Lacunary formal power series and the Stern-Brocot sequence

by

JEAN-PAUL ALLOUCHE (Paris) and MICHEL MENDÈS FRANCE (Bordeaux)

À la mémoire de Philippe Flajolet

1. Introduction

1.1. Lacunary power series and continued fraction expansions. Let $\Lambda = (\lambda_n)_{n\geq 0}$ be a sequence of integers with $0 < \lambda_0 < \lambda_1 < \cdots$ satisfying $\lambda_{n+1}/\lambda_n > 2$ for all $n \geq 0$. Consider the formal power series $F(X) := \sum_{n\geq 0} (-1)^{\varepsilon_n} X^{-\lambda_n}$, where $\varepsilon_n = 0, 1$. As is well known, a power series in X^{-1} can be represented by a continued fraction $[A_0(X), A_1(X), A_2(X), \ldots]$, where the A_j 's are polynomials in X, and for all i > 0, $A_i(X)$ is a non-constant polynomial. Quite obviously, in the case of the above F(X), one has $A_0(X) = 0$.

Let $P_n(X)/Q_n(X) = [0, A_1(X), A_2(X), \ldots, A_n(X)]$ be the *n*th convergent of F(X). As was already discovered in [3] and [28], the denominators $Q_n(X)$ are particularly interesting to study: their coefficients are $0, \pm 1$.

1.2. A sequence of polynomials and a sequence of integers. The denominators $Q_n(X)$ introduced above can be quite explicitly expressed (see [28]):

$$Q_n(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(n+k)/2}{k}_2 X^{\mu(k,\Lambda)}.$$

The exponent of X is given by $\mu(k, \Lambda) = \sum_{q \ge 0} e_q(k)(\lambda_q - \lambda_{q-1})$, with $\lambda_{-1} = 0$, where $e_q(k)$ is the qth binary digit of $k = \sum_{q \ge 0} e_q(k)2^q$. The sign of the monomials is given by $\sigma(k, \varepsilon) = (-1)^{\nu(k) + \bar{\mu}(k,\varepsilon)}$ where $\nu(k)$ is the number of occurrences of the block 10 in the usual left-to-right reading of the binary

²⁰¹⁰ Mathematics Subject Classification: Primary 11B83; Secondary 11B85, 11B65, 13F25, 11A55.

Key words and phrases: Stern–Brocot sequence, continued fractions of formal power series, automatic sequences, algebraicity of formal power series.

expansion of k (e.g., $\nu(\text{twelve}) = 1$), and where $\bar{\mu}(k, \varepsilon) = \sum_{q \ge 0} e_q(k)(\varepsilon_{q-1} - \varepsilon_{q-2})$, with $\varepsilon_{-1} = \varepsilon_{-2} = 0$. The symbol $\binom{a}{b}_2$ is an *integer* equal to 0 or 1, according to the value modulo 2 of the binomial coefficient $\binom{a}{b}$, with the following convention: if a is not an integer, or if a is a positive integer and a < b, then $\binom{a}{b} := 0$. For example, as soon as n and k have opposite parities, $\binom{(n+k)/2}{k}_2 = 0$. In [3] it was observed that the number of nonzero monomials in $Q_n(X)$ is u_n , the nth term of the celebrated Stern-Brocot sequence defined by $u_0 = u_1 = 1$ and the recursive relations $u_{2n} = u_n + u_{n-1}, u_{2n+1} = u_n$ for all $n \ge 1$. This sequence is also called the Stern diatomic series (see sequence A002487 in [30]). It was studied by several authors: see, e.g., [17] and its list of references (including the historical references [9, 31]), see also [33, 29], or see [23] for a relation between the Stern sequence and the Towers of Hanoi. (Note that some authors have the slightly different definition: $v_0 = 0, v_{2n} = v_n, v_{2n+1} = v_n + v_{n+1}$; clearly $u_n = v_{n+1}$ for all $n \ge 0$.)

Our purpose here is to pursue our previous discussions on the sequence of polynomials $Q_n(X)$ in relationship with the Stern-Brocot sequence.

REMARK 1.1. The sequence $(\nu(n))_{n\geq 0}$ happens to be related to the paperfolding sequence. Indeed, define $v(n) := (-1)^{\nu(n)}$ and w(n) := v(n)v(n + 1). From the definition of ν , we have for every $n \geq 0$ the relations v(2n + 1) = v(n), v(4n) = v(2n), and v(4n + 2) = -v(n). Equivalently, for every $n \geq 0$, we have v(2n + 1) = v(n), and $v(2n) = (-1)^n v(n)$. Hence, for every $n \geq 0$, we have $w(n) = v(2n)v(2n + 1) = (-1)^n(v(n)^2) = (-1)^n$, and $w(2n + 1) = v(2n + 1)v(2n + 2) = (-1)^{n+1}v(n)v(n + 1) = (-1)^{n+1}w(n)$. It it then clear that, if z(n) := w(2n + 1), then $z(2n) = -w(2n) = -(-1)^n$ and z(2n + 1) = z(n). In other words the sequence $(z(n))_{n\geq 0}$ is the classical paperfolding sequence, and the sequence $(w(n))_{n\geq 0}$ itself is a paperfolding sequence (see e.g. [26, p. 125] where the sequences are indexed by $n \geq 1$ instead of $n \geq 0$).

1.3. A partial order on the integers. Let $m = e_0(m)e_1(m)\ldots$ and $k = e_0(k)e_1(k)\ldots$ be two nonnegative integers together with their binary expansion, which of course terminates with a tail of 0's. Lucas [25] observed that

$$\binom{m}{k} \equiv \prod_{i \ge 0} \binom{e_i(m)}{e_i(k)} \mod 2.$$

This implies the following relation (in \mathbb{Z}):

$$\binom{m}{k}_2 = \prod_{i \ge 0} \binom{e_i(m)}{e_i(k)},$$

so that we have $\binom{m}{k}_2 = 1$ if and only if $e_i(k) \le e_i(m)$ for all $i \ge 0$.

We will say that m dominates k, and we write $k \ll m$, if $e_i(k) \le e_i(m)$ for all $i \ge 0$. In other words the sequence $k \to {\binom{m}{k}}_2$ is the characteristic function of the k's dominated by m. (This order was used in, e.g., [2].)

