors with frequency p2 − q2α,
• m− q1 + 1 factors with frequency q1α− p1,
• (q1 + q2)−m− 1 factors with frequency (q1 − q2)α+ p2 − p1.

5. Concluding remarks. It would be interesting to investigate the
quality of simultaneous approximation of the frequencies obtained from the
algorithms of Sections 3 and 4. Partial results in this direction were obtained
by Chekhova, Hubert, and Messaoudi in [10] in the case of Tribonacci. They
showed that there is natural quadratic form associated with the incidence
matrix of the Tribonacci substitution with respect to which the approxima-
tion is optimal.

In the Sturmian case, Berthé [4] discovered a connection between Theo-
rem 1.1 and the three distance theorem in diophantine analysis [23]. Subse-
quently Alessandri and Berthé [1] investigated connections between gener-
alizations of the three distance theorem and combinatorics on words for se-
quences defined by codings of irrational rotations on the unit circle. It would
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be interesting to explore possible connections between Arnoux–Rauzy se-
quences and distance type theorems arising from the geometric realizations
given in [2] and [3]. It was conjectured that all Arnoux–Rauzy sequences
on a 3-letter alphabet code the trajectory of a point on the 2-torus under
a rotation. A counterexample to this conjecture was recently obtained by
Cassaigne, Ferenczi, and the second author [5] by constructing an Arnoux–
Rauzy sequence ω on {0, 1, 2} which is unbalanced in the following sense:
For each N there exist two factors of ω of equal length with one having at
least N more occurrences of the symbol 0 than the other. In itself this se-
quence also provides a counterexample to a balancing property conjectured
by Droubay, Justin and Pirillo [13] for episturmian sequences.

Finally, it would be nice to find a formula for the number of blocks of
length n which occur as a factor of some Arnoux–Rauzy sequence. This was
resolved by Mignosi in the Sturmian case [19].
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