Quaternion extensions with restricted ramification

by
Peter Schmid (Tübingen)

1. Introduction. Dedekind [5] showed that the field

$$
\mathfrak{D}=\mathbb{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{6})})
$$

is Galois over the rationals with group Q_{8}, the quaternion group of order 8 . Only the primes 2 and 3 ramify in this Q_{8}-field, and \mathfrak{D} is totally real. Thus \mathfrak{D} belongs to $\mathcal{K}_{S}^{+}\left(Q_{8}\right)$ for $S=\{2,3\}$. Here for any set S of finite rational primes and any finite group G we denote by $\mathcal{K}_{S}(G)$ the set of Galois number fields (within \mathbb{C}) with group G over \mathbb{Q} which are unramified outside $S \cup\{\infty\}$, and where $\mathcal{K}_{S}^{+}(G)$ is its subset consisting of the totally real fields (being unramified outside S). As in [19, we shall treat only cases where G is a 2 -group, thus eventually appearing as a quotient group of the absolute Galois group $G_{S}(2)$ of the maximal 2-extension $\mathbb{Q}_{S}(2)$ of \mathbb{Q} unramified outside $S \cup\{\infty\}$. For general properties of such pro-2-groups the reader is referred to [9, [15], [18].

The Dedekind field \mathfrak{D} is of extraordinary nature, because if $\mathcal{K}_{S}\left(Q_{8}\right) \neq \emptyset$ for some S, then S must contain at least two distinct primes. Moreover, complex conjugation on a Q_{8}-field must be either trivial or the unique central involution in the group (so that its fixed field must be totally real). In fact, the following holds:

Theorem 0. Suppose S is a finite set of rational primes which is minimal subject to having $\mathcal{K}_{S}\left(Q_{8}\right) \neq \emptyset$. Then one of the following holds:
(i) $S=\{2, p\}$ for some prime $p \equiv 1$ or $3(\bmod 8)$.
(ii) $S=\{p, q\}$ for distinct primes $p \equiv q \equiv 1(\bmod 4)$ satisfying $\left(\frac{q}{p}\right)=1$ $\left(=\left(\frac{p}{q}\right)\right)$.

Conversely, the cardinality of $\mathcal{K}_{S}\left(Q_{8}\right)$ is 2 when S is of type (i), and is 1 otherwise.

[^0]It follows from the work of Witt [23] that S must be of type (i) or (ii), by minimality, and that then $\mathbb{Q}(\sqrt{2}, \sqrt{p})$ respectively $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ can be embedded into a Q_{8}-field (see Lemmas 2.1 and 2.2 below). The converse statement is due to Fröhlich [7]; it may be obtained from the known structure of the maximal pro-2-quotient group with class 2 of the corresponding absolute Galois group $G_{S}(2)$ (see [9, Chap. 4]). In this note we shall present an elementary and constructive approach which enables us to compute the fields explicitly (at least for small primes).

As observed by Jensen-Yui [13], one can also write

$$
\mathfrak{D}=\mathbb{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{3})})
$$

Indeed, \mathfrak{D} is the unique field belonging to $\mathcal{K}_{S}^{+}\left(Q_{8}\right)$ for $S=\{2,3\}$.
Theorem 1. Let $S=\{2, p\}$ for some prime $p \equiv 1$ or $3(\bmod 8)$. Then $\mathcal{K}_{S}^{+}\left(Q_{8}\right)$ contains a single field $L_{p}=\mathbb{Q}(\sqrt{\beta})$. Here β may be written in the form $\beta=(2+\sqrt{2})(a p+b \sqrt{p})$ with positive odd integers a and b satisfying $a^{2} p-b^{2}=2^{r}$, where $r=1$ if $p \equiv 3(\bmod 8)$ and r is odd with $3 \leq$ $r \leq h(p)+2$ otherwise, $h(p)$ denoting the class number of $\mathbb{Q}(\sqrt{p})$. Also, $\mathcal{K}_{S}\left(Q_{8}\right)=\left\{L_{p}, L_{p}^{-}\right\}$where $L_{p}^{-}=\mathbb{Q}(\sqrt{-\beta})$.

The integers a, b may be altered by multiplying $a p+b \sqrt{p}$ with a totally positive unit in $\mathbb{Q}(\sqrt{p})$. For $p=11,17,19,41,43$ we may let $(a, b)=$ $(1,3),(1,3),(3,13),(3,19),(9,59)$, respectively. Note that always $a \equiv 1$ or 3 $(\bmod 8)$, because $-2^{r} \equiv b^{2}(\bmod a)$ with positive odd integers r, a, and therefore the Jacobi symbol $\left(\frac{-2}{a}\right)$ equals +1 . There is an associated dihedral field $\mathbb{Q}(\sqrt{a p+b \sqrt{p}}, \sqrt{2})$, which is cyclic over $\mathbb{Q}(\sqrt{2})$. For $p \equiv 1(\bmod 8)$ we can avoid reference to the (odd) class number $h(p)$ by using another dihedral field (see below).

Theorem 2. Let $S=\{p, q\}$ for distinct primes $p \equiv q \equiv 1(\bmod 4)$ satisfying $\left(\frac{q}{p}\right)=1$. There exists a unique normal number field F of absolute degree 8 containing $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ such that no finite prime of K ramifies in F. There is also a unique subfield E of the pqth cyclotomic field $\mathbb{Q}\left(\zeta_{p q}\right)$ such that $[E: K]=2$ but $E \nsubseteq K\left(\zeta_{p}\right)$ and $E \nsubseteq K\left(\zeta_{q}\right)$. Then $\mathcal{K}_{S}\left(Q_{8}\right)=\left\{L_{p q}\right\}$ where $L_{p q}$ is the unique proper subfield of EF containing K properly which is distinct from E and from F. The field $L_{p q}$ is real if and only if F and E are both real or both nonreal.

There are some comments in order. The cyclotomic field E is real if and only if p and q are in the same residue class modulo 8 (so $p \equiv q \equiv 1$ or $5(\bmod 8))$. The field F is a subfield of the narrow Hilbert 2-class field of $\mathbb{Q}(\sqrt{p q})$, so it has a dihedral Galois group over \mathbb{Q} and a cyclic one over $\mathbb{Q}(\sqrt{p q})$. It is real if and only if the (ordinary) class number $h(p q)$ of $\mathbb{Q}(\sqrt{p q})$ is divisible by 4 (and so F is in the Hilbert class field of $\mathbb{Q}(\sqrt{p q})$), and this
happens precisely when the biquadratic Legendre symbols $\left(\frac{p}{q}\right)_{4}$ and $\left(\frac{q}{p}\right)_{4}$ are equal. These symbols can be easily (and rationally) computed in the present situation (Lemma 2.4). We shall describe F explicitly as a quadratic extension of $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ (Proposition 5.1), thus giving the necessary information on $h(p q)$ in a different way. Unramified Q_{8}-extensions of quadratic number fields which are normal over \mathbb{Q} are studied by Lemmermeyer [17].

For $p \equiv 1(\bmod 8)$, the narrow class number $h_{+}(8 p)$ of $\mathbb{Q}(\sqrt{2 p})$ (having discriminant $8 p$) likewise is divisible by 4 , so that we can construct the $Q_{8^{-}}$ field L_{p} in a corresponding way. If $h_{+}(8 p)$, or $h_{+}(p q)$ when S is of type (ii), is divisible by 8 , one observes in this manner that $\mathcal{K}_{S}\left(Q_{16}\right)$ contains fields which are cyclic over $\mathbb{Q}(\sqrt{2 p})$, respectively $\mathbb{Q}(\sqrt{p q})$. Here Q_{16} denotes the (generalized) quaternion group of order 16.

Theorem 3. Let $G=Q_{2^{n}}$ be the (generalized) quaternion group of order $2^{n}(n>3)$, and let $S=\{2, p\}$ for some prime $p \equiv 1\left(\bmod 2^{n-1}\right)$. Then there are unique real and complex fields in $\mathcal{K}_{S}(G)$ which are cyclic over $\mathbb{Q}(\sqrt{2})$.

This may be seen as a supplement to the work of Damey-Martinet 4, and to that of Fröhlich [8]. By Dirichlet's prime number theorem (or directly) there exist infinitely many primes $p \equiv 1\left(\bmod 2^{n-1}\right)$. One might ask whether for any integer $n \geq 3$ there exist distinct primes $p \equiv q \equiv 1(\bmod 4)$ (with $\left(\frac{q}{p}\right)=1$) such that $h(8 p)$, respectively $h(p q)$, is divisible by 2^{n} (see [11], [22] for the cases $n=2,3,4)$. The Hilbert class fields of real quadratic number fields with discriminant less than 2000 are given by Cohen [3, Section 12.1.1].

If $S=\{2, p\}$ for some prime $p \equiv 3(\bmod 8)$, then $\mathcal{K}_{S}\left(Q_{2^{n}}\right)=\emptyset$ for all $n>3$. In this case we are indeed able to determine the 2 -groups G for which $\mathcal{K}_{S}^{+}(G) \neq \emptyset$, and the complete lattice structure of the fields appearing (Proposition 7.2). This (infinite) lattice turns out to be independent of the particular prime $p \equiv 3(\bmod 8)$, up to isomorphism.

