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1. Introduction. The discrepancies of a sequence {ay} of real numbers
are defined by

Dn{ar} = sup
0<a<b<1

S#E< N | () €[0,0)} - al,

)

%#{k < N | (az) € [a,0)} — (b—a)

Dy{ax} = sup
0<a<1

where (x) denotes the fractional part x — [z ] of x. They are used to measure
deviation of the distribution of the fractional parts of a; from the uniform
distribution. One can find a detailed survey on the theory of uniform distri-
bution in [12].

The celebrated Chung—Smirnov Theorem [11], 28] states the following law
of the iterated logarithm for a uniformly distributed i.i.d. sequence {U}}:

*
lim sup M = lim sup M = L a.s.

Nooo V2Nloglog N Nooo V2NloglogN - 2

For a sequence {ny} of positive integers satisfying the Hadamard gap

condition

(1.1) Mppt1 /T = q > 1,

Philipp [27] proved the following bounded law of the iterated logarithm by
modifying the method due to Takahashi [30]: for almost every z,

1 ND3; ND
4v2 7 Nooo V2Nloglog N Nooo V2N loglog N
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Aistleitner [I] improved the estimates and replaced the lower bound and the
upper bound by 1/2 — 8/¢*/* and 1/2 + 6/¢'/* when ¢ > 2.

Recently, it was proved in [I3] that these limsups with respect to the
sequence {0Fx} are equal to a constant for almost every z if § > 1.
The constant is equal to the Chung-Smirnov constant 1/2 when 6 is not
a power root of a rational number, and is greater than 1/2 otherwise
(cf. [16]). In the latter case, the constant can be concretely evaluated un-
der some arithmetic condition. For example, when # = ¢ > 3 is an odd
integer, the constant is equal to %\/(q +1)/(¢ —1). Other sequences
for which limsups have been concretely calculated can be found in [17-19,
23-25).

Aistleitner [I] gave a nearly optimal Diophantine condition on the se-
quence {ny} to have the Chung—Smirnov type result below. For positive
integers N and d, and for a non-negative integer u, we denote the cardinal-
ity of

{(, 7'k, K) € [L,d]* x [1,N]* | jng, — j'nge = u} 0 {(j, 5, k. k) | 4,k € N}
by Ly,d.u, and we put L}k\,’d = SUP,en LN, du-

THEOREM 1 (Aistleitner [I]). Let {ni} be a sequence of positive integers
satisfying the Hadamard gap condition (1.1). Suppose that there exists an
€ > 0 such that for any d € N,

LN%OVLNd:(XNAngﬂ“)

Then

N D} ND 1
lim sup niner} = limsup N—{nkx} =—  a.e

N—ooo V2N loglog N Nooo V2NloglogN 2

As Aistleitner |2, [3] constructed lacunary sequences for which the limsups
are not constant a.e., and we can also find related examples in [15],22], we are
interested in giving a condition to have constant limsups. Since all limsups
so far determined for lacunary sequences with belong to

I—[l 1 q+1]
1272 g—110

it is natural to expect the same bound for all lacunary sequences. Now we
state our result.

THEOREM 2. Let {n;} be a sequence of positive integers satisfying the
Hadamard gap condition (1.1). Suppose that there exists an e € (0,1) such
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that for all d € N,
(1.2) Ly, = O(N/(log N)'*).
Then there exists a constant Xy, y such that

N D% ND
(1.3) limsup —N{nkx} = lim sup —N{nk$}
N—ooo V2N loglog N N—ooo V2N loglog N

Moreover, if we assume

=X €ly  ae

(1.4) Lygo=0(NN) (N — o)
together with for all d, then
(1.5) Yy = 1/2.

The estimate 2,y € I; in is best possible when ¢ > 3 is odd,
since E{qk} attains its upper bound and Z{qk(k+1>} attains its lower bound
(see [I3} 14]). It is also proved in [20] that the set of constants Xy mu)y for
all subsequences {¢™®)} of {¢*} coincides with I,. Note that our condition
to have is weaker than that in the previous theorem.

