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Quantitative results of algebraic independence
and Baker’s method

by
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1. Introduction. It is well known that the method of A. Baker gives
the transcendence of numbers related to exponential functions (see Theo-
rems 2.3 and 2.4 of [2]). The idea of using Baker’s method to obtain results
of algebraic independence seems due to M. Waldschmidt [18], who makes
a hypothesis on the transcendence type of the underlying field. In 1976,
G. V. Chudnovsky announced some results of algebraic independence (tran-
scendence degree 2), which was repeated in Chapter 2 of [5]. The complete
proof of these last results can be seen in [8], where G. Diaz removed the
complicated arguments coming from Kummer’s theory by using the zero
estimate of P. Philippon [13]. The result was also obtained by R. Tubbs [17]
as a corollary to the general theorem on algebraic groups. G.-L. Chen [4]
generalized Chudnovsky’s result for exponential families to the case of large
transcendence degree.

In this paper we shall establish quantitative results of this type in a
general setting, by using Ably’s method [1], which includes Chen’s result.
The improvement with respect to [1] comes from the construction of an
auxiliary function with derivations. Furthermore if p is a Weierstrass elliptic
function with algebraic invariants, and if p has no complex multiplications,
we shall show that deg trg Q(p(u), p(Bu), p(3%u), p(33u)) > 2, where 3 is an
algebraic number of degree 4 and u is a complex number such that u & Q(/3).

2. Notations and definitions. Let G be a commutative algebraic
group of dimension d > 1 defined over a number field K. Let G, denote the
additive group of complex numbers and Gy, the multiplicative group of com-
plex numbers. We suppose that G' decomposes as G = G% x G4 x G5, where
dp € {0,1},d; > 0, and G2 is a commutative algebraic group of dimension
dy = d—dy—dy, defined over K and with no linear factor. The group G5 (C)
of complex points of G5 is a complex Lie group. Let ¢ : C — G2(C) be an an-
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alytic homomorphism whose tangent map at the origin Lie : C — T, (C)
is nontrivial, where T, (C) denotes the Lie algebra of Ga, identified with
the tangent space at the origin, and let expg, : Tg,(C) — G2(C) be its
exponential map. We have ¢ = expg, oLiet. Let x2 : G2(C) — Py (C)
be the K-embedding of G5 into projective N-space, as described by J.-P.
Serre in [16]. Then x2 o expg, : T, (C) — Pn(C) is given by analytic func-
tions Oy, ...,On (say) with order of growth at most 2. Let x be the natural
K-embedding of G(C) into Ay, (C) x Ay, (C) x Py (C) associated to x2, where
A4(C) denotes the set of complex points of the d-dimensional affine space Ag.

Let z1,...,24, be complex numbers linearly independent over @, and
¢ : C — G(C) the analytic homomorphism defined by

(p(Z) = (Z, eXp(l'lZ), s 7eXp<xd1 Z), ¢<2))

In the definition of @, if dg = 0, d; = 0 or d2 = 0, we omit the corresponding
component(s). Then we have ¢ = expg o Lie ¢, where Lie ¢ is the tangent
map of ¢ at the origin.

For complex numbers v, ...,y linearly independent over QQ, we put
Y =Zy+ -+ Zyy, and I' = p(Y). We put ¢ = rankz(Y Nkery) and
we suppose £ < m, hence we may assume without loss of generality that
Ym—t+1s - - - » Ym € ker . Let L be an arbitrary subfield of C. Let W C T¢(C)
denote a C-vector subspace of T (C) of least dimension which is defined over
L and which contains Lie ¢(C). Put n = dim¢ W, and suppose n > dy + 1.
Let mo and 71 be the projections of G onto G and G%!, respectively. Then
we define the Dirichlet exponent p* as in M. Waldschmidt [23] as follows:

_ . m+01+ 20
n M(FGW)—C%% PR
where G’ runs over all connected algebraic subgroups of G which are defined

over K, with G’ # G and § > v, and where
n=rankz I'/(I’'NG'), v=dimcW/(WNTe(C)), §=dimG/F,
50: dimGgo/Wo(G/), 51: dlmelnl/ﬂ'l(G/), 52:5—50—51.
We also define g

IiZK,(,uﬁ) _ 1% (d—n)—d1 —2d2

(1—£/m)p?

Let a,...,a, denote a fixed basis of W over C such that all the components
are in L, that is, a, = (a1p,-..,adp), anp € L (h=1,...,d; p=1,...,n).
By a linear transformation, we may suppose that Og(Liet(y;)) # 0 for
1<j7<m—/ and we put

+ 1.

=|a iy EXPLT5 M
w = ( hps Yjs p( 13/]) (Lle¢(y])) "
1,.

dl;jzl,...,m—f;s:O,...,N>,

=1,....d;p=1,...,n;
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where as above, if dg = 0, d; = 0, or do = 0, we omit the corresponding
components.

Let I be an ideal of K[X7, ..., X,] and a a point of C*. Recall the notions
of the height and degree of I and of the absolute value of I at «, denoted by
Ht(I),Deg(l) and ||I||n, respectively, which were defined by P. Philippon in
[12]; we define the size of I by T'(I) = log Ht(I) + Deg(I). For a polynomial
P e K[Xy,...,X:], we define the size of P by t(P) = max(1+deg P, h(P)),
where h(P) denotes the height of P (see [12, définition 1.11]). For o € C*
and a positive real number R, we define B'(a, R) to be the open ball with
center o and radius R.

DEFINITION. Let o € C!. A function & : R, — R, is said to be a
measure of algebraic independence of o at dimension k if for every ideal J
of K[X1,...,X:] of codimension ¢t — k and size T(J) sufficiently large, we
have

[7]la. = exp(=2(T'(J))).

For every algebraic subvariety V of P = Py, x P4, x Py and real numbers
Dy, Dy, Dy > 0, we define H(V'; Dy, D1, D3) as in [13] to be the homoge-
neous polynomial equal to (dim V')! times the homogeneous part of (maxi-
mal) degree (= dim V') of the Hilbert-Samuel polynomial of V' evaluated at
(Do, D1, D>).

Then we know from §3 of [13] that

d! deg G

1 H(G: Dy, Dy, Do) = ——272
(1) (G: Do, D1, D2) doldyds)!

do 1yd1 d2
DO Dl D27

and for a connected algebraic subgroup G’ of G with G’ # G,
(2) H(G/§ Dy, D17D2)

< (d—0)!

- (do — (50)‘(d1 — (51)'(d2 — (52)'

where § = dim G/G’, §p = dim G% /74(G"), 61 = dim G /71 (G'), and Jy =
§ — b — 01.

do*é‘g d1*§1 d2762
DO Dl D2 )

In what follows, we denote by cg, c1, co, ... real numbers depending only
on G,[K : Ql,x,%1,...,Zdy,Y1,---,Ym, by ¢ a real number sufficiently large
with respect to c1,ca,..., and by Sy a real number sufficiently large with

respect to c.

For t = (t1,...,tm) € (NU{0})™, we put |t| = t1 + - + t,,. Further
for h = (h1,...,hm) € Z™, we put ||h| = maxi<i<m |hi| and b -y =
hiy1 + -+ 4+ hymym; and for real S > 0, we put B
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(b1, hin) €27, |hy| < S, 1 < < ml,
ceyh) €ZM,0< h; < S;1<i<m},

As in [1], we put

A, G = (3 (5% Qog ") card('(8) + 61)/G)
H(G'; 8" (log §) 1, 511, gri=2)\ 1/?
H(G; S# (log §)~1, SKi=1, Si=2) >
for S > Sy and a connected algebraic subgroup G’ of G with G’ # G, where a

denotes a constant chosen below. It is clear that card(('(S)+G’)/G’) > S".
We see from (1) and (2), and the definition of pf that

1\ 1/
A(S,C) > (—) (log ) (@=Dw-+50)/9
c
for all connected algebraic subgroups G’ C G. We put
ol /
A(S) = Cgr,lé%A(S,G ),
where G’ runs over all connected algebraic subgroups of G with G’ # G,
and we also put B(S) = min{A(S), c~!(log §)(a=)ntdo)/d}
We introduce the following parameters:

Do(S) = { 54 (log §)LB(S) if dy # 0,

1 otherwise,
_ nf—1 ;
Da(S) = S B(S) if dy 7&'0,
1 otherwise,
_ uf—2 ;
Da(S) = S B(S) if do #'0,
1 otherwise,

and we put Do(S) = [Do(S)], D1(S) = [D1(S)], D2(S) = [D2(S)], where
[€] denotes the integral part of a real number &. Note that if uf > i for
i =0,1,2, then we have D;(S) > 1 for all S > S.

