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Quaternion extensions with restricted ramification
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Peter Schmid (Tübingen)

1. Introduction. Dedekind [5] showed that the field

D = Q
(√

(2 +
√

2)(3 +
√

6)
)

is Galois over the rationals with group Q8, the quaternion group of order 8.
Only the primes 2 and 3 ramify in this Q8-field, and D is totally real.
Thus D belongs to K+

S (Q8) for S = {2, 3}. Here for any set S of finite
rational primes and any finite group G we denote by KS(G) the set of
Galois number fields (within C) with group G over Q which are unramified
outside S ∪ {∞}, and where K+

S (G) is its subset consisting of the totally
real fields (being unramified outside S). As in [19], we shall treat only cases
where G is a 2-group, thus eventually appearing as a quotient group of
the absolute Galois group GS(2) of the maximal 2-extension QS(2) of Q
unramified outside S∪{∞}. For general properties of such pro-2-groups the
reader is referred to [9], [15], [18].

The Dedekind field D is of extraordinary nature, because if KS(Q8) 6= ∅
for some S, then S must contain at least two distinct primes. Moreover,
complex conjugation on aQ8-field must be either trivial or the unique central
involution in the group (so that its fixed field must be totally real). In fact,
the following holds:

Theorem 0. Suppose S is a finite set of rational primes which is min-
imal subject to having KS(Q8) 6= ∅. Then one of the following holds:

(i) S = {2, p} for some prime p ≡ 1 or 3 (mod 8).
(ii) S = {p, q} for distinct primes p ≡ q ≡ 1 (mod 4) satisfying

( q
p

)
= 1

(=
(p
q

)
).

Conversely, the cardinality of KS(Q8) is 2 when S is of type (i), and is 1
otherwise.
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It follows from the work of Witt [23] that S must be of type (i) or (ii), by
minimality, and that then Q(

√
2,
√
p) respectively Q(

√
p,
√
q) can be embed-

ded into a Q8-field (see Lemmas 2.1 and 2.2 below). The converse statement
is due to Fröhlich [7]; it may be obtained from the known structure of the
maximal pro-2-quotient group with class 2 of the corresponding absolute
Galois group GS(2) (see [9, Chap. 4]). In this note we shall present an ele-
mentary and constructive approach which enables us to compute the fields
explicitly (at least for small primes).

As observed by Jensen–Yui [13], one can also write

D = Q
(√

(2 +
√

2)(3 +
√

3)
)
.

Indeed, D is the unique field belonging to K+
S (Q8) for S = {2, 3}.

Theorem 1. Let S = {2, p} for some prime p ≡ 1 or 3 (mod 8). Then
K+
S (Q8) contains a single field Lp = Q(

√
β). Here β may be written in the

form β = (2 +
√

2)(ap + b
√
p) with positive odd integers a and b satisfying

a2p − b2 = 2r, where r = 1 if p ≡ 3 (mod 8) and r is odd with 3 ≤
r ≤ h(p) + 2 otherwise, h(p) denoting the class number of Q(

√
p). Also,

KS(Q8) = {Lp, L−p } where L−p = Q(
√
−β).

The integers a, b may be altered by multiplying ap + b
√
p with a to-

tally positive unit in Q(
√
p). For p = 11, 17, 19, 41, 43 we may let (a, b) =

(1, 3), (1, 3), (3, 13), (3, 19), (9, 59), respectively. Note that always a ≡ 1 or 3
(mod 8), because−2r ≡ b2 (mod a) with positive odd integers r, a, and there-
fore the Jacobi symbol

(−2
a

)
equals +1. There is an associated dihedral field

Q
(√

ap+ b
√
p,
√

2
)
, which is cyclic over Q(

√
2). For p ≡ 1 (mod 8) we can

avoid reference to the (odd) class number h(p) by using another dihedral
field (see below).

