## Optimal bound for the discrepancies of lacunary sequences

by<br>Christoph Aistleitner (Graz), Katusi Fukuyama (Kobe) and Yukako Furuya (Kobe)

1. Introduction. The discrepancies of a sequence $\left\{a_{k}\right\}$ of real numbers are defined by

$$
\begin{aligned}
& D_{N}\left\{a_{k}\right\}=\sup _{0 \leq a<b<1}\left|\frac{1}{N} \#\left\{k \leq N \mid\left\langle a_{k}\right\rangle \in[a, b)\right\}-(b-a)\right| \\
& D_{N}^{*}\left\{a_{k}\right\}=\sup _{0 \leq a<1}\left|\frac{1}{N} \#\left\{k \leq N \mid\left\langle a_{k}\right\rangle \in[0, a)\right\}-a\right|
\end{aligned}
$$

where $\langle x\rangle$ denotes the fractional part $x-[x]$ of $x$. They are used to measure deviation of the distribution of the fractional parts of $a_{k}$ from the uniform distribution. One can find a detailed survey on the theory of uniform distribution in [12].

The celebrated Chung-Smirnov Theorem [11, 28, states the following law of the iterated logarithm for a uniformly distributed i.i.d. sequence $\left\{U_{k}\right\}$ :

$$
\limsup _{N \rightarrow \infty} \frac{N D_{N}^{*}\left\{U_{k}\right\}}{\sqrt{2 N \log \log N}}=\limsup _{N \rightarrow \infty} \frac{N D_{N}\left\{U_{k}\right\}}{\sqrt{2 N \log \log N}}=\frac{1}{2} \quad \text { a.s. }
$$

For a sequence $\left\{n_{k}\right\}$ of positive integers satisfying the Hadamard gap condition

$$
\begin{equation*}
n_{k+1} / n_{k} \geq q>1 \tag{1.1}
\end{equation*}
$$

Philipp [27] proved the following bounded law of the iterated logarithm by modifying the method due to Takahashi [30]: for almost every $x$,

$$
\begin{aligned}
\frac{1}{4 \sqrt{2}} \leq \limsup _{N \rightarrow \infty} \frac{N D_{N}^{*}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}} & \leq \limsup _{N \rightarrow \infty} \frac{N D_{N}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}} \\
& \leq \frac{166}{\sqrt{2}}+\frac{664}{\sqrt{2}\left(q^{1 / 2}-1\right)}
\end{aligned}
$$

[^0]Aistleitner [1] improved the estimates and replaced the lower bound and the upper bound by $1 / 2-8 / q^{1 / 4}$ and $1 / 2+6 / q^{1 / 4}$ when $q \geq 2$.

Recently, it was proved in [13] that these limsups with respect to the sequence $\left\{\theta^{k} x\right\}$ are equal to a constant for almost every $x$ if $\theta>1$. The constant is equal to the Chung-Smirnov constant $1 / 2$ when $\theta$ is not a power root of a rational number, and is greater than $1 / 2$ otherwise (cf. [16]). In the latter case, the constant can be concretely evaluated under some arithmetic condition. For example, when $\theta=q \geq 3$ is an odd integer, the constant is equal to $\frac{1}{2} \sqrt{(q+1) /(q-1)}$. Other sequences for which limsups have been concretely calculated can be found in [17-19, 23-25].

Aistleitner [1] gave a nearly optimal Diophantine condition on the sequence $\left\{n_{k}\right\}$ to have the Chung-Smirnov type result below. For positive integers $N$ and $d$, and for a non-negative integer $u$, we denote the cardinality of

$$
\left\{\left(j, j^{\prime}, k, k^{\prime}\right) \in[1, d]^{2} \times[1, N]^{2} \mid j n_{k}-j^{\prime} n_{k^{\prime}}=u\right\} \cap\{(j, j, k, k) \mid j, k \in \mathbb{N}\}^{c}
$$

by $L_{N, d, u}$, and we put $L_{N, d}^{*}=\sup _{u \in \mathbb{N}} L_{N, d, u}$.
Theorem 1 (Aistleitner [1]). Let $\left\{n_{k}\right\}$ be a sequence of positive integers satisfying the Hadamard gap condition (1.1). Suppose that there exists an $\varepsilon>0$ such that for any $d \in \mathbb{N}$,

$$
L_{N, d, 0} \vee L_{N, d}^{*}=O\left(N /(\log N)^{1+\varepsilon}\right) .
$$

Then

$$
\limsup _{N \rightarrow \infty} \frac{N D_{N}^{*}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\limsup _{N \rightarrow \infty} \frac{N D_{N}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\frac{1}{2} \quad \text { a.e. }
$$

As Aistleitner [2, 3] constructed lacunary sequences for which the limsups are not constant a.e., and we can also find related examples in [15, 22], we are interested in giving a condition to have constant limsups. Since all limsups so far determined for lacunary sequences with (1.1) belong to

$$
I_{q}=\left[\frac{1}{2}, \frac{1}{2} \sqrt{\frac{q+1}{q-1}}\right]
$$

it is natural to expect the same bound for all lacunary sequences. Now we state our result.

ThEOREM 2. Let $\left\{n_{k}\right\}$ be a sequence of positive integers satisfying the Hadamard gap condition 1.1). Suppose that there exists an $\varepsilon \in(0,1)$ such
that for all $d \in \mathbb{N}$,

$$
\begin{equation*}
L_{N, d}^{*}=O\left(N /(\log N)^{1+\varepsilon}\right) . \tag{1.2}
\end{equation*}
$$

Then there exists a constant $\Sigma_{\left\{n_{k}\right\}}$ such that
(1.3) $\limsup _{N \rightarrow \infty} \frac{N D_{N}^{*}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\limsup _{N \rightarrow \infty} \frac{N D_{N}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\Sigma_{\left\{n_{k}\right\}} \in I_{q} \quad$ a.e.

Moreover, if we assume

$$
\begin{equation*}
L_{N, d, 0}=o(N) \quad(N \rightarrow \infty) \tag{1.4}
\end{equation*}
$$

together with 1.2 for all $d$, then

$$
\begin{equation*}
\Sigma_{\left\{n_{k}\right\}}=1 / 2 \tag{1.5}
\end{equation*}
$$

The estimate $\Sigma_{\left\{n_{k}\right\}} \in I_{q}$ in 1.3 is best possible when $q \geq 3$ is odd, since $\Sigma_{\left\{q^{k}\right\}}$ attains its upper bound and $\Sigma_{\left\{q^{k(k+1)}\right\}}$ attains its lower bound (see [13, 14]). It is also proved in [20] that the set of constants $\Sigma_{\left\{q^{m(k)}\right\}}$ for all subsequences $\left\{q^{m(k)}\right\}$ of $\left\{q^{k}\right\}$ coincides with $I_{q}$. Note that our condition to have 1.5 is weaker than that in the previous theorem.

At least $L_{N, d, u}=o(N)$ is necessary to have constant limsups, since limsup for star discrepancy is not constant for $\left\{2^{k}-1\right\}$ and we have $N \ll$ $L_{N, d, u}$ (see [22]). Our condition $\sqrt{1.2}$ ) is stronger than this, and it is open if it is necessary or not.

The condition (1.4) is necessary to have (1.5), since we have $\Sigma_{\left\{q^{k}\right\}}>1 / 2$ and $L_{N, d, 0} \gg N$ in this case.