There is a close relationship between the Galois theory of the quaternion group $Q_{2^{n}}$ and that of the dihedral group $D_{2^{n}}$ (of order 2^{n}). This will be made precise in Section 3, where the ground field may be any field of characteristic $\neq 2$. Otherwise we restrict ourselves to the ground field \mathbb{Q}, treating just the ramification types (i), (ii) given in Theorem 0.
2. Preliminaries. We shall refer to the celebrated work of Witt [23], where the general question is treated of when a biquadratic extension of a field of characteristic $\neq 2$ can be embedded into a Q_{8}-field (see also [7], [13]). Recall that the quaternion group $Q_{2^{n}}$, the dihedral group $D_{2^{n}}$ and the semidihedral group $S D_{2^{n}}$ are the (nonabelian) 2 -groups X of maximal class (nilpotency class $n-1$) and order $2^{n}\left(n \geq 3\right.$, identifying $S D_{8}=D_{8}$ when $n=3$). Here the commutator subgroup $X^{\prime}=X^{2}$ is the Frattini sub-
group, the centre $Z(X) \cong Z_{2}$ has order 2 and is contained in X^{\prime}, and $G=X / Z(X) \cong D_{2^{n-1}}$ (where we let $D_{4}=V$ be the elementary group of order 4). In particular, the Schur multiplier $M(G)=H_{2}(G, \mathbb{Z})$ of $G=D_{2^{n-1}}$ has order 2 , and $Q_{2^{n}}, D_{2^{n}}, S D_{2^{n}}$ are the unique Schur covers of G, up to group isomorphism.

Lemma 2.1. Suppose that L / \mathbb{Q} is a Galois extension with group $X \cong Q_{2^{n}}$ $(n \geq 3)$. Let $K^{\prime} \subseteq K$ be the fixed fields in L of $X^{\prime} \supseteq Z(X)$. Then K is (totally) real, and at least two rational primes are ramified in K^{\prime}. Let $L=K(\sqrt{\beta})$ for some $\beta \in K$. Then $L=\mathbb{Q}(\sqrt{\beta})$, and $L^{\prime}=\mathbb{Q}(\sqrt{-\beta})$ is a normal $Q_{2^{n}}$-field distinct from L. Exactly one of L, L^{\prime} is real.

Proof. Obviously $K^{\prime}=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ is biquadratic over \mathbb{Q}, where we may assume that a and b are distinct square-free integers. Then every prime dividing a or b is ramified in K^{\prime}. Complex multiplication on L is either trivial (for L real) or the unique (central) involution in X having fixed field $K\left(\operatorname{Gal}(K / \mathbb{Q}) \cong D_{2^{n-1}}\right)$. So K is real in any case. Clearly β exists (as $[L: K \mid=2$), and L is real if and only if β is totally positive. Let $H=\operatorname{Gal}(L / \mathbb{Q}(\sqrt{\beta}))$. Then $H \cap Z(X)=1$ and so $H=1$, because every nontrivial subgroup of X contains $Z(X)$. Finally, L^{\prime} is the unique proper subfield of $L(i)$ which contains $K=L \cap K(i)$ properly and is distinct from L and from $K(i)\left(i=\zeta_{4}, \zeta_{r}=e^{2 \pi i / r}\right)$. Now $\operatorname{Gal}(L(i) / \mathbb{Q}) \cong X \times Z_{2}$, and so $\operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right) \cong X$.

Whenever we have two fields $k_{1} \neq k_{2}$ of characteristic $\neq 2$ (in a common overfield) which are of degree 2 over $k_{1} \cap k_{2}$ (and so $\left.\operatorname{Gal}\left(k_{1} k_{2} / k_{1} \cap k_{2}\right) \cong V\right)$, the companion field of k_{1} and k_{2} is the unique further subfield of $k_{1} k_{2}$ quadratic over $k_{1} \cap k_{2}$.

Lemma 2.2. Let $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ for some distinct (finite) rational primes p, q. Then K can be embedded into a Q_{8}-field if and only if one of the following holds:
(i) $q=2($ say $)$ and $p \equiv 1$ or $3(\bmod 8)$.
(ii) $p \equiv q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p}\right)=1$.

Proof. For nonzero rational numbers a, b let (a, b) denote the class of the quaternion algebra $\left(\frac{a, b}{\mathbb{Q}}\right)$ in the Brauer group $\operatorname{Br}(\mathbb{Q})$. Then $(-a,-b)=$ $(-1,-1)$ if and only if the quadratic forms $a X^{2}+b Y^{2}+a b Z^{2}$ and $X^{2}+Y^{2}+Z^{2}$ are equivalent over \mathbb{Q}. This forces that $a>0, b>0$, and by Witt's theorem the latter condition is fulfilled if and only if $\mathbb{Q}(\sqrt{a}, \sqrt{b})$ can be embedded into a Q_{8}-field. By the Hasse-Minkowski principle the quadratic forms are equivalent over \mathbb{Q} if and only if they are equivalent over all completions \mathbb{Q}_{r}, r a prime or $r=\infty\left(\mathbb{Q}_{\infty}=\mathbb{R}\right.$; see e.g. Serre [20, Theorem 9, p. 44]). This in turn means that we have to compute the local Hilbert symbols $(-a,-b)_{r}$.

Now let $a=p$ and $b=q$ be distinct primes, and apply [20, Theorem 1, p. 20]. Note that $(-1,-1)_{2}=-1$ and $(-1,-1)_{r}=1$ for all odd finite primes r, as well as $(-p,-q)_{r}=1$ whenever $r \notin\{p, q, \infty\}$. Check the remaining few cases.

Lemma 2.3. Let $K=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be a biquadratic field which can be embedded into a Q_{8}-field $L=K(\beta)$ over the rationals. Then every Q_{8}-field containg K is of the form $K(\sqrt{c \beta})$ for some rational number $c \neq 0$, where $L=K(\sqrt{c \beta})$ if and only if $c \in K^{* 2}$.

This is immediate from Witt [23]; see also [13, Proposition I.1.8].
Lemma 2.4. Suppose p and q are distinct odd primes satisfying $p \equiv$ $q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p}\right)=1$. Write uniquely $p=a^{2}+b^{2}$ and $q=c^{2}+d^{2}$ with positive integers a, b, c, d, where b and d are even. Then $\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=$ $(-1)^{(p-1) / 4}\left(\frac{a d-b c}{p}\right)$, and this is +1 if and only if the class number $h(p q)$ of $\mathbb{Q}(\sqrt{p q})$ is divisible by 4 .

In the above situation $\left(\frac{p}{q}\right)_{4}= \pm 1$, the positive sign holding when p is a 4th power modulo q. The first statement is due to Burde [2]; the statement on the class number follows from Theorem 5.6 of Fröhlich [9]. For the next lemma see also [9] and [24].

Lemma 2.5. For any prime p the class number h of $\mathbb{Q}(\sqrt{p})$ is odd. The narrow class number h_{+}of $\mathbb{Q}(\sqrt{p})$ is equal to h if and only if its fundamental unit has norm -1 , and $h_{+}=2 h$ otherwise. Also, $h_{+}=h$ is odd if $p \equiv 1(\bmod 4)$.

Lemma 2.6. Let $q<p$ be primes such that $p \equiv 1(\bmod 8)$ if $q=2$, and $p \equiv q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p}\right)=1$ otherwise. Then the narrow class number of $\mathbb{Q}(\sqrt{p q})$ is divisible by 4, and its narrow Hilbert 2-class field has a dihedral Galois group over the rationals and is cyclic over $\mathbb{Q}(\sqrt{p q})$.

One knows that $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ is the (narrow) genus field of $\mathbb{Q}(\sqrt{p q})$ (Hasse [10]). Hence the first statement follows from [9, Theorem 5.2]. The rest is immediate from Hasse's work.

Lemma 2.7. Let k be any field of characteristic $\neq 2$, and let $k_{0}=k(\sqrt{d})$ be a quadratic extension. There exists $E \supset k_{0}$ which is cyclic over k of degree 4 and solves the embedding problem $\left(k_{0} / k, Z_{4}\right)$ if and only if d is a sum of two squares in k. If $k=\mathbb{Q}$ (or any Hilbertian field), the embedding problem $\left(k_{0} / k, Q_{8}\right)$ is solvable if and only if d is a sum of three squares in k.

For the first statement we refer to Serre [21, Theorem 1.2.4], and for the second one to Jensen-Yui [13, Theorem II.2.1]. Cyclic extensions of the rationals are cyclotomic by the Kronecker-Weber theorem. We shall repeatedly use the solutions $B_{2}=\mathbb{Q}(\sqrt{2+\sqrt{2}})$ and $B_{2}^{-}=\mathbb{Q}(\sqrt{-2-\sqrt{2}})$ of the
embedding problem $\left(\mathbb{Q}(\sqrt{2}) / \mathbb{Q}, Z_{4}\right)$. Here B_{2} appears in the (cyclotomic) \mathbb{Z}_{2}-extension of $\mathbb{Q}=B_{0}$, with $B_{1}=\mathbb{Q}(\sqrt{2})$.