Theorem 2. Let S = {p, q} for distinct primes p ≡ q ≡ 1 (mod 4)
satisfying

( q
p

)
= 1. There exists a unique normal number field F of absolute

degree 8 containing K = Q(
√
p,
√
q) such that no finite prime of K ramifies

in F . There is also a unique subfield E of the pqth cyclotomic field Q(ζpq)
such that [E : K] = 2 but E 6⊆ K(ζp) and E 6⊆ K(ζq). Then KS(Q8) = {Lpq}
where Lpq is the unique proper subfield of EF containing K properly which
is distinct from E and from F . The field Lpq is real if and only if F and E
are both real or both nonreal.

There are some comments in order. The cyclotomic field E is real if
and only if p and q are in the same residue class modulo 8 (so p ≡ q ≡ 1
or 5 (mod 8)). The field F is a subfield of the narrow Hilbert 2-class field
of Q(

√
pq), so it has a dihedral Galois group over Q and a cyclic one over

Q(
√
pq). It is real if and only if the (ordinary) class number h(pq) of Q(

√
pq)

is divisible by 4 (and so F is in the Hilbert class field of Q(
√
pq)), and this
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happens precisely when the biquadratic Legendre symbols
(p
q

)
4

and
( q
p

)
4

are

equal. These symbols can be easily (and rationally) computed in the present
situation (Lemma 2.4). We shall describe F explicitly as a quadratic exten-
sion of K = Q(

√
p,
√
q) (Proposition 5.1), thus giving the necessary infor-

mation on h(pq) in a different way. Unramified Q8-extensions of quadratic
number fields which are normal over Q are studied by Lemmermeyer [17].

For p ≡ 1 (mod 8), the narrow class number h+(8p) of Q(
√

2p) (having
discriminant 8p) likewise is divisible by 4, so that we can construct the Q8-
field Lp in a corresponding way. If h+(8p), or h+(pq) when S is of type (ii),
is divisible by 8, one observes in this manner that KS(Q16) contains fields
which are cyclic over Q(

√
2p), respectively Q(

√
pq). Here Q16 denotes the

(generalized) quaternion group of order 16.

Theorem 3. Let G = Q2n be the (generalized) quaternion group of or-
der 2n (n > 3), and let S = {2, p} for some prime p ≡ 1 (mod 2n−1).
Then there are unique real and complex fields in KS(G) which are cyclic
over Q(

√
2).

This may be seen as a supplement to the work of Damey–Martinet [4],
and to that of Fröhlich [8]. By Dirichlet’s prime number theorem (or directly)
there exist infinitely many primes p ≡ 1 (mod 2n−1). One might ask whether
for any integer n ≥ 3 there exist distinct primes p ≡ q ≡ 1 (mod 4) (with( q
p

)
= 1) such that h(8p), respectively h(pq), is divisible by 2n (see [11], [22]

for the cases n = 2, 3, 4). The Hilbert class fields of real quadratic number
fields with discriminant less than 2000 are given by Cohen [3, Section 12.1.1].

If S = {2, p} for some prime p ≡ 3 (mod 8), then KS(Q2n) = ∅ for
all n > 3. In this case we are indeed able to determine the 2-groups G for
which K+

S (G) 6= ∅, and the complete lattice structure of the fields appearing
(Proposition 7.2). This (infinite) lattice turns out to be independent of the
particular prime p ≡ 3 (mod 8), up to isomorphism.

There is a close relationship between the Galois theory of the quaternion
group Q2n and that of the dihedral group D2n (of order 2n). This will be
made precise in Section 3, where the ground field may be any field of charac-
teristic 6= 2. Otherwise we restrict ourselves to the ground field Q, treating
just the ramification types (i), (ii) given in Theorem 0.