To end the introduction, we mention a result of 21]. Suppose that $\left\{n_{k}\right\}$ is a sequence of non-zero real numbers such that $\left\{\left|n_{k}\right|\right\}$ satisfies the Hadamard gap condition (1.1). Then for any permutation $\varpi$ of $\mathbb{N}$ (i.e. bijection $\mathbb{N} \rightarrow \mathbb{N}$ ), we have the bounded law of the iterated logarithm for the discrepancies of $\left\{n_{\varpi(k)} x\right\}$ with upper bound constant $\frac{1}{2} \sqrt{(q-1+4 / \sqrt{3}) /(q-1)}$, slightly greater than $\frac{1}{2} \sqrt{(q+1) /(q-1)}$. For other recent developments and studies on permuted sequences, see papers by Aistleitner, Berkes, and Tichy [4-9].
2. Proof. Let $\mathbf{1}_{[a, b)}$ be the indicator function of $[a, b)$, put

$$
\widetilde{\mathbf{1}}_{[a, b)}(x)=\mathbf{1}_{[a, b)}(\langle x\rangle)-(b-a),
$$

and denote by $\widetilde{\mathbf{1}}_{[a, b) ; d}$ the $d$ th subsum of the Fourier series of $\widetilde{\mathbf{1}}_{[a, b)}$. Put

$$
\rho_{q, d}^{2}=\frac{4}{d}\left(\log _{q} d+\frac{2 q-1}{q-1}\right), \quad \tau_{q, d}^{2}=\frac{1}{4} \frac{q+1}{q-1}+\frac{1}{2} \rho_{q, d}^{2}, \quad \zeta_{q, d}^{2}=\frac{1}{4}-\frac{1}{2} \rho_{q, d}^{2}
$$

We first prove the following key inequalities:

$$
\begin{equation*}
\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2} \leq\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[0, b-a) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2}+\rho_{q, d}^{2} N \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\sum_{k=M+1}^{M+N} \tilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2} \leq \tau_{q, d}^{2} N, \quad\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[0,1 / 2) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2} \geq \zeta_{q, d}^{2} N \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2}-N\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}^{2}\right| \leq L_{M+N, d, 0}-L_{M, d, 0} \tag{2.3}
\end{equation*}
$$

For $k \leq k^{\prime}$, by putting $P=n_{k} / \operatorname{gcd}\left(n_{k}, n_{k^{\prime}}\right)$ and $Q=n_{k^{\prime}} / \operatorname{gcd}\left(n_{k}, n_{k^{\prime}}\right)$, we have $\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k^{\prime}} x\right) d x=\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}(P x) \widetilde{\mathbf{1}}_{[a, b)}(Q x) d x$. For coprime integers $P$ and $Q$, we have (Lemma 1 of [13])

$$
\begin{aligned}
& \int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}(P x) \widetilde{\mathbf{1}}_{[a, b)}(Q x) d x=\frac{\tilde{V}(\langle P a\rangle,\langle P b\rangle,\langle Q a\rangle,\langle Q b\rangle)}{P Q} \\
& \widetilde{V}(\langle P a\rangle,\langle P b\rangle,\langle Q a\rangle,\langle Q b\rangle) \leq \widetilde{V}(0,\langle P(a-b)\rangle, 0,\langle Q(a-b)\rangle), \\
& 0 \leq \widetilde{V}(0,\langle P / 2\rangle, 0,\langle Q / 2\rangle)
\end{aligned}
$$

where $\widetilde{V}(x, y, \xi, \eta)=V(x, \xi)+V(y, \eta)-V(x, \eta)-V(y, \xi) \leq 1 / 4$ and $V(x, \xi)$ $=x \wedge \xi-x \xi$ for $0 \leq x, y, \xi, \eta<1$. Hence

$$
\begin{align*}
& \int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k^{\prime}} x\right) d x \leq \frac{1}{4 P Q} \leq \frac{P}{4 Q}=\frac{n_{k}}{4 n_{k^{\prime}}} \leq \frac{1}{4 q^{k^{\prime}-k}}  \tag{2.4}\\
& \int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k^{\prime}} x\right) d x \leq \int_{0}^{1} \widetilde{\mathbf{1}}_{[0, b-a)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[0, b-a)}\left(n_{k^{\prime}} x\right) d x  \tag{2.5}\\
& \int_{0}^{1} \widetilde{\mathbf{1}}_{[0,1 / 2)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[0,1 / 2)}\left(n_{k^{\prime}} x\right) d x \geq 0  \tag{2.6}\\
& \int_{0}^{1} \widetilde{\mathbf{1}}_{[0,1 / 2)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[0,1 / 2)}\left(n_{k} x\right) d x=\widetilde{V}(0,1 / 2,0,1 / 2)=\frac{1}{4} \tag{2.7}
\end{align*}
$$

Since

$$
\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} \cdot\right)\right\|_{2}^{2}=\sum^{*}\left(2-\delta_{k, k^{\prime}}\right) \int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k^{\prime}} x\right) d x
$$

where $\sum^{*}$ stands for the summation over $k$ and $k^{\prime}$ satisfying $M+1 \leq k \leq$ $k^{\prime} \leq M+N$, by applying 2.4 and $\sum^{*}\left(2-\delta_{k, k^{\prime}}\right) / 4 q^{k^{\prime}-k} \leq N \frac{1}{4} \frac{q+1}{q-1}$, we have
the first inequality of

$$
\begin{equation*}
\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} \cdot\right)\right\|_{2}^{2} \leq N \frac{1}{4} \frac{q+1}{q-1}, \quad\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[0,1 / 2)}\left(n_{k} \cdot\right)\right\|_{2}^{2} \geq \frac{N}{4} \tag{2.8}
\end{equation*}
$$

while the second follows from (2.6) and 2.7 . By 2.5 , we can verify

$$
\begin{equation*}
\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} \cdot\right)\right\|_{2}^{2} \leq\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[0, b-a)}\left(n_{k} \cdot\right)\right\|_{2}^{2} \tag{2.9}
\end{equation*}
$$

From $\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b) ; d}(P x) \widetilde{\mathbf{1}}_{[a, b) ; d}(Q x) d x=\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b) ; d}(P x) \widetilde{\mathbf{1}}_{[a, b)}(Q x) d x$, we have

$$
\begin{aligned}
h_{k, k^{\prime}} & :=\left|\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k^{\prime}} x\right) d x-\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k^{\prime}} x\right) d x\right| \\
& =\left|\int_{0}^{1}\left(\widetilde{\mathbf{1}}_{[a, b)}-\widetilde{\mathbf{1}}_{[a, b) ; d}\right)(P x) \widetilde{\mathbf{1}}_{[a, b)}(Q x) d x\right| \leq \sum_{|\lambda| \geq d / Q}\left|\widehat{\widetilde{\mathbf{1}}}_{[a, b)}(Q \lambda) \widehat{\widetilde{\mathbf{1}}}_{[a, b)}(-P \lambda)\right| \\
& \leq \frac{2}{\pi^{2} P Q} \sum_{\lambda \geq d / Q} \frac{1}{\lambda^{2}} \leq \frac{2}{\pi^{2} P Q}\left(2 \wedge \frac{2 Q}{d}\right) \leq \frac{P}{Q} \wedge \frac{1}{d}=\frac{n_{k}}{n_{k^{\prime}}} \wedge \frac{1}{d} \leq \frac{1}{q^{k^{\prime}-k}} \wedge \frac{1}{d}
\end{aligned}
$$