As a consequence of our remarks, the Stern–Brocot sequence has the following representation:

$$u_n = \sum_{k \ll (k+n)/2} 1$$

REMARK 1.2. This last relation can be easily deduced from a result of Carlitz [11, 12] (Carlitz calls $\theta_0(n)$ what we call u_n):

$$u_n = \sum_{0 \le 2r \le n} \binom{n-r}{r}_2.$$

Indeed, we have

$$\sum_{k \ll (k+n)/2} 1 = \sum_{\substack{0 \le k \le n \\ k \equiv n \mod 2}} \binom{(k+n)/2}{k}_2$$

=
$$\sum_{\substack{0 \le k' \le n \\ k' \equiv 0 \mod 2}} \binom{n-k'/2}{n-k'}_2$$
 (let $k' = n-k$)
=
$$\sum_{0 \le 2r \le n} \binom{n-r}{n-2r}_2 = \sum_{0 \le 2r \le n} \binom{n-r}{r}_2$$
 (use $\binom{a}{b} = \binom{a}{a-b}$)

Also note that in [12] the range $0 \le 2r < n$ should be replaced by $0 \le 2r \le n$ as in [11] (see also [17, Corollary 6.2] where the index *n* should be adjusted). Let us finally indicate that this remark is also Corollary 13 in [3].

REMARK 1.3. The relation $u_n = \sum_{0 \leq 2r \leq n} {\binom{n-r}{r}}_2$ can give the idea (inspired by the classical *binomial transform*) of introducing a map on sequences $(a_n)_{n\geq 0} \mapsto (b_n)_{n\geq 0}$ with $b_n := \sum_{0\leq 2r\leq n} {\binom{n-r}{r}}_2 a_r$, so that in particular the image of the constant sequence 1 is the Stern-Brocot sequence. One can also go a step further by defining a map \mathcal{C} which associates with two sequences $\mathbf{a} = (a_n)_{n\geq 0}$ and $\mathbf{b} = (b_n)_{n\geq 0}$ the sequence

$$\mathcal{C}(\mathbf{a},\mathbf{b}) := \left(\sum_{0 \le 2r \le n} \binom{n-r}{r}_2 a_r b_{n-r}\right)_{n \ge 0}$$

It is unexpected that some variations on the Stern-Brocot sequences (different from but in the spirit of the twisted Stern sequence of [8]) are related to the celebrated Thue-Morse sequence (see, e.g., [5]). In fact, recall that the ± 1 Thue-Morse sequence $\mathbf{t} = (t_n)_{n\geq 0}$ can be defined by $t_0 = 1$ and, for all $n \geq 0$, $t_{2n} = t_n$ and $t_{2n+1} = -t_n$. Now define the sequences $\alpha = (\alpha_n)_{n\geq 0}$,

$$\begin{split} \boldsymbol{\beta} &= (\beta_n)_{n \geq 0}, \, \boldsymbol{\gamma} = (\gamma_n)_{n \geq 0} \text{ by} \\ \boldsymbol{\alpha} &:= \mathcal{C}(\mathbf{t}, \mathbf{1}), \quad \boldsymbol{\beta} := \mathcal{C}(\mathbf{1}, \mathbf{t}), \quad \boldsymbol{\gamma} := \mathcal{C}(\mathbf{t}, \mathbf{t}). \end{split}$$

Then the reader can check that these sequences satisfy

 $\begin{aligned} &\alpha(0) = 1, \quad \alpha(1) = 1, &\forall n \ge 1, \quad \alpha_{2n} = \alpha_n - \alpha_{n-1}, \quad \alpha_{2n+1} = \alpha_n, \\ &\beta(0) = 1, \quad \beta(1) = -1, \quad \forall n \ge 1, \quad \beta_{2n} = \beta_n - \beta_{n-1}, \quad \beta_{2n+1} = -\beta_n, \\ &\gamma(0) = 1, \quad \gamma(1) = -1, \quad \forall n \ge 1, \quad \gamma_{2n} = \gamma_n + \gamma_{n-1}, \quad \gamma_{2n+1} = -\gamma_n, \end{aligned}$

so that, with the notation of [30],

$$(\alpha_n)_{n\geq 0} = (A005590(n+1))_{n\geq 0},(\beta_n)_{n\geq 0} = (A177219(n+1))_{n\geq 0},(\gamma_n)_{n>0} = (A049347(n))_{n>0}.$$

The last sequence $(\gamma_n)_{n\geq 0}$ is the 3-periodic sequence with period (1, -1, 0)(hint: prove by induction on n that $(\gamma_{3j}, \gamma_{3j+1}, \gamma_{3j+2}) = (1, -1, 0)$ for all $j \leq n$).

2. More on the sequence $Q_n(X)$ and a note on $P_n(X)$ for a special Λ . We now specialize to the case $\lambda_n = 2^{n+1} - 1$. In that case, $\mu(k,\Lambda) = k$. Also note that $\sigma(k,\varepsilon) \equiv 1 \mod 2$. Let $P_n(X)/Q_n(X)$ denote as previously the *n*th convergent of the continued fraction of the formal power series $\sum_{i\geq 1}(-1)^{\varepsilon_i}X^{1-2^i}$. We begin with a short subsection on P_n . The rest of the section will be devoted to the "simpler" polynomials Q_n .

2.1. The sequence P_n modulo 2

THEOREM 2.1. We have $P_n(X) \equiv Q_{n-1}(X) \mod 2$ for $n \ge 1$.

Proof. Let $F(X) = \sum_{i \ge 1} (-1)^{ε_i} X^{1-2^i}$. Define the formal power series Φ(X) by its continued fraction expansion Φ(X) = [0, X, X, ...]. Its *n*th convergent is given by $π_n(X)/κ_n(X) = [0, X, ..., X]$ (*n* partial quotients equal to *X*). An immediate induction shows that $π_n(X) = κ_{n-1}(X)$ for $n \ge 1$. Reducing F(X) modulo 2, we see that $F^2(X) + XF(X) + 1 \equiv 0 \mod 2$. On the other hand Φ(X) = 1/(X + Φ(X)), hence $Φ^2(X) + XΦ(X) + 1 \equiv 0 \mod 2$. This implies that $F(X) \equiv Φ(X) \mod 2$. Hence $P_n(X) \equiv π_n(X) \mod 2$ and $Q_n(X) \equiv κ_n(X) \mod 2$: to be sure that the convergents of the reduction modulo 2 of *F* are equal to the reduction modulo 2 of the convergents of F(X), the reader can look at, e.g., [34]. Thus $P_n(X) \equiv π_n(X) = κ_{n-1}(X) \equiv Q_{n-1}(X) \mod 2$.

COROLLARY 2.2. The following congruence is satisfied by $Q_n(X)$ for $n \ge 1$:

$$Q_n^2(X) - Q_{n+1}(X)Q_{n-1}(X) \equiv 1 \mod 2.$$

Proof. Use the classical identity $P_{n+1}(X)Q_n(X) - P_n(X)Q_{n+1}(X) = (-1)^n$ for the convergents of a continued fraction.