2. Preliminaries. We shall refer to the celebrated work of Witt [23],
where the general question is treated of when a biquadratic extension of a
field of characteristic 6= 2 can be embedded into a Q8-field (see also [7], [13]).
Recall that the quaternion group Q2n , the dihedral group D2n and the
semidihedral group SD2n are the (nonabelian) 2-groups X of maximal class
(nilpotency class n − 1) and order 2n (n ≥ 3, identifying SD8 = D8 when
n = 3). Here the commutator subgroup X ′ = X2 is the Frattini sub-
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group, the centre Z(X) ∼= Z2 has order 2 and is contained in X ′, and
G = X/Z(X) ∼= D2n−1 (where we let D4 = V be the elementary group of
order 4). In particular, the Schur multiplier M(G) = H2(G,Z) of G = D2n−1

has order 2, and Q2n , D2n , SD2n are the unique Schur covers of G, up to
group isomorphism.

Lemma 2.1. Suppose that L/Q is a Galois extension with group X ∼=Q2n

(n ≥ 3). Let K ′ ⊆ K be the fixed fields in L of X ′ ⊇ Z(X). Then K
is (totally) real, and at least two rational primes are ramified in K ′. Let
L = K(

√
β) for some β ∈ K. Then L = Q(

√
β), and L′ = Q(

√
−β) is a

normal Q2n-field distinct from L. Exactly one of L,L′ is real.

Proof. Obviously K ′ = Q(
√
a,
√
b) is biquadratic over Q, where we may

assume that a and b are distinct square-free integers. Then every prime
dividing a or b is ramified in K ′. Complex multiplication on L is either
trivial (for L real) or the unique (central) involution in X having fixed
field K (Gal(K/Q) ∼= D2n−1). So K is real in any case. Clearly β ex-
ists (as [L : K| = 2), and L is real if and only if β is totally positive. Let
H = Gal(L/Q(

√
β)). Then H ∩ Z(X) = 1 and so H = 1, because every

nontrivial subgroup of X contains Z(X). Finally, L′ is the unique proper
subfield of L(i) which contains K = L ∩K(i) properly and is distinct from
L and from K(i) (i = ζ4, ζr = e2πi/r). Now Gal(L(i)/Q) ∼= X × Z2, and so
Gal(L′/Q) ∼= X.

Whenever we have two fields k1 6= k2 of characteristic 6= 2 (in a common
overfield) which are of degree 2 over k1∩k2 (and so Gal(k1k2/k1 ∩ k2) ∼= V ),
the companion field of k1 and k2 is the unique further subfield of k1k2
quadratic over k1 ∩ k2.

Lemma 2.2. Let K = Q(
√
p,
√
q) for some distinct (finite) rational

primes p, q. Then K can be embedded into a Q8-field if and only if one
of the following holds:

(i) q = 2 (say) and p ≡ 1 or 3 (mod 8).
(ii) p ≡ q ≡ 1 (mod 4) and

( q
p

)
= 1.

Proof. For nonzero rational numbers a, b let (a, b) denote the class of

the quaternion algebra
(a,b

Q
)

in the Brauer group Br(Q). Then (−a,−b) =

(−1,−1) if and only if the quadratic forms aX2+bY 2+abZ2 andX2+Y 2+Z2

are equivalent over Q. This forces that a > 0, b > 0, and by Witt’s theorem
the latter condition is fulfilled if and only if Q(

√
a,
√
b) can be embedded

into a Q8-field. By the Hasse–Minkowski principle the quadratic forms are
equivalent over Q if and only if they are equivalent over all completions Qr,
r a prime or r =∞ (Q∞ = R; see e.g. Serre [20, Theorem 9, p. 44]). This in
turn means that we have to compute the local Hilbert symbols (−a,−b)r.
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Now let a = p and b = q be distinct primes, and apply [20, Theo-
rem 1, p. 20]. Note that (−1,−1)2 = −1 and (−1,−1)r = 1 for all odd
finite primes r, as well as (−p,−q)r = 1 whenever r 6∈ {p, q,∞}. Check the
remaining few cases. �

Lemma 2.3. Let K = Q(
√
a,
√
b) be a biquadratic field which can be

embedded into a Q8-field L = K(β) over the rationals. Then every Q8-field

containg K is of the form K(
√
cβ) for some rational number c 6= 0, where

L = K(
√
cβ) if and only if c ∈ K∗2.