Here we used $\left|\widehat{\widetilde{\mathbf{1}}}_{[a, b)}(j)\right| \leq 1 / \pi|j|$. Hence

$$
\begin{aligned}
& \left|\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} \cdot\right)\right\|_{2}^{2}-\left\|\sum_{k=M+1}^{M+N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} \cdot\right)\right\|_{2}^{2}\right| \leq 2 \sum^{*} h_{k, k^{\prime}} \\
& \quad \leq 2 \sum^{*} \frac{1}{q^{k^{\prime}-k}} \wedge \frac{1}{d} \leq 2 N \sum_{l=0}^{\infty} \frac{1}{q^{l}} \wedge \frac{1}{d}=2 N\left(\frac{l_{0}+1}{d}+q^{-\left(l_{0}+1\right)} \frac{q}{q-1}\right) \\
& \quad \leq 2 N\left(\frac{\log _{q} d+1}{d}+\frac{1}{d} \frac{q}{q-1}\right) \leq \frac{\rho_{q, d}^{2}}{2} N
\end{aligned}
$$

where $l_{0}$ is the largest integer satisfying $q^{-l_{0}} \geq 1 / d$. By combining this with (2.8), we have (2.2), and with (2.9), we obtain (2.1). By summing

$$
\begin{aligned}
\left|\int_{0}^{1} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} x\right) \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k^{\prime}} x\right) d x\right| & \leq \sum_{0<|j| \leq d} \sum_{0<\left|j^{\prime}\right| \leq d}\left|\widehat{\widetilde{\mathbf{1}}}_{[a, b)}(j) \widehat{\widetilde{\mathbf{1}}}_{[a, b)}\left(j^{\prime}\right)\right| \delta_{j n_{k}+j^{\prime} n_{k}, 0} \\
& \leq \frac{2}{\pi^{2}} \sum_{j=1}^{d} \sum_{j^{\prime}=1}^{d} \delta_{j n_{k}-j^{\prime} n_{k}, 0}
\end{aligned}
$$

over $M+1 \leq k^{\prime}<k \leq M+N$, we see that the left hand side of 2.3 is bounded by $\#\left\{\left(j, j^{\prime}, k, k^{\prime}\right) \in[1, d]^{2} \times[M+1, M+N]^{2} \mid j n_{k}-j^{\prime} n_{k^{\prime}}=0, k<k^{\prime}\right\}$ $\leq L_{M+N, d, 0}-L_{M, d, 0}$.

Now we use a method of martingale approximation, which is a slight modification of the proof given in [1] and originated in Berkes-Philipp [10]. We regard $[0,1)$ equipped with the Borel field and the Lebesgue measure as a probability space.

First we recall two lemmas. The proofs can be found in [10], [13].
Lemma 3. If $g$ is a bounded measurable function with period 1 satisfying $\int_{0}^{1} g=0$, then

$$
\left|\int_{a}^{b} g(\lambda x) d x\right| \leq\|g\|_{\infty} / \lambda \quad \text { for all } a<b \text { and } \lambda>0
$$

Lemma 4. Let $g$ be a trigonometric polynomial with period 1 and degree $d$ satisfying $\int_{0}^{1} g=0$. There exists a constant $C_{q}$ depending only on $q$ such that, for any sequence $\left\{n_{k}\right\}$ of positive integers satisfying the Hadamard gap condition 1.1),

$$
\int_{0}^{1}\left(\sum_{k=M+1}^{M+N} g\left(n_{k} x\right)\right)^{4} d x \leq C_{q}\left(\sum_{|\nu| \leq d}|\widehat{g}(\nu)|\right)^{4} N^{2}
$$

Let us divide $\mathbb{N}$ into consecutive blocks $\Delta_{1}^{\prime}, \Delta_{1}, \Delta_{2}^{\prime}, \Delta_{2}, \ldots$ satisfying $\# \Delta_{i}^{\prime}=\left[1+9 \log _{q} i\right]$ and $\# \Delta_{i}=i$. Denote $i^{-}=\min \Delta_{i}, i^{+}=\max \Delta_{i}$, and $l_{M}=\# \Delta_{1}+\cdots+\# \Delta_{M}$. We have $M^{-} \sim M^{+} \sim l_{M}=M(M+1) / 2 \ll M^{2}$ and $n_{i^{-}} / n_{(i-1)^{+}} \geq q^{9 \log _{q} i}=i^{9}$. Put

$$
\begin{aligned}
\mu(i) & =\left[\log _{2} i^{4} n_{i^{+}}\right]+1 \\
\mathcal{F}_{i} & =\sigma\left\{\left[j 2^{-\mu(i)},(j+1) 2^{-\mu(i)}\right) \mid j=0, \ldots, 2^{\mu(i)}-1\right\} .
\end{aligned}
$$

Note that $i^{4} n_{i^{+}} \leq 2^{\mu(i)} \leq 2 i^{4} n_{i^{+}}$. Denote $\widetilde{\mathbf{1}}_{[a, b) ; d}$ by $f$ and put $T_{i}(x)=\sum_{k \in \Delta_{i}} f\left(n_{k} x\right), \quad T_{i}^{\prime}(x)=\sum_{k \in \Delta_{i}^{\prime}} f\left(n_{k} x\right), \quad Y_{i}=E\left(T_{i} \mid \mathcal{F}_{i}\right)-E\left(T_{i} \mid \mathcal{F}_{i-1}\right)$.
We also denote $T_{i}$ and $Y_{i}$ by $T_{[a, b) ; d ; i}$ and $Y_{[a, b) ; d ; i}$ to specify the parameters $[a, b)$ and $d$. Clearly $\left\{Y_{i}, \mathcal{F}_{i}\right\}$ forms a martingale difference sequence.

Let us prove

$$
\begin{align*}
\left\|Y_{i}-T_{i}\right\|_{\infty} & \ll 1 / i^{3}  \tag{2.10}\\
\left\|Y_{i}^{2}-T_{i}^{2}\right\|_{\infty} & \ll 1 / i^{2}  \tag{2.11}\\
\left\|Y_{i}^{4}-T_{i}^{4}\right\|_{\infty} & \ll 1 \tag{2.12}
\end{align*}
$$

Here and later, the constants implied by $\ll$ and $O$ depend only on $a, b$, and $d$.

Suppose that $k \in \Delta_{i}$ and $x \in I=\left[j 2^{-\mu(i)},(j+1) 2^{-\mu(i)}\right) \in \mathcal{F}_{i}$. In this case we have

$$
\begin{aligned}
\left|f\left(n_{k} x\right)-E\left(f\left(n_{k} \cdot\right) \mid \mathcal{F}_{i}\right)\right| & =|I|^{-1}\left|\int_{I}\left(f\left(n_{k} x\right)-f\left(n_{k} y\right)\right) d y\right| \\
& \left.\leq \max _{y \in I} \mid f\left(n_{k} x\right)-f\left(n_{k} y\right)\right) \mid \\
& \leq\left\|f^{\prime}\right\|_{\infty} n_{k} 2^{-\mu(i)} \leq\left\|f^{\prime}\right\|_{\infty} n_{k} / i^{4} n_{i^{+}} \leq\left\|f^{\prime}\right\|_{\infty} / i^{4}
\end{aligned}
$$

Hence $\left|T_{i}-E\left(T_{i} \mid \mathcal{F}_{i}\right)\right| \leq\left\|f^{\prime}\right\|_{\infty} \# \Delta_{i} / i^{4}=\left\|f^{\prime}\right\|_{\infty} / i^{3}$. Take $J=\left[j 2^{-\mu(i-1)}\right.$, $\left.(j+1) 2^{-\mu(i-1)}\right) \in \mathcal{F}_{i-1}$. Then by applying Lemma 3 , we have

$$
\begin{aligned}
\left|E\left(f\left(n_{k} \cdot\right) \mid \mathcal{F}_{i-1}\right)\right| & =|J|^{-1}\left|\int_{J} f\left(n_{k} y\right) d y\right| \leq\|f\|_{\infty} 2^{\mu(i-1)} / n_{k} \\
& \leq\|f\|_{\infty} 2(i-1)^{4} n_{(i-1)^{+}} / n_{i^{-}} \leq 2\|f\|_{\infty} / i^{5}
\end{aligned}
$$