As in [13], if G is K-embedded in P = Py, x Py, x Py, we say that
a connected algebraic subgroup G’ of G is incompletely defined in G by
equations of multi-degree < (Dg, D1, D2) if G’ is an irreducible component
of GNZ(I), where Z(I) C P denotes the set of common zeros of an ideal I
of K[P] generated by polynomials of multi-degree < (Dy, D1, D3). We fix a
norm || - || on T(C).
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We put
S1 = ¢S+ )™ IR A®S) = 54 (log S)°, e(S) = 5™ (log 5)",
where a is the same constant as above. Now we impose the following tech-
nical hypothesis which is similar to (H) of [1]:

(Ha) There exist positive constants ¢ and Sy such that for all S > S
and for all connected algebraic subgroups G’ of G with G’ C G C
P4, x Pg, x Pg,, incompletely defined in G' by equations of multi-
degree < (D(S), D1(S),2D2(S)), and for all y € Y*(S), we have

(i) if y # 0, then [y| > exp(—c(Slog ),
(ii) either ¢(y) € G'(C) or for all u € Tz(C) such that expg(u) €

G'(©), _
lu — Lie p(y)|| = exp(—e(5))-

Let 01,...,04,0441 be complex numbers such that 6;,...,0, are alge-
braic independent over Q, 6,41 integral over Z[fq,...,0,] and K(w) =
Q(61,...,0441). Then the components of w can be written in the follow-
ing forms:

Ahp(glv s 79q+1)
App = h=1,...,d;p=1,...,n),
P Qb:,...,60,) ( )
Bj(el,...,9q+1) .
y-: j:1,...,m—€,
J Qb1,...,6y) ( )
C;i(01,....,0 , ,
eTi¥i — i (0 at1) (i=1,....dy; j=1,...,m—1{),

Q61,...,6,)
95(L18¢(yj)) _ Dsj(elv s 70¢1+1)
Oo(Liet(y;)) Q(01,...,0q)

where Ay, Bj, 5, Dg; and @ are polynomials with coefficients in Z.

Let R(01,...,04,X) € Z[f1,...,04][X] be the minimal polynomial of
Oq+1 over Z[b, ..., 0,]. Let 6=(6y,..., §q) € B(0,exp(—co(95))). By using
the semi-resultant of Chudnovsky, there exists a simple zero 5q+1 of
R(6:,...,04,X) such that |01 —0y11] < exp(—(c/2)0(S)) (cf. [21, p. 263));
and we use the same notation as above for the vector (51, . .,§q+1), ie.,
0=(601,...,00:1).

For any 0 = (64, ... §q+1) with 8 € B9(6, exp(—co(S ) 1 ahp denote
=1,...,q+1).
1,...,n). Now

(s=1,....,N; j=1,....m—1{),

the fractions resulting when all 6; in ap,;, are replaced by 0 (i

Put W := Ca, + --- + Ca,, where @ a, = (a1p, .-, adp) (p =

we shall impose the second hypothesis:

(Hg) Forall § > S, for all § = (61, .. .,5(1) € Bi(f, exp(—cp(S))) and
for all connected algebraic subgroups G’ of G with G’ # G, incom-
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pletely defined by equations of multi-degree < (Dg, D1,2D>), the
following inequality holds:

COdimﬁ/(W NTeq ((C)) > COdimw<W NTgr ((C))

3. The main result and corollaries. We shall prove the following
theorem.

THEOREM. Suppose that hypotheses (Ha) and (Hp) are satisfied and
that k > 1, and if G is nonlinear, then also pu* > 2. Let k be an integer > 0
such that k > k + 1. Then there exists a real number

C1 = Cl(GaX7907 [K : @]5L7x17"'7$d17y1)"'7ym7k) >0
such that
(i) if k =k + 1, the function
&1(T) = exp(cﬂ“m)

s a measure of algebraic independence of w at dimension k,
(ii) if K > k + 1, the function

¢2(T) (k+ 1) (r—1L)(n—dg)

T k/(k—k—1)
“af )
(logT) (@=n)x

1$ a measure of algebraic independence of w at dimension k.
COROLLARY 1. Under the assumptions of the Theorem, we have
degtrg K (w) > [K].

REMARK. We shall compare our result with Ably’s in the special case
that the Dirichlet exponent yf attains its minimum when G’ = {0}, where
G’ is a connected algebraic subgroup of G with G’ # G, and furthermore
we suppose ¢ = 0, since otherwise this is complicated. To avoid confusion,
we shall denote the quantities p* and x by uf(A) and x(A) in Ably’s case,
and by p#(T) and x(T) in our case. Then under the above assumption, we
have

pF(A) = (m +dy + 2d2)/d, k(A) = dm/(m + dy + 2ds),
pH(T) = (m+dy +2dy)/(d—n), &(T)=1+(d—n)m/(m+dy + 2ds).
Hence if [(T")] > [k(A)], our result is better than Ably’s, and otherwise the

latter is better. However, one must bear in mind that our result requires
some superfluous assumptions.

Now we shall state some corollaries derived from our Theorem. Let
Z1,...,% be complex numbers and L an arbitrary subfield of C. Let s denote
the number of elements among {z1, ..., z;} linearly independent over L. For
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simplicity, we shall assume that zi,...,z, (say) are linearly independent
over L, and so we can write zj, = Z;Zl Anpzp, Gpp € L (h=1,...,1).
Then we shall need the following definition similar to that of Chen [4].

DEFINITION. Let a be a positive number and 7 an irrational number.
We say that a family {z1,...,2¢} of complex numbers satisfies hypothesis
H(L,Z;«) (resp. H(L,Z + 7Z; «)) if there exist positive constants c, and
N, such that for all integers N > N,, all integers k with 1 < k£ < s and
all Ni, i, € Z (vesp. iy i € Z+TZ) (1 < iy < --- < i < t) satisfying
|Aiy.ir] < N, we have either

Yo N det(aiujv)lgu,vSk‘ =0,

1<ip < <ip <t

max
1< < <gr<s

or

max
1<j1<-<jrp<s

> N det(aiua‘v)lsu,vSk‘ > exp(—c.N%).
1<ig << <t

Algebraic independence of values of the exponential function. Let x4, ...
..., xq, (resp. y1,...,Ym) be Q-linearly independent complex numbers. Let
L be an arbitrary subfield of C. Let r (resp. r + 1) denote the number
of elements among {x1,...,24,} (resp. {1,21,...,24,}) linearly indepen-
dent over L. As above, for brevity, we shall assume that {z1,...,2,} (resp.
{1,z1,...,x,.}) are linearly independent over L, and hence x;, = Z;Zl AhpTp
(h=1,....d1) (vesp. zp, = > _ganpp (h =0,...,d1), xo:=1). Put

k1 = (dy—r)ym/(m+d))+1, pb = (m+d)/(di—r), o1 = (m—+dy)/mr,
W = (apy, €™ h=1,....dy, p=1,....,ri=1,...,d1,j=1,...,m),
w® = (anp,yj, e h=0,...,d1,p=0,...,r,i=1,...,d1, j=1,...,m).
We consider the following technical hypothesis.
(Hy)  There exist ¢},S7 > 0 such that for all S > S| and for all A =

(AM,...,Aq,) not all zero in Z" satisfying [|A]] < S (resp. for all
h = (h1,...,hy) not all zero in Z™ satisfying ||h|| < S), we have

dq
‘ E i
i=1

> exp(—SWi+m)/2ui-1),

resp.

‘ > hjya“ > max(exp(—¢} S log ), exp(—SH /i +1)y),
j=1
COROLLARY 2. Let o=1 or 2. Suppose that k1>1 and that hypotheses
(Hy) and H(L, Z; (u§+m)/d1(ugfl)) hold. Let k be an integer such that ki >
k + 1. Then there exists a real number ¢1 = c1(x1,. .., Tdy, Y1, -+ Ym, L, k)
> 0 such that
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(i) if k1 = k + 1, the function &1(T) = exp(c1T?") is a measure of
algebraic independence of w'”) at dimension k,

(ii) if k1 >k+1, the function $o(T) = ¢y (T/(log T)*+1)/r1e1)ra/ (k1 —=k=1)
is a measure of algebraic independence of w(?) at dimension k.

COROLLARY 3 (see Chen [4]). Under the assumptions of Corollary 2, we
have

degtrg Q(g(")) > [k1]  (0=1,2).
COROLLARY 4. Leta # 0,1 and (3 be algebraic numbers with deg(3) = 5.
Then , , \
degtrg Q(a’g,oﬂg .aP o ) > 3.