2.2. The sequence Q_n and the Chebyshev polynomials. We have the formula

$$Q_n(X) \equiv \sum_{k \ge 0} \binom{(n+k)/2}{k}_2 X^k \equiv \sum_{\substack{0 \le k \le n \\ k \equiv n \bmod 2}} \binom{(k+n)/2}{k}_2 X^k \mod 2.$$

The Chebyshev polynomials of the second kind (see, e.g., [20, pp. 184–185]) are defined by

$$U_n(\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}$$
.

They have the well-known explicit expansion

$$U_n(X) = \sum_{0 \le k \le n/2} (-1)^k \binom{n-k}{k} (2X)^{n-2k}.$$

We thus get a relationship between Q_n and U_n (compare with the related but not identical result [17, Proposition 6.1]).

THEOREM 2.3. The reductions modulo 2 of $Q_n(X)$ and of $U_n(X/2)$ are equal.

Proof. We can write modulo 2

$$Q_n(X) \equiv \sum_{\substack{0 \le k' \le n \\ k' \equiv 0 \mod 2}} \binom{n-k'/2}{n-k'} X^{n-k'} \quad \text{(by letting } k' = n-k)$$
$$\equiv \sum_{\substack{0 \le 2r \le n \\ 0 \le 2r \le n}} \binom{n-r}{n-2r}_2 X^{n-2r}$$
$$\equiv \sum_{\substack{0 \le 2r \le n \\ r}} \binom{n-r}{r}_2 X^{n-2r} \quad \text{(by using } \binom{a}{b} = \binom{a}{a-b}\text{)}.$$

Hence $Q_n(X) \equiv U_n(X/2) \mod 2$.

As an immediate application of Theorem 2.3 (and of Remark 1.2) we have the following results.

COROLLARY 2.4. The number of odd coefficients in the (scaled) Chebyshev polynomial of the second kind $U_n(X/2)$ is equal to the Stern-Brocot sequence u_n .

REMARK 2.5. Corollary 2.2 above can also be deduced from Theorem 2.3 using a classical relation for Chebyshev polynomials implied by their expression using sines.

REMARK 2.6. The polynomials $Q_n(X)$ are also related to the Fibonacci polynomials (see, e.g., [19]) and to Morgan-Voyce polynomials, which are a variation on the Chebyshev polynomials (for more on Morgan-Voyce polynomials, introduced by Morgan-Voyce in dealing with electrical networks, see e.g. [32, 7, 22] and the references therein). Indeed, the Fibonacci polynomials satisfy

$$F_{n+1}(X) = \sum_{2j \le n} \binom{n-j}{j} X^{n-2j}$$

(compare with the proof of Theorem 2.3), while the Morgan-Voyce polynomials satisfy

$$b_n(X) = \sum_{k \le n} {\binom{n+k}{n-k}} X^k$$
 and $B_n(X) = \sum_{k \le n} {\binom{n+k+1}{n-k}} X^k$

(note that $\binom{n+k}{n-k} = \binom{n+k}{2k}$, that $\binom{n+k+1}{n-k} = \binom{n+k+1}{2k+1}$, and see Lemmas 3.1 and 3.3 below).

REMARK 2.7. The polynomials that we have defined are related to the Stern-Brocot sequence, but they differ from Stern polynomials occurring in the literature, in particular they are not the same as those introduced in [24]. They also differ from the polynomials studied in [17, 18].

2.3. Extension of $Q_n(X)$ to $Q_{\omega}(X)$ with $\omega \in \mathbb{Z}_2$

DEFINITION 2.8. Let $\omega = \sum_{i\geq 0} \omega_i 2^i = \omega_0 \omega_1 \omega_2 \ldots \in \mathbb{Z}_2$ be a 2-adic integer, or equivalently an infinite sequence of 0's and 1's. For a nonnegative integer k whose binary expansion is given by $k = \sum_{i\geq 0} k_i 2^i$, we define

$$\binom{\omega}{k}_2 = \prod_{i \ge 0} \binom{\omega_i}{k_i}.$$

The infinite product $\binom{\omega}{k}_2$ is well defined since, for large i, $\binom{\omega_i}{k_i}$ reduces to $\binom{\omega_i}{0} = 1$. It is equal to 0 or 1. The above product extends Lucas' observation to all 2-adic integers ω . In particular, since $-1 = \sum_{i\geq 0} 2^i = 1^\infty$, we see that -1 dominates all $k \in \mathbb{N}$ (where the order introduced in Section 1.3 is generalized in the obvious way). A similar definition (of binomials and order) occurs in [27].

DEFINITION 2.9. In the general case for Λ , with $\lambda_{n+1}/\lambda_n > 2$, and $\varepsilon = 0, 1$, the polynomials $Q_n(X)$ above naturally extend to formal power series $Q_{\omega}(X)$ defined for $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \mathbb{Z}_2$ by

$$Q_{\omega}(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(\omega+k)/2}{k}_2 X^{\mu(k,\Lambda)} = \sum_{\substack{k \equiv \omega \mod 2\\k \ll (\omega+k)/2}} \sigma(k, \varepsilon) X^{\mu(k,\Lambda)}.$$

REMARK 2.10. The reader can check (e.g., by using integer truncations of ω tending to ω) that

$$\binom{\omega}{k} \equiv \binom{\omega}{k}_2 \mod 2$$

where the binomial coefficient $\binom{\omega}{k}$ is defined by

$$\binom{\omega}{k} = \frac{\omega(\omega-1)\dots(\omega-k+1)}{k!} \in \mathbb{Z}_2.$$

In particular, we see that for any 2-adic integer ℓ ,

$$\binom{-\ell}{k} = (-1)^k \binom{\ell+k-1}{k}, \quad \text{hence} \quad \binom{-\ell}{k}_2 = \binom{\ell+k-1}{k}_2.$$

Now for $n \in \mathbb{N}$ we have

$$Q_{-n}(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(-n+k)/2}{k}_2 X^{\mu(k,\Lambda)}$$
$$= \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{-(n-k)/2}{k}_2 X^{\mu(k,\Lambda)},$$

thus

$$Q_{-n}(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(n-k)/2 + k - 1}{k}_2 X^{\mu(k,\Lambda)}$$
$$= \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(n-2+k)/2}{k}_2 X^{\mu(k,\Lambda)} = Q_{n-2}(X).$$

In particular Q_{-n} and Q_{n-2} have same degree. Also note that the definition of Q_{-n} for $n \in \mathbb{N}$ yields

$$Q_{-1}(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(k-1)/2}{k}_2 X^{\mu(k,\Lambda)} = 0.$$