Therefore $\left|E\left(T_{i} \mid \mathcal{F}_{i-1}\right)\right| \leq 2\|f\|_{\infty} \# \Delta_{i} / i^{5}=2\|f\|_{\infty} / i^{4}$, and 2.10 is proved.
From $\left\|T_{i}\right\|_{\infty} \leq i\|f\|_{\infty}$, we have $\left\|E\left(T_{i} \mid \mathcal{F}_{i}\right)\right\|_{\infty},\left\|E\left(T_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{\infty} \leq i\|f\|_{\infty}$. Hence $\left\|Y_{i}\right\|_{\infty} \leq 2 i\|f\|_{\infty},\left\|Y_{i}+T_{i}\right\|_{\infty} \leq 3 i\|f\|_{\infty},\left\|Y_{i}^{2}+T_{i}^{2}\right\|_{\infty} \leq 5 i^{2}\|f\|_{\infty}^{2}$. Because $\left\|Y_{i}^{2}-T_{i}^{2}\right\|_{\infty} \leq\left\|Y_{i}-T_{i}\right\|_{\infty}\left\|Y_{i}+T_{i}\right\|_{\infty}$ and $\left\|Y_{i}^{4}-T_{i}^{4}\right\|_{\infty} \leq$ $\left\|Y_{i}^{2}-T_{i}^{2}\right\|_{\infty}\left\|Y_{i}^{2}+T_{i}^{2}\right\|_{\infty}$, we obtain (2.11) and 2.12.

Put $\widetilde{\mathbf{1}}_{[a, b) ; d}=\sum_{j=1}^{d}\left(a_{j} \cos 2 \pi j x+b_{j} \sin 2 \pi j x\right), v_{i}=v_{[a, b) ; d ; i}=\int_{0}^{1} T_{[a, b) ; d ; i}^{2}$, $\beta_{M}=\beta_{[a, b) ; d ; M}=v_{[a, b) ; d ; 1}+\cdots+v_{[a, b) ; d ; M}$, and $V_{M}=\sum_{i=1}^{M} E\left(Y_{i}^{2} \mid \mathcal{F}_{i-1}\right)$. Set

$$
\begin{aligned}
\Phi_{i} & =\left\{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \mid k, k^{\prime} \in \Delta_{i}, j, j^{\prime}=1, \ldots, d, \varsigma=+1,-1\right\} \\
\Phi_{i}^{v} & =\left\{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \in \Phi_{i} \mid j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}=0\right\} \\
\Phi_{i}^{U} & =\left\{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \in \Phi_{i}\left|0<\left|j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}\right|<n_{(i-1)^{+}}\right\}\right. \\
\Phi_{i}^{W} & =\left\{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \in \Phi_{i}\left|n_{(i-1)^{+}} \leq\left|j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}\right|<n_{i^{-}}\right\}\right. \\
\Phi_{i}^{R} & =\left\{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \in \Phi_{i}\left|n_{i^{-}} \leq\left|j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}\right|\right\}\right.
\end{aligned}
$$

For $\Psi \subset \Phi_{i}$, denote $\chi(\Psi)=\sum_{\left(k, k^{\prime}, j, j^{\prime}, \varsigma\right) \in \Psi} A_{k, k^{\prime}, j, j^{\prime}, \varsigma}$, where

$$
\begin{aligned}
2 A_{k, k^{\prime}, j, j^{\prime}, \varsigma}(x)= & \left(a_{j} a_{j^{\prime}}-\varsigma b_{j} b_{j^{\prime}}\right) \cos 2 \pi\left(j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}\right) x \\
& +\left(\varsigma a_{j} b_{j^{\prime}}+b_{j} a_{j^{\prime}}\right) \sin 2 \pi\left(j n_{k}+\varsigma j^{\prime} n_{k^{\prime}}\right) x .
\end{aligned}
$$

We see $T_{[a, b) ; d ; i}^{2}(x)=\chi\left(\Phi_{i}\right)$ and $v_{[a, b) ; d ; i}=\chi\left(\Phi_{i}^{v}\right)$. Let $U_{i}=\chi\left(\Phi_{i}^{U}\right), W_{i}=$ $\chi\left(\Phi_{i}^{W}\right)$, and $R_{i}=\chi\left(\Phi_{i}^{R}\right)$. We can express $\Phi_{i}$ as a disjoint union $\Phi_{i}^{v} \cup \Phi_{i}^{U} \cup$ $\Phi_{i}^{W} \cup \Phi_{i}^{R}$ and hence $T_{i}^{2}=v_{i}+U_{i}+W_{i}+R_{i}$. We prove

$$
\begin{align*}
& \left\|V_{M}-\beta_{M}\right\|_{2} \leq\left\|\sum_{i=1}^{M} E\left(Y_{i}^{2}-T_{i}^{2} \mid \mathcal{F}_{i-1}\right)\right\|_{2}+\left\|\sum_{i=1}^{M} E\left(U_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{2}  \tag{2.13}\\
& +\left\|\sum_{i=1}^{M} E\left(W_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{2}+\left\|\sum_{i=1}^{M} E\left(R_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{2} \ll M^{2}(\log M)^{-(1+\varepsilon) / 2}
\end{align*}
$$

where the first inequality is due to $Y_{i}^{2}-v_{i}=\left(Y_{i}^{2}-T_{i}^{2}\right)+U_{i}+W_{i}+R_{i}$.

By (2.11) we see $\left\|\sum_{i=1}^{M} E\left(Y_{i}^{2}-T_{i}^{2} \mid \mathcal{F}_{i-1}\right)\right\|_{2}=O(1)$.
From $\# \Phi_{i}^{R} \leq \# \Phi_{i} \leq 2 d^{2} i^{2},\left|a_{j} a_{j^{\prime}}-\varsigma b_{j} b_{j^{\prime}}\right| / 2 \leq 1$, and $\left|\varsigma a_{j} b_{j^{\prime}}+b_{j} a_{j^{\prime}}\right| / 2$ $\leq 1$, we obtain

$$
\left|E\left(R_{i} \mid \mathcal{F}_{i-1}\right)\right| \leq 4 d^{2} i^{2} 2^{\mu(i-1)} / n_{i^{-}} \leq 8 d^{2} / i^{3}
$$

and $\left\|\sum_{i=1}^{M} E\left(R_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{2}=O(1)$.
Let $k, k^{\prime} \in \Delta_{i}, j, j^{\prime}=1, \ldots, d$. Since $j n_{k}+j^{\prime} n_{k^{\prime}} \geq 2 n_{i^{-}}$, we have $\left(k, k^{\prime}, j, j^{\prime},+1\right) \notin \Phi_{i}^{U} \cup \Phi_{i}^{W}$. If $k \leq k^{\prime}$ and $n_{k^{\prime}}>(d+1) n_{k}$, then $j n_{k}-j^{\prime} n_{k^{\prime}} \leq$ $d n_{k}-(d+1) n_{k} \leq-n_{i^{-}}$. Hence $\left|j n_{k}-j^{\prime} n_{k^{\prime}}\right|<n_{i^{-}}$implies $q^{k^{\prime}-k} \leq n_{k^{\prime}} / n_{k} \leq$ $d+1$, that is, $k^{\prime}-k \leq \log _{q}(d+1)$. Therefore, if we fix $k, j$ and $j^{\prime}$, then the number of $k^{\prime}$ such that $k \leq k^{\prime}$ and $\left|j n_{k}-j^{\prime} n_{k^{\prime}}\right|<n_{i^{-}}$is at most $\log _{q}(d+1)+1$. Therefore $\#\left(\Phi_{i}^{U} \cup \Phi_{i}^{W}\right) \leq 2 d^{2}\left(\log _{q}(d+1)+1\right) i$ and

$$
\begin{equation*}
\left\|U_{i}\right\|_{\infty} \ll i, \quad\left\|W_{i}\right\|_{\infty} \ll i \tag{2.14}
\end{equation*}
$$