At least Ly g, = o(IN) is necessary to have constant limsups, since
limsup for star discrepancy is not constant for {2¥ — 1} and we have N <
Ly du (see [22]). Our condition is stronger than this, and it is open if
it is necessary or not.

The condition is necessary to have , since we have Xy xy > 1 /2
and Ly 40> N in this case.

To end the introduction, we mention a result of [21]. Suppose that {n} is
a sequence of non-zero real numbers such that {|ny|} satisfies the Hadamard
gap condition . Then for any permutation w of N (i.e. bijection N — N),
we have the bounded law of the iterated logarithm for the discrepancies of
{nw@r} with upper bound constant %\/(q —1+4+4/v/3)/(q — 1), slightly

greater than /(¢ +1)/(q — 1). For other recent developments and studies
on permuted sequences, see papers by Aistleitner, Berkes, and Tichy [4-9].

2. Proof. Let 1|, be the indicator function of [a, b), put
I[a,b) ('T) = 1[a,b)(<$>) - (b - CL),
and denote by I[mb);d the dth subsum of the Fourier series of I[a,b)' Put

2 — 1 ,  lg+1 1, , 1 1,
q—1)

4
2 _ _
Pgd = p (loqu+ Tod = 1q-1 + 2pq7d, ¢d =

2 pq7d'
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We first prove the following key inequalities:

M+N M+N

(2.1) ‘ > Tpyalng - H <H D> Lop—ayaln H +p3 N,
k=M1 k=M+1
M+N M+N

(2.2) ‘ > Tjappalng - H <774N, H > Tpay2palne - H > (o,
k=M 11 k=M1
M4N )

T T 2

@3) || X Twmatu )|, - NiTapald| < Larinao = Larao.

k=M1

For k < K/, by putting P = ny/ged(ng, ng) and Q = ny /ged(ng, ng ),
we have S(l) i[&b) (nkxﬁ[a,b) (ngrx) de = Sé I[a,b) (P:L‘)i[mb) (Qx) dz. For coprime
integers P and @), we have (Lemma 1 of [13])

V((Pa), (Pb), (Qa), (Qb))

PQ ’
V((Pa), (Pb), (Qa), (Qb)) < V(0,(P(a - b)),0,(Q(a — b)),
0 < V(0,(P/2),0,(Q/2)),

where ‘7(1" y?&?ﬁ) = V(IE,&) +V(y7n) - V(man) - V(yag) < 1/4 and V(CL’,&)
=z AE—x€for 0 <z, y, & n<1. Hence

101y (P2) 1) (Q) do =

O ey =

1
~ ~ 1 P ni 1
(2.4) gl[a,b)(nkw)l[a,b)(nk/m) dr < 4PQ = 10~ dng = AghE
1 _ _ 1~ _
(2.5) V Loy () T ) (i) dae <\ Tjg oy (n) Loy (i) di,
0 0
1~ ~
(2.6) 81[0,1/2) (nkx)1p0,1/2) (N ) dx > 0,
0
1~ o~ ~
(2.7) VTj0,1/2) (k) Lp0,1/2) (i) d = V(0,1/2,0,1/2) = 5
0
Since
M+N . 1~ _
H > Ly (ng- H = (2= Gpw) | Loy (i) Lo ) () dav
k=M +1 0

where Y * stands for the summation over k and &’ satisfying M +1 < k <
k' < M+ N, by applying 1) and 32(2 — S ) /4qF 7k < Nigf—}, we have
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the first inequality of