The following is standard (see e.g. [13]).
Lemma 2.8. Let k be any field of characteristic $\neq 2$, and let a, b be elements of k.
(a) The splitting field of the polynomial $X^{4}+a X^{2}+b$ is cyclic of degree 4 over k if $b \notin k^{2}$ but $b\left(a^{2}-4 b\right) \in k^{* 2}$.
(b) Suppose $K=k(\sqrt{a}, \sqrt{b})$ is a biquadratic extension field of k such that $(a, b)=1$ in $\operatorname{Br}(k)$. Then there exist x, y in k such that $x^{2}-a y^{2}=b$, and $F=K(\sqrt{x+y \sqrt{a}})$ is a Galois extension of k with dihedral group (of order 8) which is cyclic over $k(\sqrt{a b})$.
Assume in part (b) of the above lemma that the embedding problem $\left(k(\sqrt{a b}) / k, Z_{4}\right)$ is solvable. Then $a b=u^{2}+v^{2}$ is a sum of two squares in k (Lemma 2.7). Hence $a x^{2}-a^{2} y^{2}=a b=u^{2}+v^{2}$, and therefore a and b are sums of three squares in k. We shall see in the next section that $K=k(\sqrt{a}, \sqrt{b})$ can be embedded into a Q_{8}-field over k.
3. Dihedral and quaternion fields. In this section k may be an arbitrary field of characteristic $\neq 2$. Every algebraic overfield of k is understood to be in a given algebraic closure of k.

Lemma 3.1. Suppose L_{1}, L_{2} are Galois extensions of k with groups X_{i}. Let $L=L_{1} L_{2}$ and $K=L_{1} \cap L_{2}$. Then $\operatorname{Gal}(L / k)=X_{1} \times_{G} X_{2}$ is the fibre product of X_{1} and X_{2} with respect to the natural epimorphisms (via restrictions) onto $G=\operatorname{Gal}(K / k)$.

This is obvious (and certainly well known), because $\sigma \mapsto\left(\sigma_{\mid L_{1}}, \sigma_{\mid L_{2}}\right)$ is a monomorphism of $\operatorname{Gal}(L / k)$ into the direct product $X_{1} \times X_{2}$ whose image consists of those elements of X_{1}, X_{2} which agree on K.

Hypothesis. Let K / k be a Galois extension with group $G \cong D_{2^{n-1}}$ ($n \geq 3$).

Proposition 3.2. Assume K is embedded into two fields $L_{1} \neq L_{2}$ which are both Galois over k with groups $X_{i} \cong Q_{2^{n}}$. Then there is a subfield of $L=L_{1} L_{2}$ which is quadratic over k and not contained in K. An analogous statement holds when $X_{i} \cong D_{2^{n}}$ and $n \geq 4$, or $n=3$ and the L_{i} are cyclic over the same subfield k_{0} of K of degree 2 over k.

Proof. Clearly $L_{1} \cap L_{2}=K$. Let $Y=\operatorname{Gal}(L / k)$ and $M=\operatorname{Gal}(L / K)$. Then $M=Z(Y)$ is elementary of order 4. Indeed, if $M_{i}=\operatorname{Gal}\left(L / L_{i}\right)$, then we may identify $X_{i}=Y / M_{i}$ and get $M / M_{i}=Z\left(X_{i}\right)(i=1,2)$. Let L_{0} be the companion field of L_{1} and L_{2}, and let $M_{0}=\operatorname{Gal}\left(L / L_{0}\right)$ and $X_{0}=Y / M_{0}$. Then $M=M_{1} \times M_{2}=M_{1} \times M_{0}$, and we may identify $G=Y / M$. The
subfields of K quadratic over k are contained in the fixed field $K^{\prime} \subseteq K$ of $G^{\prime}=G^{2}\left(\right.$ where $\left.\operatorname{Gal}\left(K^{\prime} / k\right) \cong V\right)$.

Let us first consider the case $n=3\left(K^{\prime}=K\right)$. If X_{1} and X_{2} are quaternion, then L_{1} and L_{2} are cyclic over any subfield of degree 2 over k, implying that L_{0} is elementary (of degree 4) over all these subfields. If X_{1} and X_{2} are dihedral, then L_{1} and L_{2} are cyclic over the same such subfield k_{0} by assumption, and they are elementary over the other ones. Thus in both cases $\operatorname{Gal}\left(L_{0} / k\right) \cong Y / M_{0}$ is an elementary abelian group (of order 8).

Hence we may assume that $n>3$. Let N be the inverse image in Y of the unique cyclic maximal subgroup of $G=Y / M$. Then N / M_{1} and N / M_{2} are the (unique) cyclic maximal subgroups of X_{1} and X_{2}, respectively, and we let k_{0} be the fixed field of N on L. Since $|M(G)|=2$, we cannot have $M \subseteq Y^{\prime}$. Using the fact that X_{1}, X_{2} are Schur covers of G, this forces that $Y^{\prime} \cap M=M_{0}$. Since $Y^{\prime} M / M=G^{\prime}$, we see that $A=Y / Y^{\prime}$ is either elementary abelian of order 8 or abelian of type $(4,2)$. We have to rule out the latter possibility.

Assume $A=Y / Y^{\prime}$ is of type $(4,2)$. Then $Y^{2}=M Y^{\prime}$, and $V=Y / Y^{2}$ is elementary abelian of order 4. Since

$$
M_{1} \cap Y^{\prime}=M_{1} \cap\left(M \cap Y^{\prime}\right)=M_{1} \cap M_{0}=1
$$

the assignment $y \mapsto\left(y M_{1}, y Y^{\prime}\right)$ is an isomorphism of Y onto the fibre product $X_{1} \times_{V} A$ with respect to the natural epimorphisms of X_{1} and A onto V (Lemma 3.1). Two of the three nontrivial elements of V come from elements of order 4 in A, and the remaining one from an element of X_{1} outside N / M_{1}.

Suppose $X_{1} \cong D_{2^{n}}$. Since every element of X_{1} outside N / M_{1} is an involution, there is $y \in Y$ such that $y M_{1}$ is a noncentral involution in X_{1} and $y Y^{\prime}$ is of order 4. Then $y^{2} \in M$ has trivial image in M / M_{1} and a nontrivial one in A, that is, in M / M_{0}. Thus $y^{2} \notin M_{2}$ and $y M_{2}$ is an element of order 4 in $X_{2}=Y / M_{2}$ outside N / M_{2}. Hence X_{2} is not dihedral, contrary to $X_{1} \cong X_{2}$.

Suppose next that $X_{1} \cong Q_{2^{n}}$. Since every element of X_{1} outside N / M_{1} has order 4 , there is $y \in Y$ such that $y M_{1}$ is a noncentral element of order 4 in X_{1} and $y Y^{\prime}$ is of order 4 . Then $y^{2} \in M$ gives rise to the nontrivial elements in M / M_{1} and M / M_{0}. It follows that y^{2} is the generator of M_{2} and that $y M_{2}$ is a noncentral involution in $X_{2}=Y / M_{2}$. Hence X_{2} is not quaternion, contrary to $X_{1} \cong X_{2}$.

Corollary. Let $k=\mathbb{Q}$, and suppose K is a field in $\mathcal{K}_{S}^{+}(G)$ where S is as in Theorem 0. Then there is at most one field in $\mathcal{K}_{S}^{+}\left(Q_{2^{n}}\right)$ containing K when S is of type (i), and at most one field in $\mathcal{K}_{S}\left(Q_{2^{n}}\right)$ containing K when S is of type (ii). A similar statement holds for $D_{2^{n}}$, with the proviso that for $n=3$, we only consider overfields of K which are cyclic over the same subfield of K of degree 2 over \mathbb{Q}.

Otherwise there are fields $L_{1} \neq L_{2}$ in the corresponding sets, and then $L=L_{1} L_{2}$ is unramified outside $S \cup\{\infty\}$ respectively S containing a quadratic field outside K. But the subfields of K quadratic over \mathbb{Q} amount to all real quadratic fields in which only the primes in S are ramified.

Proposition 3.3. Assume K is embedded into a field L_{1} which is Galois over k with group $X_{1} \cong D_{2^{n}}$. Let k_{0} be the fixed field of the cyclic maximal subgroup of X_{1}. There is a field L_{2} which is Galois over k with group $X_{2} \cong Q_{2^{n}}$ and with $L_{1} \cap L_{2}=K$ if and only if there is a field $E \supset k_{0}$ such that E / k is cyclic of degree 4 . In this case $[K E: K]=2$ and $K E \neq L_{1}$, and L_{2} is the companion field of L_{1} and $K E$.