Hence $\left|E\left(W_{i} \mid \mathcal{F}_{i-1}\right)\right| \leq\left\|W_{i}\right\|_{\infty} \ll i$ and $\left\|\sum_{i=1}^{M} E\left(W_{i} \mid \mathcal{F}_{i-1}\right)^{2}\right\|_{\infty} \ll M^{3}$. If $i<i^{\prime}$, then

$$
\begin{aligned}
E\left(E\left(W_{i} \mid \mathcal{F}_{i-1}\right) E\left(W_{i^{\prime}} \mid \mathcal{F}_{i^{\prime}-1}\right) \mid \mathcal{F}_{i-1}\right) & =E\left(W_{i} \mid \mathcal{F}_{i-1}\right) E\left(W_{i^{\prime}} \mid \mathcal{F}_{i-1}\right) \\
& =O(i) E\left(W_{i^{\prime}} \mid \mathcal{F}_{i-1}\right)
\end{aligned}
$$

and $\left|E\left(E\left(W_{i} \mid \mathcal{F}_{i-1}\right) E\left(W_{i^{\prime}} \mid \mathcal{F}_{i^{\prime}-1}\right)\right)\right| \ll i E\left|E\left(W_{i^{\prime}} \mid \mathcal{F}_{i-1}\right)\right|$.
Since we can write
$W_{i^{\prime}}(x)=\sum_{u=n_{\left(i^{\prime}-1\right)^{+}}}^{n_{\left(i^{\prime}\right)^{-}}}\left(c_{u} \cos 2 \pi u x+d_{u} \sin 2 \pi u x\right)$ with $\sum_{u=n_{\left(i^{\prime}-1\right)^{+}}}^{n_{\left(i^{\prime}\right)^{-}}}\left(\left|c_{u}\right|+\left|d_{u}\right|\right) \ll i^{\prime}$,
by Lemma 3 we obtain

$$
\begin{aligned}
\left|E\left(W_{i^{\prime}} \mid \mathcal{F}_{i-1}\right)\right| & \leq \sum_{u}\left(\left|c_{u}\right|+\left|d_{u}\right|\right) 2^{\mu(i-1)} / u \\
& \ll i^{\prime} i^{4} n_{(i-1)^{+}} / n_{\left(i^{\prime}-1\right)^{+}} \ll i^{\prime 5} q^{(i-1)^{+}-\left(i^{\prime}-1\right)^{+}} \ll i^{\prime 5} q^{-i^{\prime}} .
\end{aligned}
$$

Hence

$$
\sum_{i<i^{\prime}}\left|E\left(E\left(W_{i} \mid \mathcal{F}_{i-1}\right) E\left(W_{i^{\prime}} \mid \mathcal{F}_{i^{\prime}-1}\right)\right)\right| \ll \sum_{i<i^{\prime}} i i^{\prime 5} q^{-i^{\prime}} \ll \sum_{i^{\prime}} i^{\prime 7} q^{-i^{\prime}} \ll 1 .
$$

These imply $E\left(\sum_{i=1}^{M} E\left(W_{i} \mid \mathcal{F}_{i-1}\right)\right)^{2} \ll M^{3}$.
Since we can write

$$
U_{i}(x)=\sum_{u=1}^{n_{(i-1)+}}\left(c_{u}^{\prime} \cos 2 \pi u x+d_{u}^{\prime} \sin 2 \pi u x\right) \quad \text { with } \sum_{u=1}^{n_{(i-1)^{+}}}\left(\left|c_{u}^{\prime}\right|+\left|d_{u}^{\prime}\right|\right) \ll i
$$

from $\left|E\left(\cos 2 \pi u \cdot \mid \mathcal{F}_{i-1}\right)-\cos 2 \pi u x\right| \leq 2 \pi u 2^{-\mu(i-1)} \ll n_{(i-1)^{+}} / i^{4} n_{(i-1)^{+}} \ll$
$1 / i^{4}$ and $\left|E\left(\sin 2 \pi u \cdot \mid \mathcal{F}_{i-1}\right)-\sin 2 \pi u x\right| \ll 1 / i^{4}$, we have

$$
\left|\sum_{i=1}^{M} E\left(U_{i} \mid \mathcal{F}_{i-1}\right)-\sum_{i=1}^{M} U_{i}\right| \ll \sum_{i=1}^{M} \sum_{u=1}^{n_{(i-1)^{+}}}\left(\left|c_{u}^{\prime}\right|+\left|d_{u}^{\prime}\right|\right) / i^{4} \ll \sum_{i=1}^{M} \frac{1}{i^{3}} \ll 1
$$

We can write
$\sum_{i=1}^{M} U_{i}(x)=\sum_{u=1}^{n_{(M-1)^{+}}}\left(c_{u}^{\prime \prime} \cos 2 \pi u x+d_{u}^{\prime \prime} \sin 2 \pi u x\right)$ with $\sum_{u=1}^{n_{(M-1)^{+}}}\left(\left|c_{u}^{\prime \prime}\right|+\left|d_{u}^{\prime \prime}\right|\right) \ll M^{2}$, and by $\sqrt[1.2]{ }$ we have $\left|c_{u}^{\prime \prime}\right|,\left|d_{u}^{\prime \prime}\right| \leq L_{M^{+}, d, u} \leq L_{M^{+}, d}^{*} \ll M^{2} /(\log M)^{1+\varepsilon}$. Hence

$$
\begin{aligned}
\left\|\sum_{i=1}^{M} U_{i}\right\|_{2}^{2} & =\sum_{u=1}^{n_{(M-1)^{+}}} \frac{\left(c_{u}^{\prime \prime}\right)^{2}+\left(d_{u}^{\prime \prime}\right)^{2}}{2} \ll \frac{M^{2}}{(\log M)^{1+\varepsilon}} \sum_{u=1}^{n_{(M-1)}^{+}}\left(\left|c_{u}^{\prime \prime}\right|+\left|d_{u}^{\prime \prime}\right|\right) \\
& \ll \frac{M^{4}}{(\log M)^{1+\varepsilon}},
\end{aligned}
$$

and $\left\|\sum_{i=1}^{M} E\left(U_{i} \mid \mathcal{F}_{i-1}\right)\right\|_{2} \ll M^{2}(\log M)^{-(1+\varepsilon) / 2}$. Hence we obtain 2.13.
We choose another probability space on which a sequence $\left\{U, \xi_{1}, \xi_{2}, \ldots\right\}$ of independent random variables satisfying $P\left(\xi_{k}=1\right)=P\left(\xi_{k}=-1\right)=1 / 2$ and $P(U \in A)=|A \cap[0,1]|$ is defined. We take the product of $[0,1)$ on which $\left\{Y_{i}\right\}$ is defined and this new probability space, and regard $Y_{i}, U$, and $\Xi_{i}=\sum_{k \in \Delta_{i}} \xi_{k}$ as random variables on this product probability space. Take $m \in \mathbb{N}$ and define a martingale difference sequence $\left\{\widehat{Y}_{i}, \widehat{\mathcal{F}}_{i}\right\}$ on this space by putting $\widehat{\mathcal{F}}_{i}=\mathcal{F}_{i} \otimes \sigma\left\{\Xi_{1}, \ldots, \Xi_{i}\right\}$,
$\widehat{Y}_{i}=\widehat{Y}_{[a, b) ; d ; m ; i}=Y_{[a, b) ; d ; m ; i}+\frac{1}{m} \Xi_{i}, \quad \widehat{\beta}_{M}=\widehat{\beta}_{[a, b) ; d ; m ; M}=\beta_{[a, b) ; d ; M}+\frac{1}{m^{2}} l_{M}$.
By Lemma 4 and 2.12 , we have $\left\|\widehat{Y}_{i}\right\|_{4} \leq\left\|Y_{i}\right\|_{4}+\left\|\Xi_{i}\right\|_{4}=\left\|T_{i}\right\|_{4}+\left\|\Xi_{i}\right\|_{4}+$ $O(1) \ll i^{1 / 2}$, so $E \widehat{Y}_{i}^{4} \ll i^{2}$. We have $E\left(\widehat{Y}_{i}^{2} \mid \widehat{\mathcal{F}}_{i-1}\right)=E\left(Y_{i}^{2} \mid \mathcal{F}_{i-1}\right)+m^{-2} i$ and hence

$$
\widehat{V}_{M}:=\sum_{i=1}^{M} E\left(\widehat{Y}_{i}^{2} \mid \widehat{\mathcal{F}}_{i-1}\right)=V_{M}+\frac{1}{m^{2}} l_{M} \geq \frac{1}{m^{2}} l_{M}
$$

and $\left\|\widehat{V}_{M}-\widehat{\beta}_{M}\right\|_{2} \ll M^{2}(\log M)^{-(1+\varepsilon) / 2}$. We now prove

$$
\begin{equation*}
\widehat{V}_{M}=\widehat{\beta}_{M}+o\left(\widehat{\beta}_{M}\left(\log \widehat{\beta}_{M}\right)^{-\varepsilon / 4}\right) \quad \text { a.s. } \tag{2.15}
\end{equation*}
$$