This is immediate from Witt [23]; see also [13, Proposition I.1.8].

Lemma 2.4. Suppose p and q are distinct odd primes satisfying p ≡
q ≡ 1 (mod 4) and

( q
p

)
= 1. Write uniquely p = a2 + b2 and q = c2 + d2

with positive integers a, b, c, d, where b and d are even. Then
(p
q

)
4

( q
p

)
4

=

(−1)(p−1)/4
(
ad−bc
p

)
, and this is +1 if and only if the class number h(pq) of

Q(
√
pq) is divisible by 4.

In the above situation
(p
q

)
4

= ±1, the positive sign holding when p is a

4th power modulo q. The first statement is due to Burde [2]; the statement
on the class number follows from Theorem 5.6 of Fröhlich [9]. For the next
lemma see also [9] and [24].

Lemma 2.5. For any prime p the class number h of Q(
√
p) is odd. The

narrow class number h+ of Q(
√
p) is equal to h if and only if its funda-

mental unit has norm −1, and h+ = 2h otherwise. Also, h+ = h is odd if
p ≡ 1 (mod 4).

Lemma 2.6. Let q < p be primes such that p ≡ 1 (mod 8) if q = 2, and
p ≡ q ≡ 1 (mod 4) and

( q
p

)
= 1 otherwise. Then the narrow class number of

Q(
√
pq) is divisible by 4, and its narrow Hilbert 2-class field has a dihedral

Galois group over the rationals and is cyclic over Q(
√
pq).

One knows that Q(
√
p,
√
q) is the (narrow) genus field of Q(

√
pq)

(Hasse [10]). Hence the first statement follows from [9, Theorem 5.2]. The
rest is immediate from Hasse’s work.

Lemma 2.7. Let k be any field of characteristic 6= 2, and let k0 = k(
√
d)

be a quadratic extension. There exists E ⊃ k0 which is cyclic over k of
degree 4 and solves the embedding problem (k0/k, Z4) if and only if d is a
sum of two squares in k. If k = Q (or any Hilbertian field), the embedding
problem (k0/k,Q8) is solvable if and only if d is a sum of three squares in k.

For the first statement we refer to Serre [21, Theorem 1.2.4], and for
the second one to Jensen–Yui [13, Theorem II.2.1]. Cyclic extensions of the
rationals are cyclotomic by the Kronecker–Weber theorem. We shall repeat-

edly use the solutions B2 = Q
(√

2 +
√

2
)

and B−2 = Q
(√
−2−

√
2
)

of the
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embedding problem (Q(
√

2)/Q, Z4). Here B2 appears in the (cyclotomic)
Z2-extension of Q = B0, with B1 = Q(

√
2).

The following is standard (see e.g. [13]).

Lemma 2.8. Let k be any field of characteristic 6= 2, and let a, b be
elements of k.

(a) The splitting field of the polynomial X4 + aX2 + b is cyclic of degree
4 over k if b 6∈ k2 but b(a2 − 4b) ∈ k∗2.

(b) Suppose K = k(
√
a,
√
b) is a biquadratic extension field of k such that

(a, b) = 1 in Br(k). Then there exist x, y in k such that x2−ay2 = b,

and F = K(
√
x+ y

√
a) is a Galois extension of k with dihedral

group (of order 8) which is cyclic over k(
√
ab).

Assume in part (b) of the above lemma that the embedding problem
(k(
√
ab)/k, Z4) is solvable. Then ab = u2 + v2 is a sum of two squares

in k (Lemma 2.7). Hence ax2 − a2y2 = ab = u2 + v2, and therefore a and
b are sums of three squares in k. We shall see in the next section that
K = k(

√
a,
√
b) can be embedded into a Q8-field over k.