M+N 9 1 M+N
~ qg+1 ~ 2 _ N
(2.8) H > Ao (- )H <N - 7 H > Ty (k- )H > —,
2 4qg—1 2 4
k=M+1 k=M+1
while the second follows from ) and . ). By (2.5 ., we can verify
M+N
(2.9) H > Tjapy (e H < H Z Tjo,0—a)(mk - )H :
k=M+1 k=M+1
From S(l] 1(o4).a(P2) 1o p).a(Qr) dz = S 10).4(P2) 1) (Qz) dz, we have

1 1
Ay = ‘S Lo,y () L g ) (@) da — | L pysa (ni) L )0 () dﬂc’
0

0
1 o~ ~
= ‘S (Lap) = Liapya) (P2) 1)) (Q) dfﬂ) < ) [ Tn (@M1 (—P)]
0 |>\\>d/Q
2 20 w1 1 1
2P0 Z 2 <=2pp (2 A > , Ao S A
Q Z >\ 2PQ 0" d e d d

Here we used |I[a’b)(j)| < 1/7|j|. Hence

=y 2 sy 2 *
} H Z i[aJ?);d(”k : )H2 - H Z I[a,b)(nk : )HQ‘ < 22 g ks
+1

k=M+1 k=M

1 1
<2Z NZ*/\ _2N<lo;r _|_q—(lo+1)Q>

qg—1
log,d+1 1 ¢ Pad
<2N(—4 = <&
- < d +dq1>_ 2

N,

where [j is the largest integer satisfying ¢~ > 1/d. By combining this with

(2.8), we have (2.2), and with (2.9), we obtain (2.1]). By summing

1

‘SI[a,b);d(nkxﬁ[a,b);d(nk'w)dﬂ?)S Z Z | T10.5) () L0 ) [t 5700
0 0<[j1<d 0<|j'|<d

9 d d
<5200 i

j=1j'=1
over M +1 <k <k <M+ N, we see that the left hand side of (2.3) is
bounded by #{(j, j’, k, k") €[1,d]> x [M + 1, M + N1? | jn—j'ng =0, k <k'}
< Largn,do — L.



234 C. Aistleitner et al.

Now we use a method of martingale approximation, which is a slight
modification of the proof given in [I] and originated in Berkes—Philipp [10].
We regard [0, 1) equipped with the Borel field and the Lebesgue measure as
a probability space.

First we recall two lemmas. The proofs can be found in [10], [13].

LEMMA 3. If g is a bounded measurable function with period 1 satisfying
Sé g =0, then

b
Hg()\x) dac’ <|lglloo/A  for all a < b and X > 0.

a

LEMMA 4. Let g be a trigonometric polynomial with period 1 and degree
d satisfying S(l)g = 0. There exists a constant Cy depending only on q such
that, for any sequence {ny} of positive integers satisfying the Hadamard gap

condition (1.1,

1 M+N

S( Z Q(nkx)>4dx < Cq(z |§(y)|)4N2'

0 k=M-+1 v|<d

Let us divide N into consecutive blocks A}, Ay, AL, Ao, ... satisfying
#A; = [1+9log, 1] and #A; = i. Denote i~ = min 4;, i* = max A;, and
Iy = #A1 + -+ #Ay. We have M~ ~ M+ ~ Iy = M(M +1)/2 < M?
and n;— /n(i_1)+ > qglong =i, Put

p(i) = logy i*ni+] + 1,
Fi=o{(j2"®, (j+ 1)270) [j=0,....2¢0 —1}.
Note that i*n+ < 24() < 2i*n,;;. Denote i[a,b);d by f and put
Ti(w)= Y flnz), T/(@) =) flmz), Yi=E(G|F)-E(T;| Fio).
keA; ke Al

We also denote T; and Y; by Tj,).q;s and Y]y p).q, to specify the parameters
[a,b) and d. Clearly {Y;, F;} forms a martingale difference sequence.
Let us prove

(2.10) Vi — Tilloo < 1/33,
(2.11) 1V7? =T loe < 1/4%,
(2.12) 1Y = T < 1.