Algebraic independence of values of a Weierstrass elliptic function. We
shall deduce from our Theorem the elliptic analogue of the preceding results.
Let p be a Weierstrass elliptic function with algebraic invariants go and gs,
2 the lattice of periods, and wq, w2 a fixed basis for 2. We put 7 = ws /w;.
Let F be the field of multiplications of g, and O(F) the ring of integers
of F. Let x1,...,24, (resp. y1,...,Ym) be F-linearly independent complex
numbers. We suppose that 2m < md; — 1 if p has complex multiplications,
and 2m < mdy + d; — 3 otherwise. Let L be an arbitrary subfield of C.
Let r (resp. r + 1) denote the number of elements among {zi,...,x4,}
(resp. {1,z1,..., 24, }) linearly independent over L, and let ay, be as in the
exponential case. We put

ko = [F: Q)(dy—r)m/([F : Qlm~+2d1)+1, pb=([F:Q)m+2dy)/(d1—7),
02 = ([F : Q)m + 2dy)/rm,
w® = (anp, p(xiy;); h=1,....di,p=1,...,r,i=1,...,d1, j=1,...,m,
ry; & ),
w® = (anp,yj, p(ziy;); h=0,...,d1,p=0,...,r,i=1,...,d,
j=1...,m, z;y; € 12).
We consider the following technical hypothesis.

(Hz)  There exist ¢, S5 > 0 such that for all S > S and for all A =
(A1,...,Ag,) not all zero in (O(F))% satisfying ||\ < S (resp. for
all h = (hi1,...,hy) not all zero in (O(F))™ satistying ||h] < 5),

we have .
|3 | = exp(-sEAtd )
i=1

resp.

‘ > hjyj‘ > max(exp(—chS log S), exp(—SFAm+iE) /1),
j=1
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COROLLARY 5. Let 0 = 3 or 4. Suppose that k3 > 1 and that hypotheses
(Hy) and H(L, Z + Z7; ([F : Qlm + ui4) /2d1 (1 +log dy ) (1 — 2)) are satisfied.
Let k be an integer such that ko > k + 1. Then there exists a real number
1 =c1(T1y oy Tay s Yty -+ s Yms ky L) > 0 such that

(i) if ke = k + 1, the function &1(T) = exp(c1T?) is a measure of

algebraic independence of w'”) at dimension k,
(ii) if ko >k+1, the function $o(T) = ¢y (T/(log T)F+1)/r202)r2/ (k2 =k=1)
is a measure of algebraic independence of w'?) at dimension k.

COROLLARY 6. Under the assumptions of Corollary 5, we have
degtrg Qw'™)) > [ka] (0 =3,4).
COROLLARY 7. Let p be a Weterstrass elliptic function with algebraic

mwvariants. Let E be the elliptic curve associated to . Let B be an al-
gebraic number of degree & > 2 over F and u a compler number such

that p(u), p(Bu),..., (3% 'u) are defined and u ¢ Q(B). Suppose that
0> 2/[F:QJ. Then:

(i) if  has no complex multiplications (F = Q) and § > 2, we have

S,

degtrg Qlp(u), p(Fu), ..., p(F° 1)) 2 | 2= |,

(ii) if p has complex multiplications ([F : Q] = 2) and § > 2, we have
SUE

deg trq Qo (u). o(Bu). .. o(5 1) > [ 23]

REMARK. In Corollary 7, if p has no complex multiplications and deg(3)
= 4, we have deg trg Q(p(u), p(Bu), p(B%u), p(B3u)) > 2.

4. Propositions. We shall use the notations of §2. For every j with 1 <
Jj <m—{, apoint v; = ¢(y;) = expq(Lie p(y;)) has projective coordinates

(3)  (Q(8), B;(0),Q(0), C1;(0),- .., Ca, ;(0), Q(0), D1;(0), ..., Dn;(0))
in Py, (C) x Pg, (C) x Py(C). For every j with 1 < j < m — ¢, we let
7; be the point with multiprojective coordinates given by evaluating the
coordinate polynomials of (3) at §. Then v; € G(C) (cf. [21, §5]). Further,
for j =1,...,m — £, there exists y; € T¢(C) such that exps(y;) = 7; and
|ILie o(y;) — ;] < exp(—(c/2)o(S5)), since expy is a local diffeomorphism.
PutY =Zji + -+ Zjm_s, I = expG(?); and for h = (h1,...,hy) € 2™,
put h-y = hiyi+- - +hmym € Cand h-y = hagi+- - -+hm—eYm—¢ € Ta(C).
We identify Tg(C) with C% @ C% @ C?%, and for i = 0,1,2 we denote
by p; the projection of Tg(C) onto C%; hence § € T;(C) can be written as

¥ =po(y) +p1(y) +p2(y).
We use the following criterion for algebraic independence:
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PROPOSITION A ([1, p. 207]). Let a = (a1, ...,0¢) €CY k€{0,...,t—1},
and K a number field. Let u : Ry — Ry be a continuous and strictly in-
creasing function. Suppose that there exist cg > 1 and Ny > 0 such that
for every real N > Ny, there exists an ideal In = (GN 1, ..., GNm(N)) Of
K[Xy,..., X4 satisfying

(i) the set of zeros of In in B(a,exp(—coN¥T1u(N))) is empty,

(11) maxlsjgm(N) |GN7j (Q)| S exp(_NkJrlu(N))?

(iii) maxlgjgm(N) t(GN,j) < N.

Then if v denotes the inverse function of u, there exists ca = ca(co,t,k,
[K : Q]) > 0 such that the function &(T) = coT(v(coT)) ! is a measure of
algebraic independence of o at dimension k.

The proof of our Theorem will be established by combining the follow-

ing result with Proposition A. Recall that the constant ¢ occurred in the
definition of A(S,G’).

PROPOSITION B. Suppose that hypotheses (Hp) and (Hg) are satisfied
and that k > 1, and p* > 2 if G is nonlinear. Then for all S > S there
exists an ideal Ts = (Ps,1, ..., Psys)) in K[X1,..., X ] such that

(i) the set of zeros of Is in BI(g,exp(—co(95))) is empty,

(ii) maxi<i<m(s) |Ps.i(8)] < exp(—czo(9)),
(il) max;<i<m(s) t(Ps,i) < caA(S).

5. Auxiliary lemmas. The proof of the following lemma is easy, and
hence we shall omit it.

LEMMA 1. For every polynomial P€C[ X1, ..., X:] and for any two points
z=(21,...,2t) and 2’ = (2},...,2}) of C! satisfying maxi<;<¢|z; — 2| <

€ < 1, we have
|P(z) — P(2')| < eexp(c't(P)),

where ¢ > 1 depends only on z and t.

LEMMA 2. For all h € Z™(S), there exist a finite set By, and a family
(UZ'B),GGB@,OQSN of polynomials in q 4 1 variables with integral coefficients
i K such that

(i) t(u)) < 582,

(ii) for every § € BY(0,exp(—co(S))), there exists B € By such that
(ug(Q),...,uB (0)) is a system of projective coordinates of xa2 ©
expg, (p2(h - 9)).

Proof. For the polynomials (Uf)gegh’ogigj\[ in [1, lemme 2.2], put

ul (Y) =

1

U QY), D11(Y), s Dni(Y), .o, Q). Din(Y), - ., Dy (Y)).
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LEMMA 3 ([19, Proposition 1.2.3]). Suppose that T¢(C) is identified with
C? = {(21,...,24); z: € C}. Let Oy,...,On be as in §2. Then if O; #0
(0 < j < N), there exist polynomials Q;s (1 <i<d, 0 <s <N, s# j),
depending on j, with coefficients in K such that

9 (62 _g, (G0 Oun O Oy
8zi Qj o 8]'7”" Qj ’ @j 7.”79]' '

6. Proof of Proposition B. In the preceding notation, recall a; =

(a11y---yad1)y -+, 0, = (Q1n,...,a4n). Now we define n differential opera-
tors Dy ,..., Dy by
N SN
Doy =Y ainn— ..., Dy, = ins—.
“ i1 " 9z - i1 "0z

For S > S1, we consider a finite set B, and a family (u?) (Be By, 0<i<N)
of polynomials given in Lemma 2. Then the proof depends on the quantity
maxges,, o<i<n [} (0)].

CASE 1: There ezists h € Z™(S) such that

B9)] < exp( - A5
serriSiey U1 O < eXp( 5 Da(S) 1)

Since the proof of this case is as in Ably [1], we shall omit it.