3. Dihedral and quaternion fields. In this section k may be an arbi-
trary field of characteristic 6= 2. Every algebraic overfield of k is understood
to be in a given algebraic closure of k.

Lemma 3.1. Suppose L1, L2 are Galois extensions of k with groups Xi.
Let L = L1L2 and K = L1 ∩ L2. Then Gal(L/k) = X1 ×G X2 is the
fibre product of X1 and X2 with respect to the natural epimorphisms (via
restrictions) onto G = Gal(K/k).

This is obvious (and certainly well known), because σ 7→ (σ|L1
, σ|L2

) is a
monomorphism of Gal(L/k) into the direct product X1 ×X2 whose image
consists of those elements of X1, X2 which agree on K.

Hypothesis. Let K/k be a Galois extension with group G ∼= D2n−1

(n ≥ 3).

Proposition 3.2. Assume K is embedded into two fields L1 6= L2 which
are both Galois over k with groups Xi

∼= Q2n. Then there is a subfield of
L = L1L2 which is quadratic over k and not contained in K. An analogous
statement holds when Xi

∼= D2n and n ≥ 4, or n = 3 and the Li are cyclic
over the same subfield k0 of K of degree 2 over k.

Proof. Clearly L1 ∩ L2 = K. Let Y = Gal(L/k) and M = Gal(L/K).
Then M = Z(Y ) is elementary of order 4. Indeed, if Mi = Gal(L/Li), then
we may identify Xi = Y/Mi and get M/Mi = Z(Xi) (i = 1, 2). Let L0 be the
companion field of L1 and L2, and let M0 = Gal(L/L0) and X0 = Y/M0.
Then M = M1 ×M2 = M1 ×M0, and we may identify G = Y/M . The
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subfields of K quadratic over k are contained in the fixed field K ′ ⊆ K of
G′ = G2 (where Gal(K ′/k) ∼= V ).

Let us first consider the case n = 3 (K ′ = K). If X1 and X2 are quater-
nion, then L1 and L2 are cyclic over any subfield of degree 2 over k, implying
that L0 is elementary (of degree 4) over all these subfields. If X1 and X2

are dihedral, then L1 and L2 are cyclic over the same such subfield k0 by
assumption, and they are elementary over the other ones. Thus in both cases
Gal(L0/k) ∼= Y/M0 is an elementary abelian group (of order 8).

Hence we may assume that n > 3. Let N be the inverse image in Y of
the unique cyclic maximal subgroup of G = Y/M . Then N/M1 and N/M2

are the (unique) cyclic maximal subgroups of X1 and X2, respectively, and
we let k0 be the fixed field of N on L. Since |M(G)| = 2, we cannot have
M ⊆ Y ′. Using the fact that X1, X2 are Schur covers of G, this forces
that Y ′ ∩M = M0. Since Y ′M/M = G′, we see that A = Y/Y ′ is either
elementary abelian of order 8 or abelian of type (4, 2). We have to rule out
the latter possibility.

Assume A = Y/Y ′ is of type (4, 2). Then Y 2 = MY ′, and V = Y/Y 2 is
elementary abelian of order 4. Since

M1 ∩ Y ′ = M1 ∩ (M ∩ Y ′) = M1 ∩M0 = 1,

the assignment y 7→ (yM1, yY
′) is an isomorphism of Y onto the fibre prod-

uct X1×V A with respect to the natural epimorphisms of X1 and A onto V
(Lemma 3.1). Two of the three nontrivial elements of V come from elements
of order 4 in A, and the remaining one from an element of X1 outside N/M1.