Proof. Suppose first that L_{2} exists as claimed. Let then $L=L_{1} L_{2}$, $Y=\operatorname{Gal}(L / k)$, and keep all further conventions introduced in the proof of Proposition 3.2. As before, $A=Y / Y^{\prime}$ is of order 8 , with $Y^{\prime} \cap Z=Z_{0}$, and Y may be identified with the fibre product $X_{1} \times_{V} A$ with respect to the natural epimorphisms of $X_{1}=Y / M_{1}$ and A onto $V=Y / Y^{\prime} M$. Here A cannot be elementary, because otherwise all noncentral elements of $X_{2}=Y / M_{2}$ would be involutions. Thus A is of type $(4,2)$. Assume there is $y \in Y$ such that $N / M_{1}=\left\langle y M_{1}\right\rangle$ is the cyclic maximal subgroup of X_{1} and $y Y^{\prime}$ is of order 4 in A. Then there is $u \in Y$ such that $u M_{1}$ is a noncentral involution in X_{1} and $u Y^{\prime}$ is an involution in A. It follows that $u^{2} \in M_{1} \cap M_{0}=1$. Clearly $u \notin M_{2}$, and so $u M_{2}$ is a noncentral involution in $X_{2}=Y / M_{2}$, contradicting the fact that $X_{2} \cong Q_{2^{n}}$.

Hence there is $y \in Y$ such that $y M_{1}$ generates N / M_{1} and $y Y^{\prime}$ has order 2 . Let $B=\left\langle Y^{\prime}, y\right\rangle$. Then $B \subset N$ and Y / B is cyclic of order 4 . Since k_{0} is the fixed field of N on L, the fixed field E of B is as required.

Conversely, if E exists (cyclic of degree 4 over k and containing k_{0}), then $E \cap L_{1}=k_{0}$, and we let $L_{0}=K E$ and $L=L_{1} L_{0}$, and L_{2} is the companion field of L_{1} and L_{0}. We are in quite the same situation as before. Let again $Y=\operatorname{Gal}(L / k)$ and $A=Y / Y^{\prime}$. Then A is of type (4,2), and there is $y \in Y$ such that $y M_{1}$ generates N / M_{1} and $y Y^{\prime}$ has order 2 . It follows that whenever $u \in Y$ is such that $u M_{1}$ is a noncentral involution in $X_{1}=Y / M_{1}$, then $u Y^{\prime}$ is of order 4 . Then $u^{2} \in M_{1}$ has a nontrivial image in M / M_{0}, so $u^{2} \notin M_{2}$ and $u M_{2}$ is an element of $X_{2}=Y / M_{2}$ of order 4 outside N / M_{2}. Consequently, $X_{2} \cong Q_{2^{n}}$, as desired.

Corollary. Let $k=\mathbb{Q}$ in the preceding proposition, and let $k_{0}=$ $\mathbb{Q}(\sqrt{d})$ be the fixed field of the cyclic maximal subgroup of $X_{1} \cong D_{2^{n}}$. Asssume that d is a sum of two rational squares. Then K is a real field for which the embedding problem $\left(K / \mathbb{Q}, Q_{2^{n}}\right)$ is solvable.

By Lemma 2.7 there is a field $E \supset k_{0}$ which is cyclic of degree 4 over the rationals. Then $L_{1} \cap E=k_{0}$, and the companion field of L_{1} and $K E$
is a solution of the embedding problem $\left(K / \mathbb{Q}, Q_{2^{n}}\right)$ (Proposition 3.3). Now Lemma 2.1 implies that K is a real field.
4. Proof of Theorem 1. Let $S=\{2, p\}$ for some prime $p \equiv 1$ or 3 $(\bmod 8)$. We know from Lemma 2.2 that this S is a candidate for having $\mathcal{K}_{S}^{+}\left(Q_{8}\right) \neq \emptyset$. In both cases $(-2, p)=1$ in $\operatorname{Br}(\mathbb{Q})$ and so $x^{2}-p y^{2}=-2$ for some rational numbers x, y. We need a slightly stronger statement.

Consider first the case $p \equiv 1(\bmod 8)$. Then by Lemma 2.5 the class number $h=h(p)$ of $P=\mathbb{Q}(\sqrt{p})$ is odd, and the fundamental unit $u=$ $(c+d \sqrt{p}) / 2$ of P has norm $\left(c^{2}-p d^{2}\right) / 4=-1$. Here c, d are integers with the same parity. But they cannot both be odd, because then $-4=c^{2}-p d^{2} \equiv$ $1-p \equiv 0(\bmod 8)$. Hence $c=2 c_{0}$ and $d=2 d_{0}$ are even, and $u=c_{0}+d_{0} \sqrt{p}$. The prime 2 splits in P, so that there is a prime \mathfrak{p} of P with absolute norm 2 . Clearly $\mathfrak{p}^{h}=\left(\frac{b+a \sqrt{p}}{2}\right)$ is a principal ideal, b and a being rational integers with the same parity. It follows that the norm satisfies $N_{P / \mathbb{Q}}(b+a \sqrt{p})= \pm 2^{h+2}$. If the sign is positive, then replace $b+a \sqrt{p}$ by $u(b+a \sqrt{p})$. In this case we have $b^{2}-a^{2} p=-2^{r}$ where $r=h+2$ is odd. Dividing by a power of 4 if necessary, we may assume that b and a are odd, and then $a^{2} p-b^{2} \equiv p-1 \equiv 0(\bmod 8)$. Thus $a^{2} p-b^{2}=2^{r}$ with positive odd integers a, b, r, and with $3 \leq r \leq h+2$.

Let next $p \equiv 3(\bmod 8)$. Then $(2)=\mathfrak{p}^{2}$ is ramified in $P=\mathbb{Q}(\sqrt{p})$ (discriminant $4 p$). Since the class number $h(4 p)$ of P is still odd, this forces that $\mathfrak{p}=(b+a \sqrt{p})$ is a principal ideal $(a, b$ integers $)$. As before, \mathfrak{p} has norm 2 and so $N_{P / \mathbb{Q}}(b+a \sqrt{p})=b^{2}-a^{2} p= \pm 2$. This implies that a and b are odd integers, and therefore $b^{2}-a^{2} p \equiv 1-p \equiv-2(\bmod 8)$. Consequently, $a^{2} p-b^{2}=2$.

In both cases we may thus assume that a, b and r are positive odd integers, with $a^{2} p^{2}-b^{2} p=2^{r} p=(a p+b \sqrt{p})(a p-b \sqrt{p})$. Let then $\beta=$ $(2+\sqrt{2})(a p+b \sqrt{p})$, an element of $K=\mathbb{Q}(\sqrt{2}, \sqrt{p})$, and let $L=K(\sqrt{\beta})$. For every $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$, the conjugate β^{σ} satisfies $\beta^{\sigma} \equiv \beta\left(\bmod K^{* 2}\right)$ and $\beta^{\sigma}>0$. Hence β is totally positive and L is a real Galois extension of \mathbb{Q}. Moreover, every prime \mathfrak{q} of K dividing (β) lies above 2 or p as $N_{K / \mathbb{Q}}(\beta)=$ $2^{2(r+1)} \cdot p^{2}$, and only such a prime \mathfrak{q} can ramify in $L=K(\sqrt{\beta})$. Thus L is unramified outside $S=\{2, p\}$.

In order to ensure that $\operatorname{Gal}(L / \mathbb{Q}) \cong Q_{8}$ it suffices to show that L is cyclic of degree 4 over $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{2 p})$. Indeed, $\sqrt{\beta}$ is a root of the polynomial

$$
X^{4}-2 a p(2+\sqrt{2}) X^{2}+2^{r} p(2+\sqrt{2})^{2}
$$

over $\mathbb{Q}(\sqrt{2})$. Since $2^{r} p(2+\sqrt{2})^{2} \equiv p \not \equiv 1\left(\bmod \mathbb{Q}(\sqrt{2})^{* 2}\right)$ but $p\left(4 a^{2} p^{2}-4 \cdot 2^{r} p\right)$ $=p\left(4 b^{2} p\right)$ is a square in $\mathbb{Q}(\sqrt{2}), L$ is cyclic of degree 4 over $\mathbb{Q}(\sqrt{2})$ by

Lemma 2.8(a). Similarly, $\sqrt{\beta}$ is a root of the polynomial

$$
X^{4}-4(a p+b \sqrt{p}) X^{2}+2(a p+b \sqrt{p})^{2}
$$

over $\mathbb{Q}(\sqrt{p})$, and application of Lemma 2.8(a) shows that L is cyclic of degree 4 over $\mathbb{Q}(\sqrt{p})$. Finally, $\sqrt{\gamma}$ is a root of

$$
X^{4}-2(2 a p+b \sqrt{2 p}) X^{2}+2 \cdot 2^{r} p
$$

over $\mathbb{Q}(\sqrt{2 p})$, and Lemma 2.8(a) applies again. Note that $2\left(2^{r} p\right)=2^{r}(2 p) \equiv$ $2^{r} \equiv 2\left(\bmod \mathbb{Q}(\sqrt{2 p})^{* 2}\right)($ as r is odd $)$, but $2\left(4(2 a p+b \sqrt{2 p})^{2}-8\left(2^{r} p\right)\right) \equiv(a p+$ $b \sqrt{2 b})^{2}\left(\bmod \mathbb{Q}(\sqrt{2 p})^{* 2}\right)$. Hence L is indeed a Q_{8}-field over the rationals. Lemma 2.1 now yields $L=\mathbb{Q}(\sqrt{\beta})$.