Note that $v_{i} \ll i$ by 2.2 , so $\beta_{M} \ll M^{2}$, and hence $M^{2} \ll \widehat{\beta}_{M} \ll M^{2}$. We also have $\beta_{M^{\prime}}-\beta_{M}=\sum_{i=M+1}^{M^{\prime}} v_{i} \ll M^{\prime}\left(M^{\prime}-M\right)$ and $\widehat{\beta}_{M^{\prime}}-\widehat{\beta}_{M} \ll$ $M^{\prime}\left(M^{\prime}-M\right)$. Put $\alpha=1-\varepsilon / 2+\varepsilon^{2} / 4<1$ and $M_{l}=\left[2^{l^{\alpha}}\right]$. We have $(1+\varepsilon / 2) \alpha>1,(\alpha-1) / \alpha<\alpha-1<-\varepsilon / 4$, and
$M_{l+1} / M_{l} \sim 2^{\alpha l^{\alpha-1}}=1+O\left(l^{\alpha-1}\right)=1+O\left(\left(\log M_{l}\right)^{(\alpha-1) / \alpha}\right)=1+o\left(\left(\log M_{l}\right)^{-\varepsilon / 4}\right)$,
so $M_{l+1}-M_{l}=o\left(M_{l}\left(\log M_{l}\right)^{-\varepsilon / 4}\right)$. Hence

$$
\begin{aligned}
0 & \leq \widehat{\beta}_{M_{l+1}}-\widehat{\beta}_{M_{l}} \ll M_{l+1}\left(M_{l+1}-M_{l}\right) \\
& =o\left(M_{l}^{2}\left(\log M_{l}\right)^{-\varepsilon / 4}\right)=o\left(\widehat{\beta}_{M_{l}}\left(\log \widehat{\beta}_{M_{l}}\right)^{-\varepsilon / 4}\right)
\end{aligned}
$$

that is, $\widehat{\beta}_{M_{l+1}} / \widehat{\beta}_{M_{l}}=1+o\left(\left(\log M_{l}\right)^{-\varepsilon / 4}\right)$. Therefore

$$
\sum_{l=1}^{\infty} E\left(\frac{\widehat{V}_{M_{l}}-\widehat{\beta}_{M_{l}}}{\widehat{\beta}_{M_{l}}\left(\log \widehat{\beta}_{M_{l}}\right)^{-\varepsilon / 4}}\right)^{2} \ll \sum_{l=1}^{\infty}\left(\log M_{l}\right)^{-1-\varepsilon / 2} \ll \sum_{l=1}^{\infty} l^{-\alpha(1+\varepsilon / 2)}<\infty
$$

By Beppo Levi's theorem, we have $\left(\widehat{V}_{M_{l}}-\widehat{\beta}_{M_{l}}\right) / \widehat{\beta}_{M_{l}}\left(\log \widehat{\beta}_{M_{l}}\right)^{-\varepsilon / 4} \rightarrow 0$ a.s., so $\widehat{V}_{M_{l}}-\widehat{\beta}_{M_{l}}=o\left(\widehat{\beta}_{M_{l}}\left(\log \widehat{\beta}_{M_{l}}\right)^{-\varepsilon / 4}\right)$ a.s.

If $M_{l} \leq M<M_{l+1}$, then
$\left(\widehat{V}_{M_{l}}-\widehat{\beta}_{M_{l}}\right)+\left(\widehat{\beta}_{M_{l}}-\widehat{\beta}_{M_{l+1}}\right) \leq \widehat{V}_{M}-\widehat{\beta}_{M} \leq\left(\widehat{V}_{M_{l+1}}-\widehat{\beta}_{M_{l+1}}\right)+\left(\widehat{\beta}_{M_{l+1}}-\widehat{\beta}_{M_{l}}\right)$ and hence we have 2.15 .

Now we use the following theorem by Monrad-Philipp [26] which is a modification of Strassen's theorem [29].

THEOREM 5. Let $\left\{\widehat{Y}_{i}, \widehat{\mathcal{F}}_{i}\right\}$ be a square integrable martingale difference satisfying

$$
\widehat{V}_{M}=\sum_{i=1}^{M} E\left(\widehat{Y}_{i}^{2} \mid \widehat{\mathcal{F}}_{i-1}\right) \rightarrow \infty \text { a.s. and } \sum_{i=1}^{\infty} E\left(\widehat{Y}_{i}^{2} \mathbf{1}_{\left\{\widehat{Y}_{i}^{2} \geq \psi\left(\widehat{V}_{i}\right)\right\}} / \psi\left(\widehat{V}_{i}\right)\right)<\infty
$$

for some non-decreasing $\psi$ such that $\psi(\infty)=\infty$ and $\psi(x)(\log x)^{\alpha} / x$ is nonincreasing for some $\alpha>50$. If there exists a uniformly distributed random variable $U$ which is independent of $\left\{\widehat{Y}_{n}\right\}$, then there exists a standard normal i.i.d. sequence $\left\{Z_{i}\right\}$ such that

$$
\sum_{i \geq 1} \widehat{Y}_{i} \mathbf{1}_{\left\{\widehat{V}_{i} \leq t\right\}}=\sum_{i \leq t} Z_{i}+o\left(t^{1 / 2}(\psi(t) / t)^{1 / 50}\right) \quad(t \rightarrow \infty) \quad \text { a.s. }
$$

Put $\psi(x)=x /(\log x)^{51}$. We can verify $\widehat{V}_{M} \geq m^{-2} l_{M} \rightarrow \infty$, and

$$
\sum E\left(\widehat{Y}_{i}^{2} \mathbf{1}_{\left\{\widehat{Y}_{i}^{2} \geq \psi\left(\widehat{V}_{i}\right)\right\}} / \psi\left(\widehat{V}_{i}\right)\right) \leq \sum \frac{E \widehat{Y}_{i}^{4}}{\psi^{2}\left(m^{-2} l_{i}\right)} \ll \sum i^{2}\left(\log l_{i}\right)^{102} / l_{i}^{2}<\infty
$$

Hence $\sum_{i=1}^{M} \widehat{Y}_{i}=\sum_{i \leq \widehat{V}_{M}} Z_{i}+o\left(\widehat{V}_{M}^{1 / 2}\left(\log \widehat{V}_{M}\right)^{-51 / 50}\right)$ a.s. From 2.15 and

$$
\sup _{0 \leq|s| \leq t(\log t)^{-\varepsilon / 4}}\left|W_{t+s}-W_{t}\right|=O\left(t^{1 / 2}(\log t)^{-\varepsilon / 8}(\log \log t)^{1 / 2}\right)
$$

where $\left\{W_{t}\right\}$ is the Wiener process, we have

$$
\sum_{i=1}^{M} \widehat{Y}_{i}=\sum_{i \leq \widehat{\beta}_{M}} Z_{i}+O\left(\widehat{\beta}_{M}^{1 / 2}\left(\log \widehat{\beta}_{M}\right)^{-\varepsilon / 9}\right) \quad \text { a.s. }
$$