Suppose X1
∼= D2n . Since every element of X1 outside N/M1 is an invo-

lution, there is y ∈ Y such that yM1 is a noncentral involution in X1 and
yY ′ is of order 4. Then y2 ∈M has trivial image in M/M1 and a nontrivial
one in A, that is, in M/M0. Thus y2 6∈ M2 and yM2 is an element of or-
der 4 in X2 = Y/M2 outside N/M2. Hence X2 is not dihedral, contrary to
X1
∼= X2.
Suppose next that X1

∼= Q2n . Since every element of X1 outside N/M1

has order 4, there is y ∈ Y such that yM1 is a noncentral element of order
4 in X1 and yY ′ is of order 4. Then y2 ∈ M gives rise to the nontrivial
elements in M/M1 and M/M0. It follows that y2 is the generator of M2

and that yM2 is a noncentral involution in X2 = Y/M2. Hence X2 is not
quaternion, contrary to X1

∼= X2.

Corollary. Let k = Q, and suppose K is a field in K+
S (G) where S is

as in Theorem 0. Then there is at most one field in K+
S (Q2n) containing K

when S is of type (i), and at most one field in KS(Q2n) containing K when
S is of type (ii). A similar statement holds for D2n, with the proviso that
for n = 3, we only consider overfields of K which are cyclic over the same
subfield of K of degree 2 over Q.
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Otherwise there are fields L1 6= L2 in the corresponding sets, and then
L = L1L2 is unramified outside S ∪ {∞} respectively S containing a qua-
dratic field outside K. But the subfields of K quadratic over Q amount to
all real quadratic fields in which only the primes in S are ramified.

Proposition 3.3. Assume K is embedded into a field L1 which is Galois
over k with group X1

∼= D2n. Let k0 be the fixed field of the cyclic maxi-
mal subgroup of X1. There is a field L2 which is Galois over k with group
X2
∼= Q2n and with L1 ∩ L2 = K if and only if there is a field E ⊃ k0 such

that E/k is cyclic of degree 4. In this case [KE : K] = 2 and KE 6= L1, and
L2 is the companion field of L1 and KE.

Proof. Suppose first that L2 exists as claimed. Let then L = L1L2,
Y = Gal(L/k), and keep all further conventions introduced in the proof of
Proposition 3.2. As before, A = Y/Y ′ is of order 8, with Y ′∩Z = Z0, and Y
may be identified with the fibre product X1×V A with respect to the natural
epimorphisms of X1 = Y/M1 and A onto V = Y/Y ′M . Here A cannot be
elementary, because otherwise all noncentral elements of X2 = Y/M2 would
be involutions. Thus A is of type (4, 2). Assume there is y ∈ Y such that
N/M1 = 〈yM1〉 is the cyclic maximal subgroup of X1 and yY ′ is of order 4
in A. Then there is u ∈ Y such that uM1 is a noncentral involution in X1

and uY ′ is an involution in A. It follows that u2 ∈ M1 ∩M0 = 1. Clearly
u 6∈M2, and so uM2 is a noncentral involution in X2 = Y/M2, contradicting
the fact that X2

∼= Q2n .

Hence there is y ∈ Y such that yM1 generates N/M1 and yY ′ has order 2.
Let B = 〈Y ′, y〉. Then B ⊂ N and Y/B is cyclic of order 4. Since k0 is the
fixed field of N on L, the fixed field E of B is as required.

Conversely, if E exists (cyclic of degree 4 over k and containing k0),
then E ∩ L1 = k0, and we let L0 = KE and L = L1L0, and L2 is the
companion field of L1 and L0. We are in quite the same situation as before.
Let again Y = Gal(L/k) and A = Y/Y ′. Then A is of type (4, 2), and there
is y ∈ Y such that yM1 generates N/M1 and yY ′ has order 2. It follows that
whenever u ∈ Y is such that uM1 is a noncentral involution in X1 = Y/M1,
then uY ′ is of order 4. Then u2 ∈ M1 has a nontrivial image in M/M0, so
u2 6∈ M2 and uM2 is an element of X2 = Y/M2 of order 4 outside N/M2.
Consequently, X2

∼= Q2n , as desired.