We may also argue on the basis of Proposition 3.3, and of Lemma 2.8(b). This part of the lemma readily implies that $F=K(\sqrt{a p+b \sqrt{p}})$ is a (real) Galois extension with dihedral group (of order 8) which is cyclic over $\mathbb{Q}(\sqrt{2})$. By Proposition 3.3 the companion field L of F and $B_{2} K$ has the desired properties. It is obvious that L is as before. Uniqueness of $L=L_{p}$ in $\mathcal{K}_{S}^{+}\left(Q_{8}\right)$ follows from the Corollary to Proposition 3.2. (This may also be checked, more elementarily, using Lemma 2.3.) In view of Lemma 2.1 it is immediate that $L_{p}^{-}=\mathbb{Q}(\sqrt{-\beta})$ is the unique further (complex) field belonging to $\mathcal{K}_{S}\left(Q_{8}\right)$.

In the case $p \equiv 1(\bmod 8)$, knowledge of the class number $h(p)$ may be helpful in Theorem 1. The smallest such prime where $h(p)>1$ is $p=257$, in which case $h(p)=3$ and where $p-15^{2}=2^{5}$ gives

$$
L_{p}=\mathbb{Q}(\sqrt{(2+\sqrt{2})(257+15 \sqrt{257})}) .
$$

One can avoid reference to $h(p)$ by arguing as follows.
Remark. Let $p \equiv 1(\bmod 8)$. Then there are positive integers x, y such that $x^{2}-2 y^{2}=p$. (Note that $h_{+}(8)=1$ and $\left(\frac{2}{p}\right)=1$, so either p splits in $\mathbb{Q}(\sqrt{2})$ or p is represented by the quadratic form $X^{2}-2 Y^{2}$ (see [3, Satz 3, p. 65]).) Here x must be odd and y even. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{p})$ and $F=K(\sqrt{x+y \sqrt{2}})$. Then F is a real Galois number field with group D_{8} which is cyclic over $\mathbb{Q}(\sqrt{2 p})$ (Lemma 2.8(b)). Moreover F is unramified outside $S=\{2, p\}$. Let P be the unique (real) subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ of absolute degree 4 , and let E be the companion field of $B_{2}(\sqrt{p})$ and $P(\sqrt{2})$ (which intersect in K). This E is cyclic over $\mathbb{Q}(\sqrt{2})$ and over $\mathbb{Q}(\sqrt{p})$, hence elementary over $\mathbb{Q}(\sqrt{2 p})$. It follows that $E=E_{1} E_{2}$ where both E_{i} are solutions of the embedding problem $\left(\mathbb{Q}(\sqrt{2 p}) / \mathbb{Q}, Z_{4}\right)$. Application of Propositions 3.3 and 3.2 shows that L_{p} is the companion field of F and E.

By uniqueness of L_{p}, and by Lemma 2.6, either F is in the Hilbert 2-class field of $\mathbb{Q}(\sqrt{2 p})$, or $K(\sqrt{-x-y \sqrt{2}})$ is its narrow Hilbert 2-class field.
5. Proof of Theorem 2. Let $S=\{p, q\}$ where p and q are distinct primes satisfying $p \equiv q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p}\right)=1$. By Lemma 2.2 this S is a candidate for having $\mathcal{K}_{S}\left(Q_{8}\right) \neq \emptyset$. Let $K_{0}=\mathbb{Q}(\sqrt{p q})$, and $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ be its (narrow) genus field. By Lemma 2.6 there is a unique Galois number field $F \supset K$ of absolute degree 8 in which no finite prime of K_{0} (or K) is ramified. This F has a dihedral Galois group over the rationals, and is cyclic over K_{0}. Also F is real if and only if the class number $h(p q)$ of K_{0} is divisible by 4 (or that of K is even).

Let P and Q be the (unique) subfields of $\mathbb{Q}\left(\zeta_{p}\right)$ and $\mathbb{Q}\left(\zeta_{q}\right)$, respectively, with absolute degree 4 . So P is real if and only if $p \equiv 1(\bmod 8)$, and similarly for Q. Let E be the companion field of $P K$ and $Q K$. This E is real if and only if either $p \equiv q \equiv 1(\bmod 8)$ or $p \equiv q \equiv 5(\bmod 8)$. Moreover, E is cyclic over $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$, since $P K / \mathbb{Q}(\sqrt{p})$ and $Q K / \mathbb{Q}(\sqrt{q})$ are elementary. It follows that E is elementary over K_{0} and that $E=E_{1} E_{2}$ where both E_{i} are solutions of the embedding problem $\left(K_{0} / \mathbb{Q}, Z_{4}\right)$. Of course, $E=K E_{i}$ for each i.

Let L be the companion field of F and E. By Propositions 3.3 and 3.2 this $L=L_{p q}$ is the unique field belonging to $\mathcal{K}_{S}\left(Q_{8}\right)$.

Proposition 5.1. The field F of Theorem 2 may be described as follows. There exist integers x, y with the same parity such that $x^{2}-q y^{2}=4 p^{h}$ where $h=h(q)=h_{+}(q)$ is odd. If x, y are odd, then choose the sign of x such that $x \equiv 3(\bmod 4)$. If x, y are even, which happens when $q \equiv 1(\bmod 8)$, then $x / 2$ is odd and we choose the sign of x such that $x / 2 \equiv 3(\bmod 4)$ if $p \equiv 5$ $(\bmod 8)$ and $x / 2 \equiv 1(\bmod 4)$ if $p \equiv 1(\bmod 8)$. In both cases we have $F=\mathbb{Q}(\sqrt{p}, \sqrt{\theta})$ where $\theta=\frac{1}{2}(x+y \sqrt{q})$. In particular, $h(p q)$ is divisible by 4 (hence F is real) if and only if $x>0$ in these choices.

Proof. We know that h is as asserted (Lemma 2.5), and p splits in $\mathbb{Q}(\sqrt{q})\left(\right.$ as $\left.\left(\frac{q}{p}\right)=1\right)$. We find integers x, y with the same parity such that $x^{2}-q y^{2}=4 p^{h}$. Suppose first that x, y are odd. Hence $1-q \equiv 4(\bmod 8)$ and $q \equiv 5(\bmod 8)$. Choose then the sign of x such that $x \equiv 3(\bmod 4)$. Suppose next that $x=2 x_{0}$ and $y=2 y_{0}$ are even. Then $x_{0}^{2}-q y_{0}^{2}=p^{h}$ and $p^{h} \equiv p$ $(\bmod 8)$ as h is odd. From $p \equiv q \equiv 1(\bmod 4)$ we get $x_{0}^{2}-y_{0}^{2} \equiv 1(\bmod 4)$. It follows that x_{0} must be odd and y_{0} be even, and we choose the sign of x as defined above. In both cases we let $\theta=\frac{1}{2}(x+y \sqrt{q})$, and $F=\mathbb{Q}(\sqrt{\theta}, \sqrt{p})$.

It follows from Lemma 2.8(b) that F is Galois over the rationals with group D_{8}, and F is cyclic over $K_{0}=\mathbb{Q}(\sqrt{p q})$. Also, F is unramified outside $S \cup\{\infty\}$ except possibly that some dyadic prime of $\mathbb{Q}(\sqrt{q})$ ramifies in $\mathbb{Q}(\sqrt{q}, \sqrt{\theta})$. We shall rule the latter out by showing that θ is a 2 -primary integer in $\mathbb{Q}(\sqrt{q})$, that is, θ is an odd integer (relatively prime to 2) such that the congruence $X^{2} \equiv \theta(\bmod 4)$ has a solution in the integers of $\mathbb{Q}(\sqrt{q})$
(see Hecke [12, Theorem 120]). Here θ is odd as its absolute norm equals p^{h}. If x, y are odd, then $(x-1)^{2} \equiv 4(\bmod 16)$ as $x \equiv 3(\bmod 4)$, and $\rho=(1+y \sqrt{q}) / 2$ is a solution of the congruence since

$$
\begin{aligned}
\rho^{2}-\theta & =\frac{1}{4}\left(1+q y^{2}-2 x\right)=\frac{1}{4}\left(1-2 x+x^{2}-4 p^{h}\right) \\
& =\frac{1}{4}(x-1)^{2}-p^{h} \equiv 0(\bmod 4)
\end{aligned}
$$

Suppose next that $x=2 x_{0}$ and $y=2 y_{0}$ are even, where $x_{0}^{2}-q y_{0}^{2}=p^{h}$ and $\theta=x_{0}+y_{0} \sqrt{q}$. Since x_{0} is odd, we get $1-q y_{0}^{2} \equiv p \equiv 1$ or $5(\bmod 8)$. Thus $y_{0} / 2$ is even when $p \equiv 1(\bmod 8)$, in which case $x_{0} \equiv 1(\bmod 4)$ and so $\left(q-x_{0}\right) / 2$ is even likewise. If $p \equiv 5(\bmod 8)$, then $y_{0} / 2$ is odd, where by definition $x_{0} \equiv 3(\bmod 4)$ and hence $\left(q-x_{0}\right) / 2$ is odd. Thus $\lambda=\frac{1}{4}\left(q-x_{0}-y_{0} \sqrt{q}\right)$ is an integer of $\mathbb{Q}(\sqrt{q})$, and $q-\theta=4 \lambda$. Hence \sqrt{q} is a solution of the congruence in this case.