CASE 2: For all h € Z™(95),

3 ¢ o(S)
BeBy 0RI<N [z (O)] > exp( 5 Dy(S)—1)"

In a similar fashion to that of Ably [1], we divide the argument into
several steps. In the first step, we shall construct an auxiliary function with
many zeros, by Siegel’s lemma and the estimation of rank in [14, lemme
6.7]. In the second step, we use the idea due to G. Diaz [7] to construct an
ideal Zg which takes “small values” at € by the extrapolation formula. In
the third step, we appeal to P. Philippon’s zero estimate [13] on algebraic
groups to show that the variety of zeros of Zg is locally empty.

STEP 1: Construction of an auziliary function. For S > S, we put

M(S) = [cd% S(f-e—l)w/m]7 T(S) = [S“ﬁ (log $)*~1].

Note that M(S) > Sy, since S > Sy, and that M(S) < S, because (x —1)uf
< m and c is sufficiently large. For simplicity, we write Dg, D1, Do, A, B,
M, ... instead of Dy(S), D1(S), D2(S), A(S), B(S),M(S),....
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Let E be a set of monic monomials in Z with degree Ds, linearly in-
dependent over K (f) modulo the homogeneous ideal I of K(8)[Z] of poly-
nomials which vanish on Gg; since the K (#)-vector space of elements of
K (8)[Z]/I of degree Dy — 1 is of dimension > ¢gD3%2, we can take E such
that card E > ¢g D2,

We consider the following polynomial:

PXY,.2)= > Y N Pp@XY vz 2y
a<Do—1|8|<Di—1ZX€E

Whereé: (ﬁlv"wﬁdl)?A: ()‘07"'7 ) |/6’ = ”+5d17ZA:
Zy0 - Z3N, and Pagy € Z[X1, ..., X,] and Pa@(g) aa(01,...,0,).
We put z = (20, 21, -+, Zdy» Zdy+1» - - - s Zdy +ds ) AN ( d1+1,-~7zd1+d2)'

Now we define a function ¥ : C¢ — C?ta+N by

V(z) = (z0,€7,...,51,00(2'),...,0n(2)).

We put
F(z):=PW(2)= >  Papa(0)z5 exp(Brzi + - + Ba,za,)
a<Dy—1
[<D1— A by
v < B0 - O ().

By Philippon [11], there exist polynomials Ay, ..., Ay bihomogeneous in
(Xo,..., Xn; X(, ..., X}) such that

Oo(z +u) = A(W'(2): ¥'(W)), .. . On(Z +u) = An(¥'(2); ¥ ()
for 2/ and v’ in C%, where ¥'(2') = (Oy(Z'),...,On(2")). Hence we have

F(z+u)= ) Papa(0)(20+uo)* exp(Bi(z1+ur)+-- -+ 5, (2, +ua,))

aSDofl

s x Ao(W/ (), W/ (W) -+ AW (), W ()
z*e
for z = (z0,...,2dy+d,) and u = (ug,...,Ud,+d,). Then for b € N™(S5), we
obtain
F(z+Lieph-y)) = > Papr(0)Rapr(¥(2); ¥(Liep(h - y))),
OéSDQ*l
|B|<D1—1
Z*€E

where Rapx(X,Y,Z; X', Y', Z') is a polynomial in (X, Y, Z; X', Y', Z') with
degX7X/ RaﬁA S (6] S DO_]_, deg)_/7}_// RQQA S |g’ S D]__]_, and degZ7Z/ Ra7ﬁA
<c7(Ao+ -+ M) < ¢7Ds. Note that

DY - DY F(z+u),—0 = DY - Dir F(u)
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for (t1,...,t,) € N® and u € C?. For each h € N™(S) and O, (') # 0, we
see from Lemma 3 that

F(z + Liep(h - y))
t1 tn 7 .
Dﬂl T DQn < 8]0 (g/)CSDz )Z:[] - Z Paéﬁ(g)

a<Dy—1
|BI<D1—1

Z>*CE
X UQQA@ T RN ety erar(by) Oo(Lieyp(h - y)), ...
= QN(L16¢(ﬁ ’ Q)))?
where Uqp) s a polynomial with algebraic coefficients in variables (X, Vo1, ...
Vd1+d2,17-- VE]n;-- Vd1+d2,n7Y Z) With degX UQQA S (6% S DO — 1,
degV Uaﬁ/\ < |t| < T, dng Uaﬁ)\ < (hl +--+h ) max 3; < mD1S,
degy UagA < gD, and t(Ua/g)\) < clOTlog(Do +Dy+Dy+T).
For each h € N™(S), we choose jj,, 0 < j, < N, B, € By, such that

Bn
max 0)|.
BGB@7g<i<N|u ( )| ]u (_)|

Here (uy Bn @,... ,u?\? (8)) are the projective coordinates of x20v(h-y). Then

we have
Bh

W0 cg Do
(4) Q(Q)”D“mms(@j (Lijehziih'y))>

F(z + Liep(h - y))
xD;---Dg;( Y ) = Y Pusa(@Hapanl0),
z=0

@jo (5,)08D2 a<Do—1
|IB|<Di—1
Z2€E
where Hogant(X1,. .., Xg41) is a polynomial with integer coefficients in K.

Now we shall require that Dy ~ T'. For this we shall choose a constant a
(cf. §2) as follows:

(C1) (a—1)n+dy = ad,
and hence a = —(n — dy)/(d — n) < 0. Then we have
t(Hapant) < c11(Dolog S + (T A Dg)log Do + Tlog Dy + D1 S + D»5?)
< c12A(S),
where T'A Dy means min{7’, Dy}. We put
X = (X1, Xgs1)s  Papa(X) = Papa(X1,..., Xy),
Hy(X)= Y > Y Papr(X)Hapane(X),
a<Do—1|8|<D1—1 Z cE
n; = max{degy, Hoprns; @ < Do —1, |8 < Dy —1,
Z e B, heN"(M), |t <T}+1 (1<i<q).
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The purpose of this first step is to find polynomials P,y not all 0 with
rational integral coefficients with degy, PQEA < n; (1 < i < q) such that
Hp (X)=0forall h € N*(M) and for all t € N", |t| < T. Now we consider
the system
(S1) {Hpt(X) =0; h e N"(M), L e N", |t| <T}
with unknowns the coefficients of the polynomials Pugy (o < Do — 1, 8] <
Dy — 1, Z* € E) and with coefficients the coefficients of the polynomials
Heopantj (@ < Do —1, || < Dy —1, Z* € E, h € N"(M), |[t| < T,
0 <j < ¢ —1). Then we shall show that (S1) has a nontrivial solution. The
system of linear equations
(S2)  {Dg - Dy F(Liep(h -y)) = 0; h € N"(M), t e N", |t| < T}

with unknowns z, with {z,; 7} = {Paga(8); « < Do—1, |B| < D11, ZA€E}
is of rank at most 8™ G TV card((I'(M) + G')/G')H(G"; Do, D1, D) for
every connected algebraic subgroup G’ C G (cf. [14, lemma 6.7]). By (4),
(S2) is equivalent to the system of linear equations

(S3) {Hni(0) = 0; h e N™(M), t e N", [t| <T}

with unknowns x.
On the other hand, we have

Hy(0) =0 & Y Papa(0)Haprnsi(0) =0 (V5,0 < j <8’ —1).
QSDo—l
|IBI<D:1—1
Z2€E

Since 01, ..., 0, are algebraic independent over K, we obtain a linear system
such that the unknowns are the coefficients of P, 3\ and the coefficients are
the coefficients of Hygxntj, which is exactly the system (Sy).

From degy, Papy < n; and degy, Hapant < ni (1 <i < q), we deduce
that the rank L’ of (&) satisfies L' < 29(]]?_; n;)d" - rank(S,). From the
same arguments as in Ably [1], we deduce

q
(5) L' < 2q<Hn,~) degy ., R
i=1

x &M G TV card((IN(M) + G')/G'YH(G'; Dy, D1, D).

The number N of the unknowns of (S;) is at least c13([]L, ;) Dg° D9 DS2.
We shall show that L’ < N. Recall the definition of A and B in §2.

Cask (i): B = ¢ !(log §)((a=Dntdo)/d " Taking G’ = {0} in (5), we ob-

tain

q
L <21 ( 11 n) degy  R-T"M™",

i=1
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since ¥ = n. On the other hand, it follows from our choices of parameters
that

D D{* D3> > 2—1d grid=di=2dz (Jog g)(a=1n,
c
Recalling the definition of T and M and combining these results, we have
N > 2[K : QL since c is sufficiently large.