REMARK 2.11. If $\lambda_n = 2^{n+1} - 1$, Corollary 2.2 can be extended to 2adic integers: using again truncations of ω tending to ω yields, for any 2-adic integer ω ,

$$Q_{\omega}^2(X) - Q_{\omega+1}(X)Q_{\omega-1}(X) \equiv 1 \mod 2.$$

2.4. Extension of the sequence $(u_n)_{n\geq 0}$ **to negative indices.** What precedes suggests two ways of extending the sequence $(u_n)_{n\geq 0}$ to negative integer indices. First, we noted the relation $u_n = \sum_{k\ll (n+k)/2} 1$, i.e., u_n is the number of monomials with nonzero coefficients in $Q_n(X)$. But from the previous section, we can define $Q_{-n}(X)$ for $n \in \mathbb{N}$, and we have $Q_{-n}(X) = Q_{n-2}(X)$. This suggests the definition

$$u_{-n} := u_{n-2}$$
 for all $n \ge 2$.

Strictly speaking, this definition leaves the value u_{-1} indeterminate, but, since u_n is the number of monomials with nonzero coefficients in Q_n , the remark above that $Q_{-1} = 0$ implies $u_{-1} = 0$.

Another way of generalizing u_n to negative indices would be to use the recursion

$$u_{2n} = u_n + u_{n-1}, \quad u_{2n+1} = u_n, \quad \text{for all } n \ge 1,$$

allowing nonpositive values for n. Letting first n = 0 leads to $u_0 = u_0 + u_{-1}$, hence $u_{-1} = 0$. On the other hand we claim that the relation $u_{-n} := u_{n-2}$ for all $n \ge 2$ leads to the same recursion formulas for u_{2n} and u_{2n+1} with nonpositive n. Indeed, let m = -n with $n \ge 2$. Then

$$u_{2m} = u_{-2n} = u_{2n-2} = u_{2(n-1)} = u_{n-1} + u_{n-2} = u_{-n-1} + u_{-n} = u_{m-1} + u_m$$

and

$$u_{2m+1} = u_{-2n+1} = u_{2n-3} = u_{2(n-2)+1} = u_{n-2} = u_{-n} = u_m.$$

We thus finally have a generalization compatible with both approaches, yielding

 $\dots, u_{-4} = 2, u_{-3} = 1, u_{-2} = 1, u_{-1} = 0, u_0 = 1, u_1 = 1, u_2 = 2, u_3 = 1, \dots$ and the following

DEFINITION 2.12. The Stern-Brocot sequence $(u_n)_{n\geq 0}$ can be extended to a sequence $(u_n)_{n\in\mathbb{Z}}$ by letting $u_{-n} = u_{n-2}$ for $n \geq 2$, and $u_{-1} = 0$. This sequence satisfies the same recursive relations as the initial sequence $(u_n)_{n\geq 0}$, namely $u_{2n} = u_n + u_{n-1}$ and $u_{2n+1} = u_n$ for all $n \in \mathbb{Z}$.

3. The arithmetical nature of the power series $Q_{\omega}(X)$. Recall that the formal series $Q_{\omega}(X)$, where $\omega = \omega_0 \omega_1 \dots$ belongs to \mathbb{Z}_2 , is given by

$$Q_{\omega}(X) = \sum_{k \ge 0} \sigma(k, \varepsilon) \binom{(\omega+k)/2}{k}_2 X^{\mu(k,\Lambda)} = \sum_{\substack{k \equiv \omega \mod 2\\k \ll (\omega+k)/2}} \sigma(k, \varepsilon) X^{\mu(k,\Lambda)}.$$

We have seen that $Q_{\omega}(X)$ reduces to a polynomial if ω belongs to \mathbb{Z} . We will prove that this is a necessary and sufficient condition for this series to be a polynomial. Then we will address the question of the algebraicity of $Q_{\omega}(X)$, on $\mathbb{Q}(X)$ and on $\mathbb{Z}/2\mathbb{Z}(X)$, in the special case $\lambda_n = 2^{n+1} - 1$. We begin with a lemma.

LEMMA 3.1. Let $\omega = \omega_0 \omega_1 \dots$ belong to \mathbb{Z}_2 . Then:

(i) For every $j \ge 0$,

$$\binom{\omega+2^j}{2^{j+1}}_2 \equiv \omega_j + \omega_{j+1} \bmod 2.$$

- (ii) The sequence $\left(\binom{\omega+2^j}{2^{j+1}}_2\right)_{j\geq 0}$ is ultimately periodic if and only if ω is rational.
- (iii) The sequence $\left(\binom{\omega+2^j}{2^{j+1}}_2\right)_{j\geq 0}$ is ultimately equal to 0 if and only if ω is an integer.
- (iv) For every $k \ge 0$,

$$\binom{(\omega+k)/2}{k}_2 = \binom{\omega+k+1}{2k+1}_2.$$

- (v) If $\omega \neq -1$, there exist an integer $\ell \geq 0$ and a 2-adic integer ω' such that $\omega = 2^{\ell} 1 + 2^{\ell+1}\omega'$. Let $f_{\omega}(k) := \binom{(\omega+k)/2}{k}_2 = \binom{\omega+k+1}{2k+1}_2$. Then for any integer k' we have $f_{\omega}(2^{\ell} 1 + 2^{\ell+1}k') = \binom{\omega'+k'}{2k'}_2$.
- (vi) If there exist $\ell \ge 0$ and $j \ge 0$ with $\omega = 2^{\ell} 1 + 2^{\ell+1} (2^{j} (2\omega^{\prime} + 1))$, then for any integer k' we have $f_{\omega}(2^{\ell} 1 + 2^{\ell+1} (2^{j} (2k'+1))) = {\omega' + k' + 1 \choose 2k' + 1}_{2}$.