It follows that F is unramified outside $S \cup\{\infty\}$ (where $S=\{p, q\}$). Let E be as in the proof of Theorem 2. Then $F \cap E=\mathbb{Q}(\sqrt{p}, \sqrt{q})$, and by Proposition 3.3 the companion field L of F and E is quaternion over the rationals, and it is unramified outside $S \cup\{\infty\}$. Hence $L=L_{p q}$ by uniqueness. Thus $F \subset L_{p q} E$ is the companion field of $L_{p q}$ and E, as desired.

Example. In Proposition 5.1 the situation is symmetric in p and q. Let for instance $S=\{p, q\}=\{17,101\}$. (In this case the absolute Galois group $G_{S}(2)$ is known to be infinite; see [6, Theorem 3.1].) Using $13^{2}-2^{2} \cdot 17=101$ and $13^{2}-101=4 \cdot 17$ we deduce that

$$
F=\mathbb{Q}(\sqrt{-13+2 \sqrt{17}}, \sqrt{101})=\mathbb{Q}(\sqrt{(-13+\sqrt{101}) / 2}, \sqrt{17})
$$

is not real. Thus $h(p q)$ is not divisible by 4 in this case. Indeed $h(p q)=2$ here, so that F is the narrow Hilbert class field of $\mathbb{Q}(\sqrt{p q})$. Note also that $L_{p q}$ is real in this example.
6. Proof of Theorem 3. Let the prime p satisfy $p \equiv 1\left(\bmod 2^{n-1}\right)$ for some integer $n>3$. We first show that there is a field in $\mathcal{K}_{S}\left(D_{2^{n}}\right)$ which is cyclic over $k_{0}=\mathbb{Q}(\sqrt{2})$. Let $H_{0}=\operatorname{Gal}\left(k_{0} / \mathbb{Q}\right)$ act on the cyclic group U_{0} of order 2^{n-1} by inverting the elements. Embed k_{0} into $E=\mathbb{Q}\left(\zeta_{2^{n-1}}\right)$, and let $H=\operatorname{Gal}(E / \mathbb{Q})$. Then H_{0} is an epimorphic image of H, whence $U_{0} H_{0} \cong D_{2^{n}}$ is an epimorphic image of the semidirect product $U_{0} H$. We may also replace U_{0} by any free $\left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right) H$-module $U \neq 0$ since U_{0} is a quotient module of U.

The prime p splits totally in E. By Weber's theorem (see e.g. [9, p. 68]) the class number h of E is odd. Let \mathfrak{p} be a prime of E above p. Then $\mathfrak{p}^{h}=(\alpha)$ for some $\alpha \in E$. We have $v_{\mathfrak{p}}(\alpha)=h$ and $v_{\mathfrak{q}}(\alpha)=0$ for each prime $\mathfrak{q} \neq \mathfrak{p}$ of E. In particular, $v_{\mathfrak{p}}\left(\alpha^{\sigma}\right)=0$ for all $1 \neq \sigma \in H$ (but $v_{\mathfrak{p}^{\sigma}}\left(\alpha^{\sigma}\right)=h$). Since
h is odd, the order of α, and of the α^{σ}, in $E^{*} / E^{*^{n-1}}$ is 2^{n-1}. Let

$$
\widehat{E}=E\left(\sqrt[2^{n-1}]{\alpha^{\sigma}}: \sigma \in H\right)
$$

Then $U=\operatorname{Gal}(\widehat{E} / E)$ is a free $\left(\mathbb{Z} / 2^{n-1}\right) H$-module of rank 1 and, by Kummer theory, \widehat{E} is a Galois extension of \mathbb{Q} whose group is an extension of $H=$ $\operatorname{Gal}(E / \mathbb{Q})$ by U. Hence the extension splits. (This argument follows closely that given by Serre [21, p. 18].)

By construction, \widehat{E} is unramified outside $S \cup\{\infty\}$, where $S=\{2, p\}$. Moreover, $U_{0} H_{0} \cong D_{2^{n}}$ is a quotient group of $\operatorname{Gal}(\widehat{E} / \mathbb{Q}) \cong U H$. Consequently, there is a field L_{1} in $\mathcal{K}_{S}\left(D_{2^{n}}\right)$ which is cyclic over $k_{0}=\mathbb{Q}(\sqrt{2})$. Let $X_{1}=\operatorname{Gal}\left(L_{1} / \mathbb{Q}\right)$, and let K be the fixed field on L_{1} of $Z\left(X_{1}\right)$ (so that $\left.\operatorname{Gal}(K / \mathbb{Q}) \cong D_{2^{n-1}}\right)$. Let L be the companion field of L_{1} and $B_{2} K$. By Proposition 3.3 this L is a field in $\mathcal{K}_{S}\left(Q_{2^{n}}\right)$, and it is cyclic over $\mathbb{Q}(\sqrt{2})$. We also know from the Corollary to Proposition 3.3 that K is real, and we may modify L, if necessary, so that it is a real field (Lemma 2.1).

Uniquenes of L in $\mathcal{K}_{S}^{+}\left(Q_{2^{n}}\right)$ is settled by induction on n. In fact, this allows us to assume that K is the unique field in $\mathcal{K}_{S}^{+}\left(D_{2^{n-1}}\right)$ which is cyclic over $\mathbb{Q}(\sqrt{2})$, and then the Corollary to Proposition 3.2 applies.

Example. The prime $p=113$ is the smallest prime congruent to $1 \bmod -$ ulo 8 (here even $p \equiv 1(\bmod 16))$ for which the class number $h(8 p)$ of $\mathbb{Q}(\sqrt{2 p})$ is divisible by 8 . Indeed, $h(8 p)=8$, and the Hilbert class field of $\mathbb{Q}(\sqrt{2 p})$ is given explicitly by Cohen [3, p. 537]. By the Remark in Section 4 we know that there are subfields E_{1}, E_{2} of $\mathbb{Q}\left(\zeta_{16 p}\right)$ containing $\mathbb{Q}(\sqrt{2 p})$ and cyclic over \mathbb{Q} of degree 4 . Hence application of Proposition 3.3 and Lemma 2.1 shows that there are unique real and complex fields in $\mathcal{K}_{S}\left(Q_{16}\right)$ for $S=\{2, p\}$ which are cyclic over $\mathbb{Q}(\sqrt{2 p})$.

For any prime $p \equiv 1(\bmod 8)$ there exist positive integers x, y such that $x^{2}-2 y^{2}=2 p$ (see [23, Satz 3, p. 65]). Then $F=\mathbb{Q}(\sqrt{x+y \sqrt{2}}, \sqrt{2 p})$ is a field in $\mathcal{K}_{S}^{+}\left(D_{8}\right)$ for $S=\{2, p\}$ which is cyclic over $\mathbb{Q}(\sqrt{p})$, by virtue of Lemma 2.8(b). From [16, Proposition 4.2] it follows that F can be embedded into a D_{16}-field or Q_{16}-field over the rationals if and only if $(-p, x)=1$ in $\operatorname{Br}(\mathbb{Q})$. For $p=113$ we have $26^{2}-2 \cdot 15^{2}=2 \cdot p$, and $(-p, 26)=1$ in $\operatorname{Br}(\mathbb{Q})$. Since the (real) subfield E of $\mathbb{Q}\left(\zeta_{p}\right)$ of absolute degree 4 is a solution of the embedding problem $\left(\mathbb{Q}(\sqrt{p}) / \mathbb{Q}, Z_{4}\right)$, we conclude that in this case there are also unique real and complex fields in $\mathcal{K}_{S}\left(Q_{16}\right)$ which are cyclic over $\mathbb{Q}(\sqrt{p})$.
7. Fields of Dedekind type. In what follows we fix a prime $p \equiv 3$ $(\bmod 8)$, and let $S=\{2, p\}$. A normal number field L of 2 -power degree is said to be of Dedekind type (with respect to p) if it is unramified outside S. Though these fields rely on the prime p chosen, the isomorphism type of the lattice formed by them will be independent of it.

The Schur multiplier of a profinite group Γ is the profinite (abelian) group $M(\Gamma)=H_{2}(\Gamma, \widehat{\mathbb{Z}})$ whose Pontryagin dual is the discrete (abelian) torsion group $H^{2}(\Gamma, \mathbb{Q} / \mathbb{Z})$ (see e.g. [18, Theorem 2.2.9]); for finite G this agrees with the usual definition. Given a prime $p, H_{2}\left(\Gamma, \mathbb{Z}_{p}\right)$ is the Sylow p-subgroup of $M(\Gamma)$, and we may write $M(\Gamma)=H_{2}\left(\Gamma, \mathbb{Z}_{p}\right)$ when Γ is a pro-p-group. Since the Leopoldt conjecture is true for \mathbb{Q} (and for every abelian number field), $M(\Gamma)=0$ for $\Gamma=G_{S}(2)$ (cf. [9, Theorem 4.9] or [18, Theorem 10.3.6]). We shall see that this also holds for $G_{S}^{+}(2)$, the absolute Galois group of the maximal 2-extension $\mathbb{Q}_{S}^{+}(2)$ of the rationals unramified outside S.