Corollary. Let k = Q in the preceding proposition, and let k0 =
Q(
√
d) be the fixed field of the cyclic maximal subgroup of X1

∼= D2n. Ass-
sume that d is a sum of two rational squares. Then K is a real field for
which the embedding problem (K/Q, Q2n) is solvable.

By Lemma 2.7 there is a field E ⊃ k0 which is cyclic of degree 4 over
the rationals. Then L1 ∩ E = k0, and the companion field of L1 and KE
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is a solution of the embedding problem (K/Q, Q2n) (Proposition 3.3). Now
Lemma 2.1 implies that K is a real field.

4. Proof of Theorem 1. Let S = {2, p} for some prime p ≡ 1 or 3
(mod 8). We know from Lemma 2.2 that this S is a candidate for having
K+
S (Q8) 6= ∅. In both cases (−2, p) = 1 in Br(Q) and so x2 − py2 = −2 for

some rational numbers x, y. We need a slightly stronger statement.

Consider first the case p ≡ 1 (mod 8). Then by Lemma 2.5 the class
number h = h(p) of P = Q(

√
p) is odd, and the fundamental unit u =

(c + d
√
p)/2 of P has norm (c2 − pd2)/4 = −1. Here c, d are integers with

the same parity. But they cannot both be odd, because then −4 = c2−pd2 ≡
1− p ≡ 0 (mod 8). Hence c = 2c0 and d = 2d0 are even, and u = c0 + d0

√
p.

The prime 2 splits in P , so that there is a prime p of P with absolute norm 2.

Clearly ph =
( b+a√p

2

)
is a principal ideal, b and a being rational integers with

the same parity. It follows that the norm satisfies NP/Q(b+a
√
p) = ±2h+2. If

the sign is positive, then replace b+a
√
p by u(b+a

√
p). In this case we have

b2−a2p = −2r where r = h+2 is odd. Dividing by a power of 4 if necessary,
we may assume that b and a are odd, and then a2p−b2 ≡ p−1 ≡ 0 (mod 8).
Thus a2p−b2 = 2r with positive odd integers a, b, r, and with 3 ≤ r ≤ h+2.

Let next p ≡ 3 (mod 8). Then (2) = p2 is ramified in P = Q(
√
p)

(discriminant 4p). Since the class number h(4p) of P is still odd, this forces
that p = (b + a

√
p) is a principal ideal (a, b integers). As before, p has

norm 2 and so NP/Q(b + a
√
p) = b2 − a2p = ±2. This implies that a and b

are odd integers, and therefore b2−a2p ≡ 1−p ≡ −2 (mod 8). Consequently,
a2p− b2 = 2.

In both cases we may thus assume that a, b and r are positive odd
integers, with a2p2 − b2p = 2rp = (ap + b

√
p)(ap − b

√
p). Let then β =

(2 +
√

2)(ap + b
√
p), an element of K = Q(

√
2,
√
p), and let L = K(

√
β).

For every σ ∈ Gal(K/Q), the conjugate βσ satisfies βσ ≡ β (mod K∗2) and
βσ > 0. Hence β is totally positive and L is a real Galois extension of Q.
Moreover, every prime q of K dividing (β) lies above 2 or p as NK/Q(β) =

22(r+1) · p2, and only such a prime q can ramify in L = K(
√
β). Thus L is

unramified outside S = {2, p}.
In order to ensure that Gal(L/Q) ∼= Q8 it suffices to show that L is cyclic

of degree 4 over Q(
√

2), Q(
√
p) and Q(

√
2p). Indeed,

√
β is a root of the

polynomial

X4 − 2ap(2 +
√

2)X2 + 2rp(2 +
√

2)2

over Q(
√

2). Since 2rp(2+
√

2)2≡ p 6≡ 1 (mod Q(
√

2)∗2) but p(4a2p2−4·2rp)
= p(4b2p) is a square in Q(

√
2), L is cyclic of degree 4 over Q(

√
2) by
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Lemma 2.8(a). Similarly,
√
β is a root of the polynomial