Here and later, the constants implied by < and O depend only on a, b,
and d.

Suppose that k € A; and z € T = [j27#0) (j 4+ 1)27#®) € F;. In this
case we have
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[Fww) = B )| F)| = 117§ () = £ dy

I

< 1;13;{ |f(ngz) — f(nry))|

1 lloom2 7D < (1 f loomn/i*nie < 1 f oo/

Hence |T; — E(T; | Fy)| < ||/ lo#Ai/i* = [|f']loo/i. Take J = [j27#(71),
(j +1)27#G=1) ¢ F;_;. Then by applying Lemma |3, we have

|E(f (- ) [ Fi1)| = IJ\AH f(ngy) dy‘ < I/ o240
J

IN

< I Flloo2(i = 1) *ngry+ /ri- < 2 flloo/.

Therefore |E(T; | Fi—1)| < 2||f|loc# i/ = 2| f]|oo/i*, and (2.10)) is proved.
From || Tilloo < if| flloo, we have | E(T; | Fi) oo, [ E(Ti | Fi-1)lloo < il flloo-

Hence [|Yi[loo < 2’inHoo, 1Yi +THoo < 30 flloo, IV + TPlloo < 52| f1I3.
Because [[V? — TPlloc < |IYi = Til|oo[lYi + Tillc_and ||V — Tl

|V — TQHOOHY2 + T?|| o0, We obtain (2.11)) and (2.12).

d 1
Put l[a byd = D_j—1(a; COS2mjx + b; Sin 2mjx), v; = Vjgp)ai = 5o T[ib);d;i,

B = Blapydit = Vapyd1 + -« + Vapyanr, and Vag = S0 B(Y2 | Fimq).
Set

={(k,K',5,7,¢) | kK € A;, 5,5 =1,...,d, ¢ = +1,—1},
{(k, K, 5,5",5) € i | jng + j'nw = 0},
o = {(k,K,j,7',<) € @i | 0 < |jre +<j'nw| < ngoay+},
{( )
)

@W

)

k k/,j,j/,§ € ¢Z | n(i—l)Jr < ‘jnk +§j/nk" < ni7}7
SR = {(k, K, 4,7,¢) € ®; | ny— < |jmp + s5'mas|}-
For ¥ C &;, denote X(¥) = >_(j u j.j.c)ew Akk' j.jc» Where
2Ak,k’,j,j’,c($) = (ajaj/ — f;bjbj/) CcOos 27’[’(]7% + §] nk/)x
+ (sa;bj + bjaj) sin 2w (jny + <j' g ).
We see T[a b): 2:() = X(®i) and g p).a.; = X(P]). Let U; = x(@Y), W; =

(@), and R; = x(P). We can express @; as a disjoint union &Y U @Y U
@XV U @f and hence Ti2 =v; + U; + W; + R;. We prove

213 Vil < |3 B2 - 72 7o), + 1> 5w 7o),
=1 =1

S0 B F), + [0 B 7o), < MPtog a0+
=1 i=1

where the first inequality is due to YZ-2 —v; = (Yf — Tf) + U, + W; + R;.
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By (@11 we sce | M, E(Y2 — T2 | Fiy)ll2 = O(1).
From #@f S #@)z S 2d2i2, |ajaj/ — (b]b]/|/2 S ]., and ]gajbj/ + b]a]/|/2
< 1, we obtain

|E(R; | Fi_1)| < 4d%?270=Y) /n, < 8d%/i®

and || 301, B(R; | Fima)|l2 = 0(1)-

Let kK € A;, 4,5 = ,d. Since jng + j'ng > 2n;—, we have
(k,K',5,7',+1) ¢ oYV udlV. Ifk < ' and ng > (d+1)ng, then jnk—] gy <
dny, — (d+1)ny, < —n,—. Hence |jng — j'ny| < n;— implies ¢¥ % < nk//nk <
d + 1, that is, ¥ — k < log,(d + 1). Therefore, if we fix k, j and j', then
the number of k' such that k¥ < k' and [jni — j'ni| < n;— is at most
log,(d+ 1) + 1. Therefore #(@Y U D)) < 2d?(log,(d + 1) + 1)i and

(2.14) Willoo <7, [|[Willoo < 1.