Hence by denoting $\phi(x)=\sqrt{2 x \log \log x}$ and by applying the 0-1 law, we see that there exists a constant $C_{[a, b) ; d ; m}$ such that

$$
\begin{align*}
\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{i=1}^{M} \widehat{Y}_{[a, b) ; d ; m ; i}\right| & =\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{i \leq \widehat{\beta}_{[a, b) ; d ; m ; M}} Z_{i}\right|  \tag{2.16}\\
& =C_{[a, b) ; d ; m}
\end{align*}
$$

almost surely. Now we apply the following lemma with $\bar{v}_{i}=v_{[a, b) ; d ; i}+i / m^{2}$, $\bar{v}_{i}^{\prime}=v_{[0, b-a) ; d ; i}+i / m^{2}, \bar{\beta}_{M}=\widehat{\beta}_{[a, b) ; d ; M}$ and $\bar{\beta}_{M}^{\prime}=\widehat{\beta}_{[0, b-a) ; d ; M}$.

Lemma 6. Let $\left\{Z_{k}\right\}$ and $\left\{Z_{k}^{\prime}\right\}$ be standard normal i.i.d. sequences. Suppose that $\left\{\bar{v}_{k}\right\}$ and $\left\{\bar{v}_{k}^{\prime}\right\}$ are sequences of positive numbers satisfying $c_{1} i \leq$ $\bar{v}_{i} \leq c_{2} i, d_{1} i \leq \bar{v}_{i}^{\prime} \leq d_{2} i$, and $\bar{v}_{i} \leq \bar{v}_{i}^{\prime}+\gamma i$ for some $0<c_{1}<c_{2}<\infty$, $0<d_{1}<d_{2}<\infty$, and $0<\gamma<\infty$. Put $\bar{\beta}_{M}=\bar{v}_{1}+\cdots+\bar{v}_{M}$ and $\bar{\beta}_{M}^{\prime}=\bar{v}_{1}^{\prime}+\cdots+\bar{v}_{M}^{\prime}$. Then

$$
\begin{aligned}
\sqrt{c_{1}} \leq \limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{k \leq \bar{\beta}_{M}} Z_{k}\right| & \leq \limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{k \leq \bar{\beta}_{M}^{\prime}} Z_{k}^{\prime}\right|+\sqrt{\gamma} \\
& \leq \sqrt{d_{2}}+\sqrt{\gamma} \quad \text { a.s. }
\end{aligned}
$$

By using conditions (2.1) and (2.2), we can verify the conditions of the lemma for $c_{1}=d_{1}=1 / m^{2}, c_{2}=d_{2}=\tau_{q, d}^{2}+1 / m^{2}$, and $\gamma=\rho_{q, d}^{2}$, and we have

$$
C_{[a, b) ; d ; m} \leq C_{[0, b-a) ; d ; m}+\rho_{q, d} \leq\left(\tau_{q, d}^{2}+1 / m^{2}\right)^{1 / 2}+\rho_{q, d}
$$

Putting $\bar{v}_{i}=\bar{v}_{i}^{\prime}=v_{[0,1 / 2) ; d ; i}+i / m^{2}$ and $c_{1}=c_{2}=\zeta_{q, d}^{2}$, and $d_{1}, d_{2}$ as before, we obtain

$$
C_{[0,1 / 2) ; d ; m} \geq \zeta_{q, d}
$$

From

$$
\left|\frac{1}{\phi\left(l_{M}\right)}\right| \sum_{i=1}^{M} Y_{[a, b) ; d ; i}\left|-\frac{1}{\phi\left(l_{M}\right)}\right| \sum_{i=1}^{M} \widehat{Y}_{[a, b) ; d ; m ; i}| | \leq \frac{1}{m \phi\left(l_{M}\right)}\left|\sum_{i=1}^{M} \Xi_{i}\right|
$$

we have

$$
\left|\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\right| \sum_{i=1}^{M} Y_{[a, b) ; d ; i}\left|-C_{[a, b) ; d ; m}\right| \leq \frac{1}{m} \quad \text { a.s. }
$$

Hence $C_{[a, b) ; d}=\lim _{m \rightarrow \infty} C_{[a, b) ; d ; m}$ is a constant satisfying

$$
\begin{equation*}
\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{i=1}^{M} Y_{[a, b) ; d ; i}\right|=C_{[a, b) ; d} \quad \text { a.s. }, \tag{2.17}
\end{equation*}
$$

and

$$
C_{[a, b) ; d} \leq C_{[0, b-a) ; d}+\rho_{q, d} \leq \tau_{q, d}+\rho_{q, d}, \quad C_{[0,1 / 2) ; d} \geq \zeta_{q, d}
$$

Since $Y_{i}$ is a function of $x$, by applying Fubini's theorem, we see that equality in (2.17) holds on $[0,1)$ and we can replace a.s. in 2.17 by a.e. By 2.10, we have $\left|\sum_{i=1}^{M} Y_{[a, b) ; d ; i}\right|=\left|\sum_{i=1}^{M} T_{[a, b) ; d ; i}\right|+O(1)$ and

$$
\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(l_{M}\right)}\left|\sum_{i=1}^{M} T_{[a, b) ; d ; i}\right|=C_{[a, b) ; d} \quad \text { a.e. }
$$

Because $\# \Delta_{1}^{\prime}+\cdots+\# \Delta_{M}^{\prime} \ll M \log M$ and $l_{M} \sim M^{+}$, by applying the law of the iterated logarithm for lacunary trigonometric series, we have

$$
\left|\sum_{i=1}^{M} T_{[a, b) ; d ; i}^{\prime}\right| \ll \sqrt{M \log M \log \log (M \log M)}=o\left(\phi\left(M^{+}\right)\right)
$$

Therefore,

$$
\limsup _{M \rightarrow \infty} \frac{1}{\phi\left(M^{+}\right)}\left|\sum_{i=1}^{M}\left(T_{[a, b) ; d ; i}+T_{[a, b) ; d ; i}^{\prime}\right)\right|=C_{[a, b) ; d} \quad \text { a.e. }
$$

By noting $(M-1)^{+} \sim M^{+}$and $\max _{j=(M-1)^{++1}}^{M^{+}}\left|\sum_{k=(M-1)^{++1}}^{j} \widetilde{\mathbf{1}}_{[a, b) ; d}\right| \ll$ $M=o\left(\phi\left(M^{+}\right)\right)$, we have

$$
\limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} x\right)\right|=C_{[a, b) ; d} \quad \text { a.e. }
$$

Now we apply the following proposition, essentially proved in [13]. The proof of the first part can be found in [16], and the full proof in [21].

Proposition 7. Let $\left\{n_{k}\right\}$ be a sequence of positive numbers satisfying the Hadamard gap condition. Then for any dense countable set $S \subset[0,1)$, we have

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{N D_{N}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\sup _{S \ni a<b \in S} \limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right)\right| \tag{2.18}
\end{equation*}
$$

$$
\limsup _{N \rightarrow \infty} \frac{N D_{N}^{*}\left\{n_{k} x\right\}}{\sqrt{2 N \log \log N}}=\sup _{a \in S} \limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[0, a)}\left(n_{k} x\right)\right|
$$

and

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right)\right|=\lim _{d \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a, b) ; d}\left(n_{k} x\right)\right| \tag{2.19}
\end{equation*}
$$

for almost every $x \in \mathbb{R}$.