Proof. In order to prove (i) we write

$$\omega + 2^{j} = \omega_{0} \quad \omega_{1} \quad \dots \quad \omega_{j} \quad \omega_{j+1} \quad \dots$$
$$+ \quad 0 \quad 0 \quad \dots \quad 1 \quad 0 \quad \dots$$
$$= \omega_{0} \quad \omega_{1} \quad \dots \quad \alpha_{j} \quad \alpha_{j+1} \quad \dots$$

where α_j and α_{j+1} are given by

$$\begin{array}{ll} \text{if } \omega_j = 0 \text{ and } \omega_{j+1} = 0, & \text{then } \alpha_j = 1 \text{ and } \alpha_{j+1} = 0 \\ \text{if } \omega_j = 0 \text{ and } \omega_{j+1} = 1, & \text{then } \alpha_j = 1 \text{ and } \alpha_{j+1} = 1 \\ \text{if } \omega_j = 1 \text{ and } \omega_{j+1} = 0, & \text{then } \alpha_j = 0 \text{ and } \alpha_{j+1} = 1 \\ \text{if } \omega_j = 1 \text{ and } \omega_{j+1} = 1, & \text{then } \alpha_j = 0 \text{ and } \alpha_{j+1} = 0. \end{array}$$

By inspection we see that $\alpha_{j+1} \equiv \omega_j + \omega_{j+1} \mod 2$. Now we write

$$\binom{\omega+2^j}{2^{j+1}}_2 = \left(\prod_{0 \le k \le j-1} \binom{\omega_k}{0}_2\right) \binom{\alpha_j}{0}_2 \binom{\alpha_{j+1}}{1}_2 \left(\prod_{k \ge j+2} \binom{\alpha_k}{0}_2\right)$$
$$= \alpha_{j+1} \equiv \omega_j + \omega_{j+1} \mod 2.$$

Let us prove (ii). We note that the sequence $((\omega_j + \omega_{j+1}) \mod 2)_{j\geq 0}$ is ultimately periodic if and only if the sequence $(\omega_j \mod 2)_{j\geq 0}$ is ultimately periodic (hence if and only if the sequence $(\omega_j)_{j\geq 0}$ itself is ultimately periodic): indeed, $((\omega_j + \omega_{j+1}) \mod 2)_{j\geq 0}$ is ultimately periodic if and only if the formal power series $G(X) := \sum_{j\geq 0} (\omega_j + \omega_{j+1}) X^j$ is rational (as an element of $\mathbb{Z}/2\mathbb{Z}[[X]]$). But, if we let H(X) denote the formal power series $H(X) := \sum_{j\geq 0} \omega_j X^j \in \mathbb{Z}/2\mathbb{Z}[[X]]$, then $XG(X) + \omega_0 = (1 + X)H(X)$. So G(X) is rational if and only if H is, if and only if $(\omega_j \mod 2)_{j\geq 0}$ is ultimately periodic, i.e., if the 2-adic integer ω is rational. To prove (iii), we note that $\binom{\omega+2^j}{2^{j+1}}_2 = 0$ for j large enough implies by (i) that $\omega_j + \omega_{j+1} \equiv 0 \mod 2$ for j large enough. This means that $\omega_j \equiv \omega_{j+1} \mod 2$ for j large enough, or equivalently $\omega_j = \omega_{j+1}$ for j large enough. But then either $\omega_j = \omega_{j+1} = 0$ for large j, hence ω is a nonnegative integer, or $\omega_j = \omega_{j+1} = 1$ for large j, hence ω is a negative integer. We thus conclude that ω belongs to \mathbb{Z} . The converse is straightforward.

We prove (iv) by considering the parities of ω and k. First note that if ω and k have opposite parities, then $\binom{(\omega+k)/2}{k}_2 = 0$ while $\binom{\omega+k+1}{2k+1}_2 = 0$ (use Definition 2.8 and look at the last digit of $\omega + k + 1$ and of 2k + 1). Now if $\omega = 2\omega'$ and k = 2k', we have $\binom{(\omega+k)/2}{k}_2 = \binom{\omega'+k'}{2k'}_2$ while $\binom{(\omega+k+1)}{2k+1}_2 = \binom{2(\omega'+k')+1}{4k'+1}_2 = \binom{\omega'+k'}{2k'}_2$ (use Definition 2.8 again). Finally if $\omega = 2\omega' + 1$ and k = 2k' + 1, we have $\binom{(\omega+k)/2}{k}_2 = \binom{\omega'+k'+1}{2k'+1}_2$ while $\binom{(\omega+k+1)}{2k+1}_2 = \binom{2(\omega'+k'+1)+1}{4k'+3}_2 = \binom{\omega'+k'+1}{2k'+1}_2$ (by Definition 2.8 once more).

Let us prove (v). Since $\omega \neq -1$, its 2-adic expansion contains at least one zero. Write $\omega = 11 \dots 10\omega_{\ell+1}\omega_{\ell+2}\dots$, so that the 2-adic expansion of ω begins with exactly $\ell \geq 0$ ones. Defining $\omega' := \omega_{\ell+1}\omega_{\ell+2}\dots$, we thus have $\omega = 2^{\ell} - 1 + 2^{\ell+1}\omega'$. Now for any integer k' we have, from Definition 2.8,

$$f_{\omega}(2^{\ell} - 1 + 2^{\ell+1}k') = \begin{pmatrix} \omega + 2^{\ell} + 2^{\ell+1}k' \\ 2^{\ell+1} - 1 + 2^{\ell+1}(2k') \end{pmatrix}_{2} \\ = \begin{pmatrix} 2^{\ell+1} - 1 + 2^{\ell+1}(\omega' + k') \\ 2^{\ell+1} - 1 + 2^{\ell+1}(2k') \end{pmatrix}_{2} = \begin{pmatrix} \omega' + k' \\ 2k' \end{pmatrix}_{2}.$$

We finally prove (vi). Using (v) we see that

$$\begin{split} f_{\omega}(2^{\ell} - 1 + 2^{\ell+1}(2^{j}(2k'+1))) &= \begin{pmatrix} 2^{j}(2\omega'+1+2k'+1)+1\\ 2^{j+1}(2k'+1)+1 \end{pmatrix}_{2} \\ &= \begin{pmatrix} \omega'+k'+1\\ 2k'+1 \end{pmatrix}_{2} . \blacksquare \end{split}$$

Now we can prove the following result.

THEOREM 3.2. Let ω be a 2-adic integer. The formal power series $Q_{\omega}(X)$ is a polynomial if and only if ω belongs to \mathbb{Z} .

Proof. If n is a nonnegative integer, then $Q_n(X)$ is a polynomial. So is $Q_{-n}(X)$ for $n \neq 1$ because $Q_{-n} = Q_{n-2}$ as we have seen in Remark 2.10. On the other hand $Q_{-1}(X)$ is also a polynomial since $Q_{-1}(X) = 0$. Conversely suppose that $Q_{\omega}(X)$ is a polynomial for some $\omega = \omega_0 \omega_1 \dots$ in \mathbb{Z}_2 . The coefficients of the monomials $X^{\mu(k,A)}$ in $Q_{\omega}(X)$, that is, $\sigma(k,\varepsilon) \binom{(\omega+k)/2}{k}_2$, are equal to zero for k large enough. Thus $f_{\omega}(k) = \binom{(\omega+k)/2}{k}_2$ is zero for k large enough. We may suppose that $\omega \neq -1$; hence, using the notation in Lemma 3.1(v), we certainly have $f_{\omega}(2^{\ell}-1+2^{\ell+1}k') = 0$ for k' large enough.