Hence |E(W; | Fii1)| < [[Willeo < i and || M, E(Wi | Fi1)?[loe < M3, 1f
i <1, then

E(E(W; | Fic)) E(Wy | Fy—q) | Fic1) = E(W;i | Fict) E(Wy | Fiz1)
= O(i)E(Wy | Fi-1)

i—1)|-

Slnce we can erte

Fi-1))| < iE|E(W;

GOl GO
Wi(x) = Z (cy cos 2muz +d,, sin 2uz) with Z (|eul +dul) < 7',

u:n(i/_1)+ u:77/(i/_1)+

by Lemma [3 we obtain

[EW | Fie)] < D (leul + |du)24070 fu

u

<< 2 Z n 7, 1)+/7’L 1 + << Z q(z 1)+_(7;/_1)+ << 2/5q—7,/

Hence
Y |B(BW; | Fie) EWe | Fuy)| < Y i " <<Z g < 1.
i<’ 1<’

These imply E(Zf\il E(W;| Fic1))? < M3.

Since we can write

Na—1)+ N—1)+
Ui(x) = Z (¢}, cos 2mux + d., sin 2rux)  with Z (|| + |d.,|) < 1,
u=1 u=1

from ‘E(cos 2w - | Fi—1) — cos 27ru1:’ < 2ru2— 1) « n(i,l)+/i4n(i,1)+ <
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1/i* and |E(sin 27w - |E_1) — sin 27Tuaz| < 1/i*, we have

M
‘ZE(UHE
i=1

We can write

(1)t

(Ich| + |d.]) /it <<Z—3<<1

Npv—1)+ m—1)+
ZUz(a:) = Z (¢ cos 2mux+d,, sin 2ruz) with Z (|4 dr) < M?,
i u=1 u=1

and by |i we have |y, |y < L+ gu < Lyt g < M?/(log M)**¢. Hence

M -1+ M-+
2 () + (d)? M2
H“ = X s < Gopanye 2 (I

M4
= (og 27

and | oM E(U; | Fisy)|la < M?(log M)~(+9)/2_ Hence we obtain (2.13).

We choose another probability space on which a sequence {U, &1, &a, ... }
of independent random variables satisfying P(§, = 1) = P(§, = —1) = 1/2
and P(U € A) = |[AN|[0,1]| is defined. We take the product of [0,1) on
which {Y;} is defined and this new probability space, and regard Y;, U, and
Zi= ke A, &k as random variables on this product probability space. Take
m € N and define a martingale difference sequence {2, .7?1} on this space by
putting F; = F; @ o{Z1,..., =i},
~ o~ 1 _ ~ -~ 1
Y, = }/[a,b);d;m;i = }/[a,b);d;m;i'f_a‘:ia By = /Ba,b );dym; M — B[a,b ;d;M""ilM-

By Lemmaand , We have HYH4 < HY”4 + 1Ella = || Tilla + ‘|~1H4
O(1) < /2, s0 EY4 < i2. We have E(Y2|Fi 1) = E(Y2|Fi) +m™
and hence

M

— 2| T — _ _

Vi = ;E(Yi | Fic) = Var + 5l > —5lu
and |[Var — Barllz < M2(log M)~(1+9)/2 We now prove
(2.15) Vi = B\M + o(By(log Bur)~Y)  as.
Note that v; < i by (2 , SO BM < M?, and hence M? <« BM < M?.
We also have 8y, — ,BM = ZZ M1 Vi K M'(M"— M) and By — B <
M'(M'— M). Put @« = 1 —¢/2+¢e2/4 < 1 and M; = [2"]. We have
(1+¢/2)a>1, (a— 1)/a <a-—1<—¢/4, and