CasEk (ii): B = A. Let G, be the connected algebraic subgroup of G such
that A = A(S,Gp). From the definitions of A(S,Gj) and the parameters
Dy, Dy, Ds, we have

. 1 H(G!:Dy/B,D,/B,Dy/B
Adim G/ G, > —T”card((F(S)+G'0)/G6) ( 0’_0/ 7_1/ 7_2/ )
c H(GaDO/Ble/B7D2/B)
Taking account of the homogeneity of H and noting A = B, we have
o 1 o
I{(G7 Do, Dl, DQ) 2 E T card((F(S) + GIO)/GE))H( 6, Do, Dl, D2)
Furthermore, using (1) and recalling the choice of M we have
1 o
D DY D > — 27 (degy ., R)B™ % [K : QT
C14 !

x card((I'(M) + Gt)/Go)H (Go; Do, Dy, D),
where ¢14 = c13(][ ni), since c is sufficiently large. Finally, taking G’ = Gj,
in (5), we obtain N > 2[K : Q]L'.

Therefore in both cases, we have the same upper bound, and hence we

can apply Siegel’s lemma to find a nontrivial solution of the system (&)
such that max(t(Pagy)) < c15A(S).

STEP 2: Derivation of coefficients and extrapolation. The polynomials
Hj, constructed in the first step may vanish in a neighborhood of 8, and
hence we need to modify them to get polynomials that satisfy the conditions
of the proposition. For this we shall make use of the idea of Chudnovsky,
developed by Diaz [7]. For ¢ = (i1,...,i,) € N? we define the differential
operator and the length of i by

: 1 o \" d \"
pDi—_— — (2 ) ... | =dy 4+ -4
i1!---iq!<8X1> (axq) I

respectively. Let 0 € B(0, exp(—co(S))), and let (61, .. .,0q+1) be the ele-
ment of C4t! associated to § as in §2; we denote it by the same notation
again. The set

1(0) := {i € N 3(a, B, )), @ < Dy—1, |B| < D1—1, Z* € E, D P55 (0) # 0}
is nonempty and finite. Put

i@) = min i, I={i@) € B, exp(—co(S))}.
i€1(0)
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For ¢ € I, we put

Hyi(X)= > > Y D'Papr(X)Haprnt(X).

a<Do—1|p|<D1—1Z*€E

LEMMA 4. For all h € N™(S), allt € N™ with |t| <T/2, and all i € I,
we have

|Hpti(0)| < exp(—ci60(S))-

Proof. Following Ably [1], we first prove this for b € N™ (M), and then
for h € N™(S). We fix i € I and 6 such that i(0) = i. We have

(6)  Hpi(0)= > (D'Papr(0) — D*Papr(0)) Haprni(0)

By the definition of i = i(§) and the construction of Hy,, we have
DHy@) = Y. Y. ) D'Pupr(0)Haprni(8) = 0.
a<Dp—1 ‘g‘ng—l ZAEE

Using this and Lemma 1 in (6), we have

D) V(@) < exp( =5 0(8) ) explernA(S) < exp( - o(5))

because t(Hapgant) < c12A(S) and t(D Pagy) < c18A(S).

Eztrapolation. We shall extend this upper bound to the pair (h,t) with
h € N™(S), t € N*, |t| < T'/2. For this we consider the following polynomial
and an analytic function:

P(X,Y,Z)= Y. > Y DP.p()X°YEZ
a<Do—1 |B|<D1—1 ZX€E
F(z) = P((2)),

where z = (20, 21, -« s Zdys Zdi+1s - « -5 Zdy+ds) = (20, 215+ -5 2d,, 2" ). We put
Ry(S) = c19S with ¢19 = max;{2, m|y;|}, and Ry(S) = Sl+(r=Du* /3 For
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simplicity, we write M, Ry and Ry in place of M(S), R1(S) and Ry(S). We
define a one-variable function g.(z) by

(8) gu(z) = D - Dl F(Lie p(2))
for t = (t1,...,t,) € N™; this is clearly an entire function. We define
6(M)=  min {1y —y"[}.
yl’y//eY(M)
y'#y"

By applying an extrapolation formula [15, lemme 4.5] to the function g:(z),
we obtain

N N AR\ TM™/2
) [ln < 2l ()
2
m m—1 —~
g 18R, TM™/2 Y] TM™ /2 - gi(k)(}l'g)
M|ym| 26(M) h-yeY (M) k! ’

0<k<T/2

where g( )( ) = (0/02)*g;(z). From hypothesis (Ha) we have (M) >

So. We shall estimate |§£k) (h - y)|. We in-
) 12A( )that

exp(—cyM log M), since M >
fer from Lemma 1 and t(Hagant

W | T Y Y 0@ < on(-5 o)
a<Do—1 |8|<D1—1 Zrek 3

for all h € N™(M) and all ¢ € N™ with |t| < T. Then we have the following
equality analogous to (4):

(11) Q(Q)T+D°+mDIS< o, (Lfgzz(;(i);t ))) -

F(z+ Lie (b - 3)) .
x Dy, '“%’L( 6 (7D ) = 2. D'Papn(@Haprn(®).
Jo\= z=0

From the assumption in this case we have

S
|uff )| > exp(—gl)i(_)l) for h € Z™(S).

Further, since 0, is of order < 2, we obtain |@;, (Liey(h-y))| < exp(c205?),
and finally |Q(8)| > ¢21 > 0. Hence from (10) and (11) we have
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()

<exp (—% Q(5)> eXp(

< exp (_E Q(5)>

for all h € N™(M) and all t € N with |¢{| < T. We shall use the following
identity:

D;l- Dt F(Lleap( y))

— < > ( )Dtl T1 Dtn’rn<ﬁ(g+LleS0(}—7’g))>
0<mi<t; o O (2/)s P> 2=0

1<i<n

(12) ‘D(t;l...

ola !

Q(S)) exp((c17 + 20) A(S))

x Dgt - Dgn(0,(2)7) 2 =0-

Then (12) yields

15

for all h € N™(M) and all t € N with |{|] < T. From our assumption,
Lie p(C) C W, we have Lie p(z) = ¢1(2)ay + - -+ + €n(2)a,, for z € C, where

DL -+ Dir F(Liep(h - y))| < exp(—— 9(5)>

li(z) = liz, ..., ly(2) = £,z for some complex numbers /1, ..., ¢,. Note that
~ k! / ’ ’ I o~
gz(k)(z) = Z PV (- 6 Dg T - Dy T (Lie o(2))
oot =k L n
>0

for an integer £ > 0. Hence
~ c
13) @I < eslenT)esp( 5 o(8)) < exp( 5005 )
for all h € N™(M), all t € N* with |t| < T'/2, and 0 < k < T'/2. It follows
easily that
|§L|R2 S eXp(CQQ(T log DO + Tlog D1 + DO lOg R2 + D1R2 + DQR%)),

and taking into account (9) and (13), we have |g|r, < exp(—ca30(5)), since
TM™logS >< o(S). Therefore

(14) |9¢(h - y)| < exp(—ca30(5))

for h € N™(S). From the properties of the theta function (cf. [20, lemme
2.2]), we have max|0;(Lie(h - y))| > exp(—c245?), and we also obtain

max|ui’8b (0)| < exp(c245?), and |Q(0)|TTPo+tmD1S < exp(cas A(S)). Thus
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we deduce from (8), (11), and (14) that
S Y Y DR @ Hapan(0)] < exp(—caolS))

a<Do—1 |B|<Di—1 Z2€E

for all h € N™(S) and all t € N™ with |¢{| < T//2. Finally, Lemma 1 shows
that

[ Hpei(0 ‘ Yoo D> D DiPap(@ QAM(Q)‘geXP(—CWQ(S))

a<Do—1 |B|<Di—1 Z cE

for all h € N™(S) and all t € N™ with |t| < T/2.
This completes the proof of Lemma, 4.

STEP 3: Philippon’s zero estimate
LEMMA 5. The family {Hpes; h € N™(S), t e N*,|t| <T/2,i € I} has

no common zeros in BY(0,exp(—co(95))).

__ Proof. The proof is by contradiction. Suppose that there exists a point
0 = (61,...,04) € B0, exp(—co(S))) such that Hp:;(0) = 0 for all h €
N™(S), all t € N™ with |t| <T/2,and all i € I.