Put $S=[0,1) \cap \mathbb{Q}$. By applying (2.19), we have

$$
\limsup _{N \rightarrow \infty} \frac{1}{\phi(N)}\left|\sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a, b)}\left(n_{k} x\right)\right|=C_{[a, b)}:=\lim _{d \rightarrow \infty} C_{[a, b) ; d} \quad \text { a.e. }
$$

where $C_{[a, b)} \leq C_{[0, b-a)} \leq \frac{1}{2} \sqrt{(q+1) /(q-1)}$, and $1 / 2 \leq C_{[0,1 / 2)}$. By 2.18], we have (1.3).

Suppose that the condition (1.4) is assumed. By (2.3) we obtain

$$
\begin{aligned}
\beta_{[a, b) ; d ; M} & =\sum_{i=1}^{M} E T_{[a, b) ; d ; i}^{2}=\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}^{2} l_{M}+O\left(L_{M^{+}, d, 0}\right) \\
& =\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}^{2} l_{M}+o\left(l_{M}\right)
\end{aligned}
$$

and so $\widehat{\beta}_{[a, b) ; d ; m ; M} \sim\left(\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}^{2}+1 / m^{2}\right) l_{M}$. Hence, by 2.16 we directly have

$$
\begin{aligned}
C_{[a, b) ; d ; m} & =\limsup _{M \rightarrow \infty} \frac{\phi\left(\widehat{\beta}_{[a, b) ; d ; m ; M}\right)}{\phi\left(l_{M}\right)} \frac{1}{\phi\left(\widehat{\beta}_{[a, b) ; d ; m ; M}\right)}\left|\sum_{i=1}^{\left[\widehat{\beta}_{[a, b) ; d ; m ; M]}\right.} Z_{i}\right| \\
& =\sqrt{\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}^{2}+1 / m^{2}} .
\end{aligned}
$$

Therefore $C_{[a, b) ; d}=\left\|\widetilde{\mathbf{1}}_{[a, b) ; d}\right\|_{2}$ and $C_{[a, b)}=\left\|\widetilde{\mathbf{1}}_{[a, b)}\right\|_{2} \leq\left\|\widetilde{\mathbf{1}}_{[0,1 / 2)}\right\|_{2}=1 / 2=$ $C_{[0,1 / 2)}$.

Acknowledgements. The first author is supported in part by FWF, Project S9603-N23. The second author is supported in part by JSPS KAKENHI 24340017 and 24340020.

## References

[1] C. Aistleitner, On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc. 362 (2010), 5967-5982.
[2] C. Aistleitner, Irregular discrepancy behavior of lacunary series, Monatsh. Math. 160 (2010), 1-29.
[3] C. Aistleitner, Irregular discrepancy behavior of lacunary series, II, Monatsh. Math. 161 (2010), 255-270.
[4] C. Aistleitner, I. Berkes, and R. Tichy, Lacunary sequences and permutations, The law of the iterated logarithm for $\sum c_{k} f\left(n_{k} x\right)$, in: Dependence in Probability, Analysis and Number Theory (in memory of Walter Philipp), Kendrick Press, 2010, 35-49.
[5] C. Aistleitner, I. Berkes, and R. Tichy, On the asymptotic behavior of weakly lacunary series, Proc. Amer. Math. Soc. 139 (2011), 2505-2517.
[6] C. Aistleitner, I. Berkes, and R. Tichy, On permutations of Hardy-Littlewood-Pólya sequences, Trans. Amer. Math. Soc. 363 (2011), 6219-6244.
[7] C. Aistleitner, I. Berkes, and R. Tichy, On the law of the iterated logarithm for permuted lacunary sequences, Proc. Steklov Inst. Math. 276 (2012), 3-20.
[8] C. Aistleitner, I. Berkes, and R. Tichy, On the system $f(n x)$ and probabilistic number theory, in: Analytic and Probabilistic Methods in Number Theory, Proceedings of the 5th International Conference in honour of J. Kubilius held in Palanga.
[9] C. Aistleitner, I. Berkes, and R. Tichy, On permutation of lacunary sequences, RIMS Kôkyûroku Bessatsu B34 (2012), 1-25.
[10] I. Berkes and W. Philipp, An a.s. invariance principle for lacunary series $f\left(n_{k} x\right)$, Acta Math. Acad. Sci. Hungar. 34 (1979), 141-155.
[11] K. Chung, An estimate concerning the Kolmogorov limit distribution, Trans. Amer. Math. Soc. 67 (1949), 36-50.
[12] M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997.
[13] K. Fukuyama, The law of the iterated logarithm for discrepancies of $\left\{\theta^{n} x\right\}$, Acta Math. Hungar. 118 (2008), 155-170.
[14] K. Fukuyama, The law of the iterated logarithm for the discrepancies of a permutation of $\left\{n_{k} x\right\}$, Acta Math. Hungar. 123 (2009), 121-125.
[15] K. Fukuyama, A law of the iterated logarithm for discrepancies: non-constant limsup, Monatsh. Math. 160 (2010), 143-149.
[16] K. Fukuyama, A central limit theorem and a metric discrepancy result for sequences with bounded gaps, in: Dependence in Probability, Analysis and Number Theory (in memory of Walter Philipp), Kendrick Press, 2010, 233-246.
[17] K. Fukuyama, A metric discrepancy result for lacunary sequence with small gaps, Monatsh. Math. 162 (2011), 277-288.
[18] K. Fukuyama, Metric discrepancy results for geometric progressions and variations, in: Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu B29 (2012), 41-64.
[19] K. Fukuyama, Limit theorems for lacunary series and the theory of uniform distribution, Sugaku Exposition 25 (2012), 189-207.
[20] K. Fukuyama and N. Hiroshima, Metric discrepancy results for subsequences of $\left\{\theta^{k} x\right\}$, Monatsh. Math. 165 (2012), 199-215.
[21] K. Fukuyama and Y. Mitsuhata, Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, in: Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu B29 (2012), 65-88.
[22] K. Fukuyama and S. Miyamoto, Metric discrepancy results for Erdős-Fortet sequence, Studia Sci. Math. Hungar. 49 (2012), 52-78.
[23] K. Fukuyama, K. Murakami, R. Ohno, and S. Ushijima, The law of the iterated logarithm for discrepancies of three variations of geometric progressions, in: Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu B29 (2012), 89-118.
[24] K. Fukuyama and K. Nakata, A metric discrepancy result for the Hardy-LittlewoodPólya sequences, Monatsh. Math. 160 (2010), 41-49.
[25] K. Fukuyama and T. Watada, A metric discrepancy result for lacunary sequences, Proc. Amer. Math. Soc. 140 (2012), 749-754.
[26] D. Monrad and W. Philipp, Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory Related Fields 88 (1991), 381-404.
[27] W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith. 26 (1975), 241-251.
[28] N. Smirnov, Approximate laws of distribution of random variables from empirical data, Uspekhi Mat. Nauk 10 (1944), 179-206 (in Russian).
[29] V. Strassen, Almost sure behavior of sums of independent random variables and martingales, in: Fifth Berkeley Sympos. Math. Statist. Probab. Vol. II, Part I, 1967, 315-343.
[30] S. Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad. 38 (1962), 101-104.

Christoph Aistleitner
Katusi Fukuyama, Yukako Furuya
Institute of Mathematics A
Graz University of Technology
Steyrergasse 30
8010 Graz, Austria
E-mail: aistleitner@math.tugraz.at
Department of Mathematics
Kobe University
Rokko, Kobe, 657-8501 Japan
E-mail: fukuyama@math.kobe-u.ac.jp
yfuruya@math.kobe-u.ac.jp

Received on 14.4.2012
and in revised form on 13.7.2012


[^0]:    2010 Mathematics Subject Classification: Primary 11A25; Secondary 60F15, 60G50. Key words and phrases: law of the iterated logarithm, discrepancy, lacunary sequence.