Using Lemma 3.1(v), we thus have $\binom{\omega'+k'}{2k'}_2 = 0$ for k' large enough. This implies $\binom{\omega'+2^j}{2^{j+1}}_2 = 0$ for j large enough. Lemma 3.1(iii) shows that ω' , hence ω , belongs to \mathbb{Z} .

Before proving our Theorem 3.5 characterizing the algebraicity of the series $Q_{\omega}(X)$ for a special Λ , we need a lemma.

LEMMA 3.3. Let $\omega = \omega_0 \omega_1 \dots$ be a 2-adic integer. Let $(f_{\omega}(k))_{k\geq 0}$, $(g_{\omega}(k))_{k\geq 0}$, $(h_{\omega}(k))_{k\geq 0}$ denote the sequences

$$f_{\omega}(k) := \binom{\omega+k+1}{2k+1}_{2}, \quad g_{\omega}(k) := \binom{\omega+k}{2k}_{2}, \quad h_{\omega}(k) := \binom{\omega+k}{2k+1}_{2}.$$

Then we have the following relations:

$$\begin{split} f_{2\omega}(2k) &= g_{\omega}(k), & g_{2\omega}(2k) = g_{\omega}(k), & h_{2\omega}(2k) = 0, \\ f_{2\omega+1}(2k) &= 0, & g_{2\omega+1}(2k) = g_{\omega}(k), & h_{2\omega+1}(2k) = g_{\omega}(k), \\ f_{2\omega}(2k+1) &= 0, & g_{2\omega}(2k+1) = h_{\omega}(k), & h_{2\omega}(2k+1) = h_{\omega}(k), \\ f_{2\omega+1}(2k+1) &= f_{\omega}(k), & g_{2\omega+1}(2k+1) = f_{\omega}(k), & h_{2\omega+1}(2k+1) = 0. \end{split}$$

Proof. The proof is easy: it uses the definition of $\binom{\omega}{\ell}_2$, which in particular shows for any 2-adic integer ω and any integer ℓ that

$$\begin{pmatrix} 2\omega\\ 2\ell \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2 \begin{pmatrix} 0\\ 0 \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2, \quad \begin{pmatrix} 2\omega+1\\ 2\ell \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2 \begin{pmatrix} 1\\ 0 \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2, \\ \begin{pmatrix} 2\omega\\ \ell \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2 \begin{pmatrix} 0\\ 1 \end{pmatrix}_2 = 0, \quad \begin{pmatrix} 2\omega+1\\ 2\ell+1 \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2 \begin{pmatrix} 1\\ 1 \end{pmatrix}_2 = \begin{pmatrix} \omega\\ \ell \end{pmatrix}_2.$$

REMARK 3.4. The sequences above occur in the OEIS [30] when $\omega = n$ is an integer. In particular, $\left(\binom{(n+k)/2}{k}\right)_{n,k} = \binom{(n+k+1)}{2k+1}_{n,k}$ is equal to A168561; also $\binom{(n+k)}{2k}_{n,k}$ is equal to A085478; finally, up to shifting k, we see that $\binom{(n+k)}{2k+1}_{n,k}$ is equal to A078812.

We can also note that $f_{\omega}(k) \equiv g_{\omega}(k) + h_{\omega}(k) \mod 2$, for any integer $k \geq 0$.

THEOREM 3.5. Suppose that $\lambda_n = 2^{n+1} - 1$. Then:

- The formal power series Q_ω(X) is either a polynomial if ω ∈ Z or a transcendental series over Q(X) if ω ∈ Z₂ \ Z.
- The formal power series $Q_{\omega}(X)$ is algebraic over $\mathbb{Z}/2\mathbb{Z}(X)$ if and only if ω is rational. It is rational if and only if it is a polynomial, which happens if and only if ω is a rational integer.

Proof. The first assertion is a consequence of a classical theorem of Fatou [21] which states that a power series $\sum_{n\geq 0} a_n z^n$ with integer coefficients that converges inside the unit disk is either rational or transcendental over $\mathbb{Q}(z)$. This implies that the formal power series $Q_{\omega}(X)$ is either rational or

transcendental over $\mathbb{Q}(X)$. We then have to prove that if Q_{ω} is a rational function, then it is a polynomial, or equivalently that ω is a rational integer (use Theorem 3.2). Now to say that Q_{ω} is rational is to say that the sequence of its coefficients is ultimately periodic, which implies that the sequence of their absolute values $(f_{\omega}(k))_{k\geq 0} = \left(\binom{\omega+k+1}{2k+1}_2\right)_{k\geq 0}$ is ultimately periodic. Let θ be its period. We observe, for large k, that $\binom{\omega+k+1}{2k+1}_2 = \binom{\omega+k+\theta+1}{2(k+\theta)+1}_2$. If θ is odd, the left side is zero for $\omega + k$ odd while the right side is zero for $\omega + k$ even. Thus $\binom{\omega+k+1}{2k+1}_2 = 0$ for large k, and Q_{ω} is a polynomial. So suppose that θ is even. Suppose further that ω does not belong to \mathbb{Z} . Then its 2-adic expansion contains infinitely many blocks 01. Consider the first such block: there exist $\ell \geq 0$ and $j \geq 0$ such that $\omega = 2^{\ell} - 1 + 2^{\ell+1}(2^j(2\omega'+1))$. Then for any integer k' we have $f_{\omega}(2^{\ell}-1+2^{\ell+1}(2^{j}(2k'+1))) = {\omega'+k'+1 \choose 2k'+1}_{2}$. The sequence $(f_{\omega}(2^{\ell}-1+2^{\ell+1}(2^{j}(2k'+1))))_{k'\geq 0}$ is ultimately periodic and $\theta/2$ is a period. But from Lemma 3.1(vi) this sequence is equal to $\left(\binom{\omega'+k'+1}{2k'+1}_{2}\right)_{k'>0}$. As previously, either $\theta/2$ is odd and this sequence is ultimately equal to zero, or $\theta/2$ is even. In the first case, as above, ω' belongs to \mathbb{Z} , hence so does ω , which is impossible. In the second case, we iterate the reasoning that used Lemma 3.1(vi), with ω replaced by ω' and k by k', where the first block 01 occurring in ω is replaced by the first such block occurring in ω' . The fact that θ cannot be divisible by arbitrarily large powers of 2 gives the desired contradiction.