Let a4,...,a,, and W be as in §2. We see that a,...,a, are linearly
independent over C. Denote by Dg , ..., Dg the differential operators corre-

sponding to ay,...,a, (cf. the beginning of this section). Let (1, ..., Ym—¢)

be the element of T (C)™~* defined as above. Then by the same arguments
as in the previous section, we have

Bn (g ~
~ h (Q) cg Do F(Z Th- N)
0 T+Do+les< u.]h ) Dzl . DEn < = L y >
(Q(—)) @’) a, a 8]0 (g/)C@gDz 2=0

Jh p2 -

= Y D'Papr(0)Haprni(6) = Hyurs(6) = 0.
a<Do—1
6]<D1—1
Z2cE

By the previous arguments, we then have Dt1 '--Dt" ~(h -y) = 0, since
Q(0) # 0 and uﬁh( 6) # 0. Hence P(X,Y Z) Vanlshes to order at least

[T/2] along W on I'(S). On the other hand, by our construction, P is not
identically zero on G, and hence we see by Philippon’s zero estimate [13,
théoreme 2.1] that there exists a connected algebraic subgroup G’ of G with
G'" # @G, incompletely defined by equations of multi-degree < (Do, D1, 2D5),
such that
T-2 : w
(15) <[ o fCOd”iw(WmTG'(C))> card((I'(S) + G')/G")
codimg; (W N Tg: (C))

X H(G,;50751752) < H(G;50751)252)-
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From our hypothesis (Hg), we have
codimg; (W N T (C)) > codimy (W N Ter(C)).
As in Ably [1, p. 222], we deduce from hypothesis (Ha) that
card((I'(S) + G')/G") > card((I'(S) + G')/G").
By the homogeneity of H, we infer from (15) that

H(G,a50/3>51/3>52/3)
H(G750/3751/B752/B)
< deBdln’lG/G/

(16) (g) card((T(S) + G') /@)

Recalling the definition of A(S,G’) and T, and taking into account A <
A(S,G") and B < A, we conclude from (16) that ¢ < 223", which is impos-
sible, since ¢ is sufficiently large. This completes the proof of Lemma 5.

Proof of Proposition B (in Case 2). For h € N™(S), t € N* with || <
T/2, and i € I, we put

Hpyyi(01,...,00) == 1(Hpti(01,...,04, X), R(01,...,04, X)),

where r(, ) denotes Chudnovsky’s semi-resultant. We see from [3, p. 207]
and Lemma 4 that
|Hpyypi (01, ..,04)] < exp(—caso(S)), t(Hp;) < caA(S).

It follows from Lemma 5 that the family {H;,,; h € N™(S), t € N", |t| <
T/2, i € I'} has no common zeros in B4(f,exp(—co(S))). If we denote by
{Ps1,. -5 Psms)} the family of polynomials {H};,;; h € N™(S), t € N",
t| < T/2, i €I} for S > Sy, and if we put Zg := (Ps,j)1<j<m(s), then the
ideal Zg satisfies the conditions of Proposition B. This concludes the proof
of Proposition B.

7. Proof of the Theorem. We shall show that the w of our Theorem
satisfies the assumption of Proposition A. We may assume without loss of
generality that 6, € Kw] for all j,1 < j < ¢q. Put Fj(w) := 6;, where
Fj € KD—/] (1 <J< Q)a and put QS,’L()_/) = PS,Z(FI(}_/)7?F¢](}_/)) (1 <
i <m(S)), where Pg; are the polynomials in K[X1, ..., X,], constructed in
Proposition B. It is clear from Proposition B that

|Qs,i(w)| = [Ps,i(0)| < exp(—cz00(9)), t(@s:) < cs1t(Ps;i) < cs2A(S).
On the other hand, it follows from Lemma 1 that for j,1 < j <gq,

|Fj(w) — Fj(@)| <exp(—co(S)) whenever ||&—w| < exp(—2co(S)).
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Putting § = F;(w), we have |8 — 0] < exp(—co(S)); and it follows from
Proposition B that
Ps.i(0)| = (@) # 0.
(e [Psa(0)] = | max Qs (@) #
Hence for all S > Sy, we have:

(i) the family (Qs,i)i<i<m(s) has no common zeros in the ball with
center w and radius exp(—2co(5)),
(i) maxi<i<m(s) |@s,i(w)| < exp(—c300(5)),

(iii) maxlgigm(g) t(QS’i) < ngA(S).

Now recall the definitions of o(.5), A(S), and k. Put N = ¢32A(S); A(S)
is a strictly increasing function, since p* > 0. Let ¢ be the inverse function
of c32A(S). Define a function u : R, — R, by u(N) = c3p0(o(N))N~F+1),
Since o(N) = S, we have

u(N) = 0309(5’)1\77(’““) = —i?fl S(’“k*l)“u(log S)*k“.
€32
For kK > k 4+ 1, the function wu is strictly increasing. In fact, if k > k + 1,
this is obvious. If Kk = k + 1, we see from (C1) that —ka > 0. For all N
such that o(N) > S, we put Gy = Qo(n),is 1 <i <m(c(N)). Then from
properties (i), (ii), and (iii) above, for all N satisfying o(/N) > S; we have
(i)" the family (G'n,i)1<i<m(o(n)) has no common zeros in the ball with
center w and radius exp(—(2¢/c30) N*+1u(N)),
(ii)" maxi<i<m(o(n)) [Gw,i(w)] < exp(=N*¥1u(N)),
(iil)" maxi<i<m(o(n) HGNi) < N
Hence w satisfies the assumption of Proposition A. Now we have u(N) ><
Glr—k=1)u" (log S)~*2, where N = C32.9H" (log )%, and hence u(N) >«
N#=F=1(log N)~(*~De Note that
e if kK = k+1, the inverse function v of u satisfies log v(T) >< T~/ (x=Da
o if Kk > k+ 1, then

T 1/(k—k—1)
(log T)‘(”‘”“) '

Then Proposition A shows that there exists ¢; = ¢1(G, [K : Q], ¢, x, x1, ...
e sTdys Yls- -+ Ym, ky L) > 0 such that

u(T) >« (

e if Kk = k + 1, the function &1 (T) = exp(c; T~/ (#~1) is a measure of
algebraic independence of w at dimension k,

e if 5> k41, the function @o(T) = c1(T/(log T)~ (v Dkt 1)a/r)r/(r=k=1)
is a measure of algebraic independence of w at dimension k.

This completes the proof of the Theorem.
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8. Proofs of corollaries
Exponential case

Proof of Corollary 2. First, we note that L is an arbitrary subfield of C

and app € L (for all h,p).
For o = 1 (resp. o0 = 2), we take K = Q, G = G% (resp. G = G, x GH),
=wW) = (app, "1 <h<dy, 1<p<r,1<i<d, 1<j < m) (resp.
=w® = (app,yj,e"¥; 0 < h < dy,0<p<r 1<i<d,1<j<m)).
consider the one-parameter subgroup ¢ : C — G(C) defined by ¢(z) =
exp(xlz),...,exp(:cdlz)) (resp. ¢(z) = (z,exp(x12),...,exp(zq4,2))). Put
Y =Zy1+ -+ Zym, I' = p(Y). Note that for both 0 =1 and 0 = 2, we
have ker ¢ = {0}; hence ¢ = rankyz(Y Nkery) = 0.

We put a, = (a1p,...,a4,p) (1 < p < 7) (resp. ap = (aop,---,0d,p)
(0<p<r))and W = Ca +---+Ca, (resp. W) = Cay+---+Ca,). For
brevity, we put W = W or W), From (x1,...,24,) = 2101 + - - + T,
(resp. (xo, ..., %4, ) = Toao+: - ~+xrar), we have Lie p(C) C W. First, for any
algebraic subgroup G’ C G, we note that Lie ¢(C) N T/ (C) = {0}. In fact,
otherwise we have Lie p(C) C Tg/(C), because dimg Lie p(C) = 1, which
contradicts the fact that ¢(C) is Zariski-dense in G(C) and G'(C) € G(C).
Hence for any algebraic subgroup G’ C G, we also deduce that I’'NG’ = {0}.
Next, we note for any algebraic subgroup G’ C G that W N T (C) = {0},
for otherwise we have W N T (C) # {0} and W N Tg (C) # W. On the
other hand, since Liep(C) N (W N Tg (C)) = Liep(C) N Tg (C) = {0},
Lie p(C) is contained in the orthogonal complement of W N T/ (C) in W,
which contradicts the choice of W. Hence we see that ug attains its minimum
when G" = {0}, and so

gy mtdy (di —7r)m

M1 = a 1=
d1 —-T m + d1

Hypothesis (Ha) is a consequence of hypothesis (H;) and the description

of the connected algebraic subgroups of G% (resp. of G, x G%) (see
[22] and also [4]). We shall prove that (Hp) follows from hypothesis

H(L, Z; (i} + m) /di (1} = 1)).
LEMMA 6. H(L,Z; (45 +m)/(1id — 1)dy) = (Hg).