Let us introduce the 2 -groups which will appear as (finite) quotient groups of $G_{S}^{+}(2)$. Define

$$
G_{m}^{n}=G_{m}^{n}(p)=\left\langle x, y \mid x^{2^{m}}=1=y^{2^{n}}, y^{-1} x y=y^{p}\right\rangle
$$

for positive integers m, n with $m \leq n+1$, and let

$$
\widetilde{G}_{m}^{n}=\widetilde{G}_{m}^{n}(p)=\left\langle x, y \mid x^{2^{m}}=1, y^{2^{n}}=x^{2^{m-1}}, y^{-1} x y=y^{p}\right\rangle
$$

for $m \leq n+2$. Both G_{m}^{n} and \widetilde{G}_{m}^{n} are metacyclic groups of order 2^{m+n}. They are abelian if and only if $m=1$, and G_{1}^{n} is of type ($2,2^{n}$) whereas $\widetilde{G}_{1}^{n} \cong Z_{2^{n+1}}$ is cyclic of order 2^{n+1}. Also, $G_{2}^{1}=D_{8}$ and $\widetilde{G}_{2}^{1}=Q_{8}$, and \widetilde{G}_{3}^{1} is the semidihedral group of order 16 (independent of the particular prime $p \equiv 3(\bmod 8))$.

Lemma 7.1. The Schur multiplier $M\left(G_{m}^{n}\right)$ of $G_{m}^{n}=G_{m}^{n}(p)$ has order 2 whereas that of \widetilde{G}_{m}^{n} vanishes. If $m<n+1$, then G_{m+1}^{n} and \widetilde{G}_{m+1}^{n} are (nonisomorphic) Schur covers of G_{m}^{n}, and \widetilde{G}_{m+1}^{n} is a Schur cover of G_{m}^{n} when $m=n+1$.

This follows from [1, Proposition 9.2]. We see that the groups $G_{m}^{n}, \widetilde{G}_{m}^{n}$ are not isomorphic, and their isomorphism type is determined by m, n and the prime p.

Proposition 7.2. Let $S=\{2, p\}$ with $p \equiv 3(\bmod 8)$, and let G be a finite noncyclic 2-group. Then $\mathcal{K}_{S}^{+}(G) \neq \emptyset$ if and only if G is isomorphic to $G_{m}^{n}(p)$ or $\widetilde{G}_{m}^{n}(p)$ for some positive integers m, n, in which cases $\mathcal{K}_{S}^{+}(G)$ consists of a single field $F_{n}^{m}(p)$ respectively $\widetilde{F}_{n}^{m}(p)$ when $m<n+2$, and has cardinality 2 when $m=n+2$ and hence $G \cong \widetilde{G}_{n+2}^{n}(p)$.

Proof. Let $\Gamma=G_{S}^{+}(2)$. It follows from [14, Satz 6.3] that, as a pro-2-group, Γ is generated by two elements σ, τ with the defining relation $\tau^{-1} \sigma \tau=\sigma^{p}$. So we are in a situation similar to that studied in [19]. One knows that the commutator subgroup $\Gamma^{\prime}=[\Gamma, \Gamma]$ is closed in Γ, as is every finite-index subgroup. Of course, $\mathcal{K}_{S}^{+}(G) \neq \emptyset$ if and only if $G \cong \Gamma / R$ is a quotient group of Γ, and then we have a natural epimorphism $M(G) \rightarrow\left(R \cap \Gamma^{\prime}\right) /[R, \Gamma]$ by the 5 -term exact homology sequence (see
e.g. [1, Lemma 4.1]). We shall confirm the Hopf-Schur relation

$$
M(G) \cong\left(R \cap \Gamma^{\prime}\right) /[R, \Gamma]
$$

for all such quotient groups, which will imply that $M(\Gamma)=0$ 9, Proposition 4.1]. The relation trivially holds when $M(G)=0$. We have $\Gamma / \Gamma^{\prime} \cong$ $\mathbb{Z}_{2} \times Z_{2}$ since $B_{\infty}(\sqrt{p})$ is the maximal abelian subextension of \mathbb{Q}_{S}^{+}, were $B_{\infty}=\bigcup_{i>0} B_{i}$ is the (cyclotomic) \mathbb{Z}_{2}-extension of $B_{0}=\mathbb{Q}$. The cyclic subfields of $B_{\infty}(\sqrt{2})$ are easily described, and their Galois groups over \mathbb{Q} have trivial multiplier.

Let $G \cong \Gamma / R$ be noncylic. Then G can be generated by two elements x, y such that $y^{-1} x y=x^{p}$. Suppose the normal subgroup $\langle x\rangle$ of G has order 2^{m}, and $|G /\langle x\rangle|=2^{n}$. Then $m \geq 1, n \geq 1$ and $x^{2^{m}}=1$ and $y^{2^{n}}=x^{s}$ for some positive integer s. Here 2^{m} must be a divisor of $p^{2^{n}}-1=$ $\left(p^{2^{n-1}}-1\right)\left(p^{2^{n-1}}+1\right)$. Since $p \equiv 3(\bmod 8), p^{2}-1$ is divisible by 2^{3} but not by 2^{4}, and $p^{2^{n-1}}+1 \equiv 2(\bmod 8)$ for $n>1$. By induction we see that the 2 -part $\left(p^{2^{n}}-1\right)_{2}$ is 2^{n+2} and so $m \leq n+2$. One may "normalize" the presentation of G by demanding that s is a divisor of 2^{m} and of $\left(\left(p^{2^{n}}-1\right) /(p-1)\right)_{2}=2^{n+1}$ (cf. [1, Lemma 9.1]). Now $G^{\prime}=\langle[x, y]\rangle$ has order $2^{m-1}\left(\right.$ as $[x, y]=x^{p-1}$ and $p-1 \equiv 2(\bmod 8)$), and from $1=\left[x^{s}, y\right]=[x, y]^{s}=x^{s(p-1)}$ we infer that 2^{m} is a divisor of $2 s$. Thus either $s=2^{m}$ and $m \leq n+1$, or $s=2^{m-1}$ and $m \leqq n+2$.

Consequently, G is isomorphic to G_{m}^{n} or to \widetilde{G}_{m}^{n} for $m \leq n+1$, or $G \cong \widetilde{G}_{n+2}^{n}$. In the case where $G \cong \widetilde{G}_{n+2}^{n}$ we have $s=2^{n+1}$ and $M(G)=0$, but $\langle y x\rangle$ is a complement to $\langle x\rangle$ in G (as $(y x)^{2^{n}}=y^{2^{n}} x^{1+p+\cdots+p^{2^{n}-1}}=$ $\left.y^{2^{n}} x^{\left(p^{2^{n}}-1\right) /(p-1)}=y^{2^{n}} x^{2^{n+1}}=1\right)$. So in this particular case G is also a split extension (as it is when $G \cong G_{m}^{n}$ with $m \leq n+1$).

By definition (and [14, Satz 6.3]) the groups $G_{m}^{n}, \widetilde{G}_{m}^{n}$ appear as quotient groups of Γ. Fix n in what follows. Since G_{1}^{n} is abelian of type $\left(2,2^{n}\right)$, we may write uniquely $G_{1}^{n}=\Gamma / R_{1}^{n}$ by the structure of Γ / Γ^{\prime}, so that $F_{n}^{1}(p)=B_{n}(\sqrt{2})$ is the fixed field of R_{1}^{n} on \mathbb{Q}_{S}^{+}. We show by induction on m that, for $2 \leq m \leq n+2, G_{m}^{n}=\Gamma / R_{m}^{n}$ and $\widetilde{G}_{m}^{n}=\Gamma / \widetilde{R}_{m}^{n}$, for unique normal subgroups $R_{m}^{n}, \widetilde{R}_{m}^{n}$ of Γ. By the above lemma $M\left(G_{1}^{n}\right)$ has order 2 and maps onto $\Gamma^{\prime} /\left[R_{1}^{n}, \Gamma\right]$. Now $R_{1}^{n} / \Gamma^{\prime} \cong \mathbb{Z}_{2}$ is a free pro-2-group (of rank 1), so that there are exactly $\left|\operatorname{Hom}\left(\mathbb{Z}_{2}, \Gamma^{\prime} /\left[R_{1}^{n}, \Gamma\right]\right)\right|$ complements to $\Gamma^{\prime} /\left[R_{1}^{n}, \Gamma\right]$ in $R_{1}^{n} /\left[R_{1}^{n}, \Gamma\right]$. Both G_{2}^{n} and \widetilde{G}_{2}^{n} are (nonisomorphic) Schur covers of G_{1}^{n}, and they appear as quotient groups Γ / R_{2}^{n} respectively $\Gamma / \widetilde{R}_{2}^{n}$ of Γ such that $R_{2}^{n} /\left[R_{1}^{n}, \Gamma\right]$ and $\widetilde{R}_{2}^{n} /\left[R_{1}^{n}, \Gamma\right]$ are such complements. We conclude that the Hopf-Schur formula holds for G_{1}^{n} (and trivially also for \widetilde{G}_{1}^{n}), and that we have just two complements. This proves uniqueness of R_{2}^{n} and \widetilde{R}_{2}^{n}. Now we proceed by induction using $R_{m-1}^{n} /\left(R_{m-1}^{n} \cap \Gamma^{\prime}\right) \cong \mathbb{Z}_{2}$ and $\left|\operatorname{Hom}\left(\mathbb{Z}_{2}, M\left(G_{m-1}^{n}\right)\right)\right|=2$.