In order to prove the second assertion, we first suppose that $Q_{\omega}(X)$ is algebraic over $\mathbb{Z}/2\mathbb{Z}(X)$. If $\omega = -1$, then $Q_{\omega}(X) = 0$. Otherwise write $\omega = 2^{\ell} - 1 + 2^{\ell+1}\omega'$ as in Lemma 3.1(v). The algebraicity of $Q_{\omega}(X)$ over $\mathbb{Z}/2\mathbb{Z}(X)$ implies that the sequence $\left(\binom{(\omega+k)/2}{k}_2 \mod 2\right)_{n\geq 0}$ is 2-automatic (from a theorem of Christol, see [15, 16] or [6]). Using Lemma 3.1(iv) we deduce that the sequence $\left(\binom{(\omega+k+1)}{2k+1}_2\right)_{k\geq 0}$ is 2-automatic. Thus its subsequence obtained for $k = 2^{\ell} - 1 + 2^{\ell+1}k'$, namely $\left(\binom{\omega+2^{\ell}+2^{\ell+1}k'}{2^{\ell+1}-1+2^{\ell+1}(2k')}\right)_2\right)_{k'\geq 0}$, is also 2-automatic (see, e.g., [6, Theorem 6.8.1, p. 189]). But this last sequence is equal to $\left(\binom{2^{\ell+1}-1+2^{\ell+1}(\omega'+k')}{2^{\ell+1}-1+2^{\ell+1}(2k')}\right)_2\right)_{k'\geq 0}$, i.e., to $\left(\binom{\omega'+k'}{2^{j+1}}\right)_{k'\geq 0}$ (look at the 2-adic expansions and use Definition 2.8). But this in turns implies (see, e.g., [6, Corollary 5.5.3, p. 167]) that the subsequence $\left(\binom{\omega'+2^{j}}{2^{j+1}}\right)_2\right)_{j\geq 0}$ is ultimately periodic. Using Lemma 3.1(ii) this means that ω is rational.

Now suppose that ω is rational. Denote by $T\omega$ the 2-adic integer defined by $T\omega = (\omega - \omega_0)/2$ (i.e., $T\omega$ is the 2-adic integer obtained by shifting the sequence of digits of ω). Also denote by T^j the *j*th iteration of *T*. Define (with the notation of Lemma 3.3) the set

$$\mathcal{K} := \bigcup_{j \in \mathbb{N}} \left\{ (f_{T^j \omega}(k))_{k \ge 0}, (g_{T^j \omega}(k))_{k \ge 0}, (h_{T^j \omega}(k))_{k \ge 0} \right\}$$

As a consequence of Lemma 3.3, \mathcal{K} is stable under the maps defined on \mathcal{K} by $(v_k)_{k\geq 0} \mapsto (v_{2k})_{k\geq 0}$ and $(v_k)_{k\geq 0} \mapsto (v_{2k+1})_{k\geq 0}$ (use that for any 2adic integer $\omega = \omega_0 \omega_1 \dots$ one has $\omega = 2T\omega + \omega_0$). On the other hand Lemma 3.1(iv) shows that $\binom{(\omega+k)/2}{k}_2 = f_\omega(k)$. Hence the 2-kernel of the sequence $\binom{(\omega+k)/2}{k}_2_{k\geq 0}$, i.e., the smallest set of sequences containing that sequence and stable under the maps $(v_k)_{k\geq 0} \mapsto (v_{2k})_{k\geq 0}$ and $(v_k)_{k\geq 0} \mapsto$ $(v_{2k+1})_{k\geq 0}$, is a subset of \mathcal{K} . Now, since ω is rational, the set of 2-adic integers $\{T^j \omega : j \in \mathbb{N}\}$ is finite. Hence the 2-kernel of $\binom{(\omega+k)/2}{k}_2_{k\geq 0}$ is finite and this sequence is 2-automatic (see, e.g., [6]). This implies that the formal power series $Q_\omega(X)$ is algebraic over $\mathbb{Z}/2\mathbb{Z}(X)$ (using again Christol's theorem, see [15, 16] or [6]).

Finally, $Q_{\omega}(X)$ reduced modulo 2 is rational if and only if the sequence of its coefficients $(f_{\omega}(k))_{k\geq 0} = \left(\binom{\omega+k+1}{2k+1}_2\right)_{k\geq 0}$ modulo 2 is ultimately periodic, which is the same as saying that the sequence $(f_{\omega}(k))_{k\geq 0} = \left(\binom{\omega+k+1}{2k+1}_2\right)_{k\geq 0}$ itself is ultimately periodic. But from the first part of the proof this implies that $Q_{\omega}(X)$ (not reduced modulo 2) is a polynomial, hence that $Q_{\omega}(X)$ modulo 2 is a polynomial. Conversely, if $Q_{\omega}(X)$ modulo 2 is a polynomial, then the sequence of its coefficients $(f_{\omega}(k))_{k\geq 0} = \left(\binom{\omega+k+1}{2k+1}_2\right)_{k\geq 0}$ modulo 2 is ultimately 0, and so is $(f_{\omega}(k))_{k\geq 0}$ not reduced modulo 2. Thus $Q_{\omega}(X)$ not reduced modulo 2 is a polynomial, so ω is a rational integer by using Theorem 3.2.

REMARK 3.6. • The authors of [4] prove that the formal power series $(1+X)^{\omega} = \sum_{k\geq 0} {\omega \choose k}_2 X^k$ is algebraic over $\mathbb{Z}/2\mathbb{Z}(X)$ if and only if ω is rational. They do not ask when that series is rational, i.e., belongs to $\mathbb{Z}/2\mathbb{Z}(X)$, but this is clear since for $\omega = a/b$ with integers a, b > 0, we have $((1+X)^{\omega})^b \equiv (1+X)^a \mod 2$. Hence if $(1+X)^{\omega}$ is a rational function A/B with A and B coprime polynomials, then $A^b \equiv (1+X)^a B^b$, hence B is constant, i.e., $(1+X)^{\omega}$ is a polynomial. Now if a < 0 and b > 0, we see that $(1+X)^{-\omega}$ is a polynomial, hence $(1+X)^{\omega}$ is the inverse of a polynomial. Finally $(1+X)^{\omega}$ is a rational function if and only if $\omega \in \mathbb{Z}$.

• In the same vein, the authors of [4] prove that, if $\omega_1, \ldots, \omega_d$ are 2-adic integers, then the formal power series $(1 + X)^{\omega_1}, \ldots, (1 + X)^{\omega_d}$ are algebraically independent over $\mathbb{Z}/2\mathbb{Z}(X)$ if and only if $1, \omega_1, \ldots, \omega_d$ are linearly independent over \mathbb{Z} . Is a similar statement true for Q_{ω} ?