QIE S

Proof. Here we shall only give the proof in the case G = G%. Note that
W/(WnTe (C)) = (W+Te (C))/Ter (C). Put v = dim W/(WNTe (C)). We
suppose that a; + Tc/(C),...,a; +Ta (C) (say) are linearly independent
over C in the vector space T (C)/Tg:(C). Then we shall show under the hy-

pothesis H(L,Z; (i} +m)/(u} — 1)d1) that &@;, + Ter(C),...,q;, + Ter(C)
are linearly independent over C, which yields (Hp). The proof is by contra-

diction. Assume that a; + Tc/(C),...,a; + Tc/(C) are linearly dependent
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over C, and hence there exist v complex numbers eq, ..., e, not all zero such
that e;a; +---+esq;, € Te(C). Since a; = (a1j,,---,dd,5.) (1 <5 <),
we have

(6161]-1 —+ -+ e,,Ele, ce 615d1j1 —+ -+ 61,6111]',/) € Tq ((C)

Then by Bertrand’s theorem [6, Annexe], there exist 6 (= dim G/G’) linearly
independent integer points A(l), e ,A(‘s) € Z% such that

N (1@, + -+ eding,) + -+ AP (@day, + - + euiay,) = 2mgmi
(1<o0<9),

1
H HA(Q)H < 6(65 dl)Dtls’
o=1
where (@ = (Agg),...,)\gﬁ)), me € Z (1 < o < 6) and ¢(6,dy) is a posi-
tive constant depending only on § and d;. We rewrite this system of linear
equations as follows:

prie1 + -+ Py, = 2mymi,
(17)

psi€1+ -+ Psvey = 2mesi,
where for simplicity, we put

ﬁgl = Agg)aljl + st )\&f)achjl) ety

Bov = My, +-- +APaa,;, (1 <0<0).

Denote by p,s the linear forms p,s of as;, replaced by ap;, (1 <p<4,1<

h<di, 1 <s<wv).Let P=(pps)i<o<s,1<s<» denote a § X v matrix.
First, we suppose that m = (mq,...,ms) # (0,...,0). By the well known

result of linear algebra, if rank P < v, then the system of linear equations

P1121 + 0+ P2y = 2mam,
(18)
Ds121 + + -+ Pspzy = 2mgTi

has a nontrivial solution. If rank P = v, we shall consider two cases.

CASE (i): ¥ = . Then (18) has a unique (nontrivial) solution.

CASE (ii): v < 4. Then (17) has a nontrivial solution (e1,...,e,) #
(0,...,0). This means that
pin P pii ottt P ma
rank = rank : :

Dsi - DPow P51t Dev M
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Thus for any n1,...,m,41 with 1 <mn; <--- <n,11 <, we have

Pnia s Pniv My,
: . =0.

Prnoyi,t oo Prpgr,w Mg,y

Then from this equation and an elementary computation, we have

P st Pniv My, Pmi,1 = Pmaa Py 2 e My,
Pnogi, oo Prpgr,v Mg,y Pnoy1,1 = Pnuga,l Prnygr,2 00 Mg,y
Pni1 T Pniwv—1 Pniv = Pmw My,
Pnoiit o Prujawv—1 Prnujawv = Pnogpiv Mnugy

Forallt (1 <t<wv+1) and for all s (1 <s <v), we easily obtain

. ~ C
e~ el < sl A s Jons, — | < 1A exp (5 o(5) ).

1<s<v

[Paessls Bessl < eaal AP, Jmg, | < eaal AT

Hence we have an upper bound

P e Pniv My,
(19) abs :
Dot 0 Pougaw My,
< caA ™+ A exp(— o(5))

< g6 D! exp(—g 9(5)> < eXp(—z Q(S)>-

Next, we shall find a lower bound for the above determinant. We use expan-
sion along the (v 4 1)th row:

Pm,a 0 Pougaid

= m’thm + 4+ mnu+1Anu+1’
Ppiwv - Pnujaw
m"]l e mny+1
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where A,, is the cofactor of m,, (1 <t <wv +1). Hence we have

A, =+ Z /\5171) oAM=\ (regn) oy ()

1t—1 Tt41 Tv41
115y byt1
Qivgy = Qiy_qjn Qiggagn 0 Qipgag:
X
Qiy5, 0 Qiy_q5,  Qippqg, 0 Qiyiqj,

It follows easily that
g A AN AL < A AT )] < (8, m) DS
v+1

1t—1 Tt+1

Thus from hypothesis H(L, Z; (4} +m)/ (1} — 1)dy), we have either

Pni1 T Pnyv My,
. . -0,
Pnoyir 0 Pougar Maug
or
Pny1 T Pn1v My,

abs > eXP(—C:S?Dfla)v

Dnyirr ot Prygaw Magyugg
where o = (,u§ +m)/(uf — 1)dy; but the latter contradicts (19), since a < 0;
and hence rank P = rank(P,'m) = v, where ‘m denotes the transpose of m.
Thus (18) has a nontrivial solution.

In the case of (my,...,ms) = (0,...,0), it is clear that rank P < v.
Then using the same arguments as above, it follows from hypothesis H(L, Z;
ph /(44 —1)dy) that rank P < v, which will be excluded.

Thus we have shown that (18) always has a nontrivial solution (f1,..., f,)
(say). Now we see from (18) that

AOPay, +-+ 2MPag )+ 4 L OPay, + -+ AP ag,,) = 2mgmi
(I1<o<d).
We rewrite this equation as follows:

MO (frazj, + -+ foary,) + o+ AP (fraag, + -+ foaa,;,) = 2mymi
(1<0<0).

Hence using Bertrand’s theorem [6, Annexe] again, we have fiaj, + -
-+ fua;, € Tg/(C). This means that a; + Tc/(C),...,a; + Te(C)
are C-linearly dependent in the vector space Tg(C)/Tq/ (C), which
contradicts our choice of a; ,...,a; . Therefore codimy (W N T (C)) <
COdimw(W N T (C))

This completes the proof of Lemma 6.
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End of proof of Corollary 2. Since hypotheses (Hy) and (Hp) are satis-
fied, Corollary 2 follows immediately from our Theorem.

Proof of Corollary 4. Takey, = 1,y2 = 3,...,y5 = % 21 =loga, xo =
Bloga,..., x5 = B*loga; L = Q(B) in Corollary 2. Then the hypotheses of
Corollary 2 are clearly satisfied. Thus the result follows from Corollary 3 by
putting m =d; =5, and r = 1.

Elliptic case. Let E = E(C) be the elliptic curve associated to p, {2 the
lattice of periods of p, and K = Q(g2, g3), where g2 and g3 are the alge-
braic invariants of . Let wy,ws denote a fixed basis for {2, and hence {2 =
{myw1 + maowq; my,mg € Z}. Put 7 = wy/w;. The exponential map of E is
given by expp : C — E(C) C Py(C),

. { (Lip(2),0'(2)) ifz¢ 0,
(0,0,1) if 2 € 0.

Proof of Corollary 5. If ¢ = 3 (vesp. o = 4), we take G = E% (resp. G =
Ga x E%). We consider the one-parameter subgroup ¢ : C — G(C) defined
by ¢(z) = (expg(212),...,expp(za,2)) (resp. p(z) = (z,expp(z12),...
L exp(Ea,2)

CASE 1: F = Q. We take Y = Zy; + -+ + Zyp,. If 0 = 3 (resp. 0 = 4),
we put w = (anp, L, p(ziy;), 9" (2iy;); 1 <h <dy, 1 <p<r, 1<i<d, 1<
J<m,zy; & 2) (resp. w = (anp, Yj, L, p(wiy;), 9 (iy;);0 < h < dy, 0 <
p<r,1<i<d,1<j<m, zy; €12)).

CASE 2: F # Q, F = Q(7), where T is some quadratic irrational number.
We take Y = Zyy + - - - + Ly + Z7Yy1 + - - - + LTYp, and w = (anp, 1, p(xy;),
O (xiy;), 1, p(ziy;7), @' (@iy;7); 1 <h<di, 1<p<r, 1<i<d;, 1<j<m,
ziy; ¢ 12) (vesp. w = (anp,y;, 1, p(xiy)), 0 (2iy5), 1, p(xiy; 7). 0’ (2:y;7);
0<h<d,0<p<r 1<i<d, 1<j<m, zy; 2)). Recall that
w® = (any, p(riy;);1 <h <dy, 1 <p<r1<i<di, 1<j<m, ayy; ¢
2) and W = (anp, yj, p(iy;);0<h < dy, 0<p<r, 1<i<dy, 1<5<m,
ziy; & §2).