Hence we have $\mathcal{K}_{S}^{+}\left(G_{m}^{n}\right)=\left\{F_{n}^{m}\right\}$ and $\mathcal{K}_{S}^{+}\left(\widetilde{G}_{m}^{n}\right)=\left\{\widetilde{F}_{n}^{m}\right\}$ for $2 \leq m<n+2$, where F_{n}^{m} and \widetilde{F}_{n}^{m} are the fixed fields of R_{m}^{n} and \widetilde{R}_{m}^{n}, respectively, on \mathbb{Q}_{S}^{+}. For $m=n+2$ the group \widetilde{G}_{m}^{n} is, up to isomorphism, the unique Schur cover of $G_{m-1}^{n}=\Gamma / R_{m-1}^{n}$ appearing as a quotient group of Γ. But there are still two distinct complements and fixed fields $F_{n}^{m} \neq \widetilde{F}_{n}^{m}$. Hence $\mathcal{K}_{S}^{+}\left(\widetilde{G}_{m}^{n}\right)=$ $\left\{F_{n}^{m}, \widetilde{F}_{n}^{m}\right\}$ has cardinality 2 in this exceptional case.

Corollary 1. The lattice of the fields of Dedekind type (with respect to p) is completely determined by the above. Indeed, $F_{n}^{m}(p) \subseteq F_{n^{\prime}}^{m^{\prime}}(p)$ if and only if $n \leq n^{\prime}$ and $m \leq m^{\prime}$, and $\widetilde{F}_{n}^{m}(p)$ is the companion field of $F_{n}^{m}(p)$ and $F_{n+1}^{m-1}(p)(2 \leq m \leq n+2)$.

By the above for $2 \leq m \leq n+2$ we have $G_{m-1}^{n}=\Gamma / R_{m-1}^{n}, R_{m}^{n} \widetilde{R}_{m}^{n}=R_{m-1}^{n}$ and $R_{m}^{n} \cap \widetilde{R}_{m}^{n} \supseteq\left[R_{m-1}^{n}, \Gamma\right]$. From Lemma 7.1 we infer that $\left(R_{m}^{n} \cap \widetilde{R}_{m}^{n}\right) \Gamma^{\prime}$ $=R_{1}^{n+1}\left(\right.$ and $\left.\Gamma / R_{1}^{n+1}=G_{1}^{n+1}\right)$. Consequently, $R_{1}^{m+1} \cap R_{m-1}^{n}=R_{m-1}^{n+1}$ and $R_{1}^{n+1} \cap R_{m}^{n}=R_{m}^{n+1}=R_{m}^{n} \cap \widetilde{R}_{m}^{n}$, by considering the corresponding fibre products of G_{1}^{n+1} with G_{m-1}^{n} and G_{m}^{n}. This also holds in the exceptional case $m=n+2$ where Γ / R_{m}^{n} and $\Gamma / \widetilde{R}_{m}^{n}$ are copies of \widetilde{G}_{m}^{n}. Finally, note that if G_{m}^{n} is an epimorphic image of $G_{m^{\prime}}^{n^{\prime}}$, then by the orders of the groups and their commutator factor groups, $2^{m+n} \leq 2^{m^{\prime}+n^{\prime}}$ and $2^{n+1} \leq 2^{n^{\prime}+1}$.

Recall that $\bigcup_{n \geq 1} F_{n}^{1}(p)=B_{\infty}(\sqrt{2})$, and we may similarly introduce the fields $F_{\infty}^{m}(p)=\bigcup_{n \geq m}^{\infty} F_{n}^{m}(p)$ for all $m \geq 1$. Then

$$
\mathbb{Q}_{S}^{+}(2)=\bigcup_{m \geq 1} F_{\infty}^{m}(p)
$$

Corollary 2. We have $M\left(G_{S}^{+}(2)\right)=0$, and $\mathcal{K}_{S}\left(Q_{2^{n}}\right)=\emptyset$ for all $n>3$.
The first statement has already been settled in the course of the proof of the proposition. Since $Q_{2^{n}}$ is not isomorphic to $G_{n-1}^{1}(p)$ or $\widetilde{G}_{n-1}^{1}(p)$ for $n>3$, we also find that then $\mathcal{K}_{S}^{+}\left(Q_{2^{n}}\right)=\emptyset$. We finish by applying Lemma 2.1.

Example. As before let $S=\{2, p\}$ with $p \equiv 3(\bmod 8)$. By Theorem 1 there exist positive odd integers a, b such that $a^{2} p-b^{2}=2$ (yielding $\left.L_{p}=\widetilde{F}_{1}^{2}(p)\right)$. Combining Lemma 2.8(b) and Proposition 7.2, we see that

$$
F_{1}^{2}(p)=\mathbb{Q}(\sqrt{a p+b \sqrt{p}}, \sqrt{2})
$$

is the unique field belonging to $\mathcal{K}_{S}^{+}\left(D_{8}\right)$, and it is cyclic over $\mathbb{Q}(\sqrt{2})$. Observe that $F_{1}^{2}(p)$ can be embedded into the semidihedral fields $F_{1}^{3}(p)$ and $\widetilde{F}_{1}^{3}(p)$.

Added in proof (August 2014). Let $G=Q_{2^{n}}$ for some $n>3$, and let $S=\{p, q\}$ for some distinct odd primes p, q. It follows from Theorems A, B in $[6]$ that $\mathcal{K}_{S}(G) \neq \emptyset$ only when $p \equiv q \equiv 1(\bmod 4)$ and $\left(\frac{p}{q}\right)=1$. The recent work of Kisilevsky, Neftin and Sonn on semiabelian groups [Compos. Math. 146 (2010), 599-606] yields the following: Suppose that in addition $p \equiv 1\left(\bmod 2^{n}\right)$ and that the fundamental unit u of $\mathbb{Q}(\sqrt{q})$ is a
2^{n-1} th power in the residue class fields of the primes above p, which just requires that p splits completely in $\mathbb{Q}\left(\sqrt{q}, \zeta_{2^{n}}, \sqrt[2^{n-1}]{u}\right)$ (Chebotarev). Then there is a unique field in $\mathcal{K}_{S}(G)$ which is cyclic over $\mathbb{Q}(\sqrt{q})$.

References

[1] F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.
[2] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184.
[3] H. Cohen, Advanced Topics in Computational Number Theory, Springer, New York, 2000.
[4] P. Damey et J. Martinet, Plongement d'une extension quadratique dans une extension quaternionienne, J. Reine Angew. Math. 262/263 (1973), 323-338.
[5] R. Dedekind, Konstruktion von Quaternionenkörpern, Ges. Math. Werke, Vol. 2, Vieweg, Braunschweig, 1931.
[6] B. Eick and H. Koch, On maximal 2-extensions of \mathbb{Q} with given ramification, in: Amer. Math. Soc. Transl. (2) 219, Amer. Math. Soc., Providence, RI, 2006, 87-102.
[7] A. Fröhlich, Artin root numbers and normal integral bases for quaternion fields, Invent. Math. 17 (1972), 143-166.
[8] A. Fröhlich, Artin root numbers, conductors, and representations for generalized quaternion groups, Proc. London Math. Soc. (3) 28 (1974), 402-438.
[9] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, Contemp. Math. 24, Amer. Math. Soc., Providence, RI, 1983.
[10] H. Hasse, Zur Geschlechtertheorie in quadratischen Zahlkörpern, J. Math. Soc. Japan 3 (1951), 45-51.
[11] H. Hasse, Über die Teilbarkeit durch 2^{3} der Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, Math. Nachr. 46 (1970), 61-70.
[12] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, New York, 1981.
[13] C. U. Jensen and N. Yui, Quaternion extensions, in: Algebraic Geometry and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, 155-182.
[14] H. Koch, l-Erweiterungen mit vorgegebenen Verzweigungsstellen, J. Reine Angew. Math. 209 (1965), 30-61.
[15] H. Koch, Galois Theory of p-Extensions, Springer, Berlin, 2002.
[16] A. Ledet, On 2-groups as Galois groups, Canad. J. Math. 47 (1995), 1253-1273.
[17] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68.
[18] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer, Berlin, 2008.
[19] P. Schmid, On 2-extensions of the rationals with restricted ramification, Acta Arith. 163 (2014), 111-125.
[20] J.-P. Serre, A Course in Arithmetic, Springer, New York, 1973.
[21] J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1992.
[22] P. Stevenhagen, Divisibility by 2-powers of certain quadratic class numbers, J. Number Theory 43 (1993), 1-19.
[23] E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^{f}, J. Reine Angew. Math. 174 (1936), 237-245.
$[24]$ D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, Berlin, 1981.

Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
D-72076 Tübingen, Germany
E-mail: peter.schmid@uni-tuebingen.de

Received on 4.9.2013
and in revised form on 14.5.2014

[^0]: 2010 Mathematics Subject Classification: 11F80, 11R32, 11S15.
 Key words and phrases: Galois theory, quaternion extensions, restricted ramification.