Mysy /My ~ 27" =140(1°71) = 1+0((log M) @~ D/*) =1+ 0((log M;) /%),
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so Mij41 — M; = o(M;(log Ml)_€/4). Hence
0< BMZH - BMZ < My 1 (M1 — M)
= o( M (log My)™/*) = o(Bar, (log Bar,)~/*),
that is, BMzH/BMz =1+ o((log M;)~¢/*). Therefore

> Var, — B >2 S ey N a(lie2
E<A L < (log My) 7152 « Y T melFED) <o,
2" Gntowtu 1) 25 >

By Beppo Levi’s theorem, we have (VMZ BMZ)/B\MZ (log BMZ)_8/4 — 0 a.s.,
SO VMl 5Ml = o(ﬂMl(logﬁM) 6/4) a.s.

If My <M < M1, then
(Var, — Bumy) + (Bag, — 5Ml+1) <V —Bu < (VMl+1 Bumyy) + (Basy — Bary)
and hence we have .

Now we use the following theorem by Monrad—Philipp [26] which is a
modification of Strassen’s theorem [29].

THEOREM 5. Let {f/,,f}} be a square integrable martingale difference
satisfying

M 0
=Y BE(Y?|Fis1) > o0 as. and Y E(Y?1 Frsp@y/P(Vi) < o0
i=1 i=1
for some non-decreasing 1 such that 1(c0) = oo and (x)(log z)*/x is non-
increasing for some a > 50. If there exists a uniformly distributed random
variable U which is independent of {Y,}, then there exists a standard normal
i.i.d. sequence {Z;} such that

S V5 = Zit ot 2wt /M) (t ) as.

i>1 i<t

Put ¢(x) = x/(log x)!. We can verify Var > m~2ly — oo, and
A4

ZE Y2 {Y2>¢ }/?/’ ng —2l <<Zz (log ;)92 /1? < cc.

Hence M, Y, = Doi<tny Zit O(VM/Q(log VM)*51/50) a.s. From (2.15) and

sup (Wips — Wi = O(tl/z(log t)~/8(loglog t)1/2)7
0<|s|<t(log )~/

where {W;} is the Wiener process, we have

ZY = Z Zi+0( 1/2 logBM)*E/g) a.s.

z<5M
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Hence by denoting ¢(x) = v/2z loglog x and by applying the 0-1 law, we see
that there exists a constant Cfg p).q.m such that

1
2.16 lim su ’ ab):dimsi| = limsup ‘ Z;
( ) Maoop d’ lM Z [a.0):ds M—o0 ¢( ) L~ Z
ZSB[(L,b);d;m;]M
- C[a b)' d:m

almost surely. Now we apply the following lemma with v; = v(qp).q, +17 j/m?
U} = Vo p—ayazi + i/m?, By = Bab gy and By, = B[Ob a)idsM -

LEMMA 6. Let {Zy} and {Z,} be standard normal i.i.d. sequences. Sup-
pose that {Uy} and {v}.} are sequences of positive numbers satisfying c1i <
Ui < eot, dyi < 0, < dgi, and v; < U, + i for some 0 < ¢; < ¢ < 00,
0 <d <dy <00, and 0 < v < o0. Put Byy = 01 + -+ + 0y and
By =)+ + ). Then

1
vep < limsu 7‘ Z ‘ < limsu ‘
! M~>oop (ZM) k; g M%oop (ZS lM Z
<Bm k<Bh,
<Vdy++/y as

By using conditions (2.1) and (2.2), we can verify the conditions of the
lemma for ¢; = di = 1/m?, ca = dy = qQ’d +1/m? and v = pid, and we
have