• Another question is whether a similar study can be done in the *p*-adic case (here p = 2). The two papers [13, 14] might prove useful.

• Results of transcendence, hypertranscendence, and algebraic independence of values for the generating function of the Stern–Brocot sequence have been obtained very recently by Bundschuh (see [10], and the references therein). • A last question is the arithmetic nature of the real numbers $A(\varepsilon, \omega, g)$ defined by $A(\varepsilon, \omega, g) = \sum_{k \ll (k+\omega)/2} \sigma(k, \varepsilon) g^{-k}$ where $g \ge 2$ is an integer, the sequence $(\varepsilon_n)_n$ is ultimately periodic, and $\omega \in \mathbb{Z}_2 \setminus \mathbb{Z}$. Take in particular $\varepsilon = 0$ (thus $\sigma(k, \varepsilon) = (-1)^{\nu(k)}$). We already know that the number $A(0, \omega, g)$ is transcendental for $\omega \in (\mathbb{Q} \cap \mathbb{Z}_2) \setminus \mathbb{Z}$ by using [1], the fact that $((-1)^{\nu(k)})_{k\ge 0}$ is 2-automatic as recalled above, and the fact that $(\binom{(k+\omega)/2}{k}_2)_{k\ge 0}$ is 2-automatic for ω rational as seen in the course of the proof of Theorem 3.5 (the fact that $A(0, \omega, g)$ is not rational is a consequence of the non-ultimate periodicity of $((-1)^{\nu(k)} \binom{(k+\omega)/2}{k}_2)_{k\ge 0}$ for ω rational but not a rational integer, which has also been seen in the course of the proof of Theorem 3.5).

References

- B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–565.
- [2] J.-P. Allouche, P. Flajolet and M. Mendès France, Algebraically independent formal power series: A language theory interpretation, in: Analytic Number Theory (Tokyo, 1988), Lecture Notes in Math. 1434, Springer, Berlin, 1990, 11–18.
- [3] J.-P. Allouche, A. Lubiw, M. Mendès France A. J. van der Poorten and J. Shallit, Convergents of folded continued fractions, Acta Arith. 77 (1996), 77–96.
- [4] J.-P. Allouche, M. Mendès France et A. J. van der Poorten, Indépendance algébrique de certaines séries formelles, Bull. Soc. Math. France 116 (1988), 449–454.
- [5] J.-P. Allouche and J. Shallit, *The ubiquitous Prouhet-Thue-Morse sequence*, in: Sequences and Their Applications, Proceedings of SETA '98, C. Ding et al. (eds.), Springer, London, 1999, 1–16.
- [6] J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003.
- [7] R. André-Jeannin, A generalization of Morgan-Voyce polynomials, Fibonacci Quart. 32 (1994), 228–231.
- [8] R. Bacher, Twisting the Stern sequence, arXiv:1005.5627, 2010.
- [9] A. Brocot, Calcul des rouages par approximation, Rev. Chronométrique 3 (1859– 1861), 186–194; reprinted in: R. Chavigny, Les Brocot, une dynastie d'horlogers, Antoine Simonin, Neuchâtel, 1991, 187–197.
- [10] P. Bundschuh, Transcendence and algebraic independence of series related to Stern's sequence, Int. J. Number Theory 8 (2012), 361–376.
- [11] L. Carlitz, Single variable Bell polynomials, Collect. Math. 14 (1962), 13–25.
- [12] L. Carlitz, A problem in partitions related to the Stirling numbers, Bull. Amer. Math. Soc. 70 (1964), 275–278.
- [13] L. Carlitz, Some partition problems related to the Stirling numbers of the second kind, Acta Arith. 10 (1965), 409–422.
- [14] S. H. Chan, Analogs of the Stern sequence, Integers 11 (2011), #A26.
- [15] G. Christol, Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), 141–145.
- [16] G. Christol, T. Kamae, M. Mendès France et G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401–419.

- K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. J. Number Theory 3 (2007), 85–103.
- [18] K. Dilcher and K. B. Stolarsky, Stern polynomials and double-limit continued fractions, Acta Arith. 140 (2009), 119–134.
- [19] Encyclopedia of Mathematics, Springer, see http://www.encyclopediaofmath.org/ index.php/Fibonacci_polynomials.
- [20] A. Erdélyi et al. (eds.), Higher Transcendental Functions, Volume II, McGraw-Hill, New York, 1953.
- [21] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335–400.
- [22] N. Garnier and O. Ramaré, Fibonacci numbers and trigonometric identities, Fibonacci Quart. 46/47 (2008/09), 56–61.
- [23] A. M. Hinz, S. Klavžar, U. Milutinović, D. Parisse and C. Petr, *Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence*, Eur. J. Combin. 26 (2005), 693–708.
- [24] S. Klavžar, U. Milutinović and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86–95.
- [25] É. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier, Bull. Soc. Math. France 6 (1878), 49–54.
- [26] M. Mendès France and A. J. van der Poorten, Arithmetic and analytic properties of paper folding sequences, Bull. Austral. Math. Soc. 24 (1981), 123–131.
- [27] M. Mendès France and A. J. van der Poorten, Automata and the arithmetic of formal power series, Acta Arith. 46 (1986), 211–214.
- [28] M. Mendès France, A. J. van der Poorten and J. Shallit, On lacunary formal power series and their continued fraction expansion, in: Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 321–326.
- [29] S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly 117 (2010), 581–598.
- [30] The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- [31] M. A. Stern, Über eine zahlentheoretische Function, J. Reine Angew. Math. 55 (1858), 193–220.
- [32] M. N. S. Swamy, Properties of the polynomials defined by Morgan-Voyce, Fibonacci Quart. 4 (1966), 73–81.
- [33] I. Urbiha, Some properties of a function studied by de Rham, Carlitz and Dijkstra and its relation to the (Eisenstein-)Stern's diatomic sequence, Math. Comm. 6 (2001), 181–198.
- [34] A. J. van der Poorten, Specialisation and reduction of continued fractions of formal power series, Ramanujan J. 9 (2005), 83–91.

Jean-Paul Allouche Michel Mendès France Équipe Combinatoire et Optimisation Mathématiques CNRS, Institut de Mathématiques de Jussieu Université Bordeaux I Université Pierre et Marie Curie F-33405 Talence Cedex, France Case 247, 4 Place Jussieu E-mail: michel.mendes-france@math.u-bordeaux1.fr F-75252 Paris Cedex 05, France E-mail: allouche@math.jussieu.fr