We put a, = (a1p,---,aa,p) (1 < p < 7) (vesp. a, = (aop,---,adp)
(0<p<r)and WO =Ca, +---+ Ca, (resp. W* = Cay + -+ Caq,).
From the same arguments as in the exponential case, we see that ,u,g attains
its minimum when G’ = {0}, and hence

ph = ([F:Qm+2d1)/(di—7), k2= ([F:Q)(di—r)m)/([F:Q)m+2d;)+1.

(Ha) is a consequence of hypothesis (Hg) and the description of the
connected algebraic subgroups of E% (resp. G, x E%) with the aid of the
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effective Kolchin theorem (cf. [10]). Since (Hg) is derived from hypothesis

. #
H(L,Z—i-Zr; [F.Q]m—i—uﬁz >
2d1(1 +logdi)(ps — 2)

by the arguments similar to those of the exponential case, we shall omit its
proof. Finally, since K (w) is algebraic over K(w(?)) (o = 3,4), Corollary 5
is easily deduced from our Theorem and a remark in [1, p. 225].

Proof of Corollary 7. We shall deduce this result from Corollary 6, in the
case 0 =4. We take y; = 3771 (j=1,...,8), z; =" u (i =1,...,5). We
put L = Q(fB). Then it is clear that {1,u} are linearly independent over L
and that 1,u, Bu, ..., 3° 'u are linearly dependent on {1, u} over L. We put

ay = (1,0,...,0), a;=(0,1,4,...,8°71)
~—_—————
o+1 o+1

and W = Cgg + Ca;; hence we have dim¢ W =2 and r = 1.
It is easily checked that hypothesis (Hz) (and hence (Ha)) is satisfied.
Now we shall show that hypothesis (Hp) is always satisfied.

LEMMA 7. Under the assumption of Corollary 7, (Hg) is true.

Proof. The proof is similar to that of the exponential case.

We consider G = G, x E°. Any connected algebraic subgroup G’ of G
with G’ # G has the form G’ = G{ x Gb, where G{; = {0} or G,, and
G is a connected algebraic subgroup of E°. Since W N T (C) = {0}, it
is obvious that ay + T/ (C) and a; + T/ (C) are C-linearly independent in
T (C) /T (C). Then it suffices to prove that ay+7¢/ (C) and a; +T¢ (C) are
C-linearly independent. The proof is by contradiction. Suppose that there
exist complex numbers €1, e2, not both zero, such that e;a,+e2a, € T/ (C).
This means that

e1(aoo, @10, - - -, as0) + e2(ao1, ai, - .., as1) € Ta (C),
that is,

(20) (61500 + 62501, 61510 + 62611, ce 61550 =+ 62551) € TG/ ((C)

In what follows, we denote by ¢;(d) (i = 1,2, 3) positive numbers depending
only on 4. First, we note that ay + T¢/(C) and a; + T/ (C) being linearly
independent implies G’ = {0} x G%. Hence we have T/ (C) = {0} ® T, (C).

CASE 1: §; = dim E° /G = 0. This means T/ (C) = C°. Taking f; =0
and fo = 1, we have
fiag + f2aq € T (C).



238 M. Takeuchi

CASE 2: 0, = dim E°/G) > 0. From (20), we have (ejdig + e2a11,. ..

., e1as0 + e2as1) € T a,- Then by the effective Kolchin theorem [10], there

exist do linearly independent integer points A(l), e ,A(‘sz) € 7° such that for
any o with 1 < g < 4o,

/\5")(61510 +egan) + -+ )\((;Q)(elaéo + egas1) = m§ Yy + m(g)wz,

H)\(E’)H < 201(§)D§52/(52+1 0)

where A& = (Agg), . ,)\gg)). Thus from (20) we have the system of equa-
tions
e1ago + e2ao1 = 0,

(21) eipio + e2p11 = &1,

€1P5,0 + €2Ds,1 = &5,

(g)am + -+ )\( Yaso, Dol = AE Vi +
asi, and &, = m(g)wl + m(g)wg (1 < 0 < §2). For any 11,12 with
1 g 11 < ip < Jg, we easily obtain

where for brevity we put p,o = A
A(Q)

1pisol, [Pi1l, [Pivol, [Pi1] < C38HA(“)H7

(22) Disols [Pistl, [Pisols [Pis1] < C38HA(i2)H7

€l < caol AP, el < canll A€

Denote by p,s the linear forms p,s of aps replaced by aps (1 <o <y, 1<
h <4, 0 <s<1). Now we consider the system of linear equations analogous
o (21),

apoz1 + ap1z2 = 0,

P1oz1 +p11z2 = &1,

(23)
D52021 + Psy122 = E5y -
Put
apo ap1
Pio P11
P = . .
p620 p621

Since agg = 1,a091 = 0,p10 = 0, and py; = )\gl)‘l—i-)\gl)ﬂ—i-- . -+)\((;1)55_1 #0,
we have rank P = 2.



Algebraic independence and Baker’s method 239

First, we assume (&1,...,&s,) # (0,...,0). Then we shall show that
ago aor 0
pio pu1 &

rank =2,

D0 Pox1 o,
which means that (23) has a nontrivial solution.

SUBCASE 2.1: 62 = 1. Then (23) has nontrivial solution (for example,
take z; = 0, 20 = py€1).

SUBCASE 2.2: d3 > 1. From our assumption, (21) has a nontrivial so-
lution (ej,ez) # (0,0). Thus we have rank P = rank(P,*§), where £ =
(0,&1,...,&5,). Hence for any 41,4y with 1 <4y < iy < 69, we have

agp  ap1 0
Pio DPi1 &, | =0.
Din0 Pin1 Ein
By similar arguments to those in the exponential case, from (22) we have
agp  aor 0 c
(24) abs [ po pur 60| ) <en(=S ).
Pin0 Din1 iy

Next, we shall find a lower bound of the absolute value of the determinant
ago aio 0 1 0 0
piso Pin1 &y | =10 Zj’:l AE“)ﬁ”l &i
Pis0 Pis1 &is 0 ijl A§i2)ﬁj_1 &

22:1 A;il)ﬁj_l myl) 25:1 )\gil)ﬁj—l mgil)

Tl G g1 ) | e ) g1 ) |42
Zj:l )\jlz ﬁj*l mllz Zj:l )‘le ﬂ]*l m;z

=: Qw1 + Caws.

It is clear that (1, (2 € Q(fF) and deg (y,deg (s < 4.
By an elementary computation, we see easily that

H(G), H(G) < (eaol A A )@ < (640 DF2) 1) < ¢4y D)

where H({) denotes the usual height of an algebraic number (. If (;w; +
Cowy # 0, we have

[Grwr + Gawa| = C exp(—c3(6)(log D2)™),

where 19 > 1 is some absolute constant and C' > 0 is a number depending
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only on wy,ws and § (see [9, Theorem 1]). Thus in this case, we have

app  aip 0O
abs | |piyo Pin1 & | | = Cexp(—c3(d)(log D2)™),
Pis0 Dis1 iy
which contradicts (24), since S is sufficiently large. Thus we have

apo aip O
Pio Pl & | =0 (1 <y <ip < do).
Pis0  DPisl §i2

This means rank P = rank(P,'¢) = 2, and hence (23) has a nontrivial
solution. - B

In the case of (&1,...,&5,) = (0,...,0), we have rank P < 2; and we can
also show that rank P < 2, which will be excluded.

Thus (23) always has a nontrivial solution (f1, f2) # (0,0) (say). Now by
similar arguments to those in the exponential case, we have fiay + foa; €
T (C), which is a contradiction.

This completes the proof of Lemma 7.

End of proof of Corollary 7. Since hypotheses (Ha) and (Hp) are satis-
fied, we can now apply Corollary 6. We put w* = (1,0,...,0,0,87~1, 371,
e(Bu); 1<5<6,0<s<(6—1)?), w = (p(B°u); 0 <s<§—1). Then
it is clear that degtrg Q(w'®) = degtrg Q(w’).

If p has no complex multiplications, we have F = Q, and hence x =
(6 4+2)/3. Thus if § > 2, we have k > 4/3, and we deduce from Corollary 6
that degtrg Q(w™®) > [(§ +2)/3].

If p has complex multiplications, we have [F : Q] = 2, and hence k =
(0 +1)/2. If 6 > 2, we have k > 3/2, and we infer from Corollary 6 that
deg trg Q(w™) > [(6 + 1)/2].

Acknowledgements. I am grateful to the referee for his valuable sug-
gestions and useful comments.
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