C[a,b);d;m < C[O,bfa);d;m + Pgd = (qu,d + 1/m2)1/2 + Pg,d-

Putting v; = v, = V[0,1/2):dsi T i/m? and ¢; = c3 = ng, and dq, do as before,
we obtain

C”[0,1/2) dym > Cq,d-

From
1 M 1 Mo 1 M
> Viawyai| = == D Tappams|| < ——[> =],
’qs(lM)’; OB (L) Z; OB = g (L) Z}
we have
1
limsup —— ‘ [ap):dii| — Cla m’ < — as.
M—00 ¢lM Z b)id la.0):d

Hence Clqp);:q = limiy 00 Clg p):a;m 1S @ constant satisfying

[a b);d a.s.,

(2.17) limsup ——— ‘Z [a,b);

Moo O( lM
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and
Clapyd < Clop—ayd + Pad < Tqd + Pads  Cloa/2)d = Cad-

Since Y; is a function of =, by applying Fubini’s theorem, we see that equality

in (2.17)) holds on [0,1) and we can replace a.s. in (2.17) by a.e. By (2.10)),
we have | sz\il Yv[a,b);d;i| = | Zi\il T[a b)'d'i| =+ 0(1) and

3 s

Because #A] + -+ # A, < Mlog M and Iy ~ M™, by applying the law
of the iterated logarithm for lacunary trigonometric series, we have

M
‘Z T[/a,b);d;i
i=1

Therefore,

lim sup
Moo 9( lM

a b);d a.e.

< /M log M loglog(M log M) = o(¢(M™T)).

lim su ’ " Z—i—Ta Il = Clap): a.e.
M (M) M+ Z lab)dsi + Tiab):dsi) la,b):d

By noting (M — 1) ~ M™ and max (M L ++1]Zk (M—1)+ 41 Ljpyal <
M = o(¢(M™)), we have

h]I\}Ls;loqu ’Z (a,b):d(MET) ‘ =Clap)a  a-e
Now we apply the following proposition, essentially proved in [13]. The
proof of the first part can be found in [16], and the full proof in [21].

PROPOSITION 7. Let {ny} be a sequence of positive numbers satisfying
the Hadamard gap condition. Then for any dense countable set S C [0,1),
we have

ND
limsupM = sup limsup——— ‘E 1[ab ngx)
Nooo V2NIoglog N ssa<bes N—oo P(INV
(2.18) N
, ND3{ngzx} 1 ~
limsup ——2 2 — guplimsu ’ 1 ngx)|,
N—)oop QNIOgIOgN aeg N—)oop ¢( ) ; [Oﬂ)( g )
and
2.19) limsu ‘ E 1 nkx ‘ lim limsu ‘ 1 a(ngz)
( ) N—)oop (]5 [a.0) d—oo N—)oop ¢ Z [a.0)sd

for almost every x € R.
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Put S =[0,1) N Q. By applying (2.19)), we have

N

. 1 = :

lim sup (N)‘ E 1ia.p) (nkx)‘ = Clap) = dlggo Clapyd  a-e.,
k=1

N—oo

where Clo) < Clop-a) < 31/(q+1)/(q— 1), and 1/2 < Cjg12). By (2.18),
i

we have (|

Suppose that the condition (|1.4]) is assumed. By (2.3]) we obtain

M
Bagyar = 3 BT g = | Lapysalldiar + O(Lare )
=1

= ||I[a,b);d||glM + O(ZM)v

and so E[mb);d;m;M ~ (Hﬁi[a’b);dH% + 1/m?)lys. Hence, by 1' we directly
have

[E[a,b);d;m;]\/l]

, S(Blas)sasm:nr) 1 S
Claydim = limsup ——— 2= A
[a,b):d; o o(lar) gb(ﬁ[%b);d;m;M)’ =1

= V1T wyall3 + 1/m2.

Therefore Cigpy.q = | Tjapyallz and Clagy = [Taplle < [Tjo1y2)llz = 1/2 =
Clo,1/2)-
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