X4 − 4(ap+ b
√
p)X2 + 2(ap+ b

√
p)2

over Q(
√
p), and application of Lemma 2.8(a) shows that L is cyclic of degree

4 over Q(
√
p). Finally,

√
γ is a root of

X4 − 2(2ap+ b
√

2p)X2 + 2 · 2rp

over Q(
√

2p), and Lemma 2.8(a) applies again. Note that 2(2rp) = 2r(2p) ≡
2r ≡ 2 (mod Q(

√
2p)∗2) (as r is odd), but 2(4(2ap+b

√
2p)2−8(2rp)) ≡ (ap+

b
√

2b)2 (mod Q(
√

2p)∗2). Hence L is indeed a Q8-field over the rationals.
Lemma 2.1 now yields L = Q(

√
β).

We may also argue on the basis of Proposition 3.3, and of Lemma 2.8(b).
This part of the lemma readily implies that F = K(

√
ap+ b

√
p) is a (real)

Galois extension with dihedral group (of order 8) which is cyclic over Q(
√

2).
By Proposition 3.3 the companion field L of F and B2K has the desired
properties. It is obvious that L is as before. Uniqueness of L = Lp in K+

S (Q8)
follows from the Corollary to Proposition 3.2. (This may also be checked,
more elementarily, using Lemma 2.3.) In view of Lemma 2.1 it is immedi-
ate that L−p = Q(

√
−β) is the unique further (complex) field belonging to

KS(Q8).

In the case p ≡ 1 (mod 8), knowledge of the class number h(p) may be
helpful in Theorem 1. The smallest such prime where h(p) > 1 is p = 257,
in which case h(p) = 3 and where p− 152 = 25 gives

Lp = Q
(√

(2 +
√

2)(257 + 15
√

257)
)
.

One can avoid reference to h(p) by arguing as follows.

Remark. Let p ≡ 1 (mod 8). Then there are positive integers x, y
such that x2 − 2y2 = p. (Note that h+(8) = 1 and

(
2
p

)
= 1, so either p

splits in Q(
√

2) or p is represented by the quadratic form X2 − 2Y 2 (see [3,
Satz 3, p. 65]).) Here x must be odd and y even. Let K = Q(

√
2,
√
p) and

F = K
(√

x+ y
√

2
)
. Then F is a real Galois number field with group D8

which is cyclic over Q(
√

2p) (Lemma 2.8(b)). Moreover F is unramified out-
side S = {2, p}. Let P be the unique (real) subfield of Q(ζp) of absolute
degree 4, and let E be the companion field of B2(

√
p) and P (

√
2) (which

intersect in K). This E is cyclic over Q(
√

2) and over Q(
√
p), hence elemen-

tary over Q(
√

2p). It follows that E = E1E2 where both Ei are solutions
of the embedding problem (Q(

√
2p)/Q, Z4). Application of Propositions 3.3

and 3.2 shows that Lp is the companion field of F and E.

By uniqueness of Lp, and by Lemma 2.6, either F is in the Hilbert 2-class

field of Q(
√

2p), or K
(√
−x− y

√
2
)

is its narrow Hilbert 2-class field.
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5. Proof of Theorem 2. Let S = {p, q} where p and q are distinct

primes satisfying p ≡ q ≡ 1 (mod 4) and
( q
p

)
= 1. By Lemma 2.2 this S is a

candidate for having KS(Q8) 6= ∅. Let K0 = Q(
√
pq), and K = Q(

√
p,
√
q)

be its (narrow) genus field. By Lemma 2.6 there is a unique Galois number
field F ⊃ K of absolute degree 8 in which no finite prime of K0 (or K)
is ramified. This F has a dihedral Galois group over the rationals, and is
cyclic over K0. Also F is real if and only if the class number h(pq) of K0 is
divisible by 4 (or that of K is even).

Let P and Q be the (unique) subfields of Q(ζp) and Q(ζq), respectively,
with absolute degree 4. So P is real if and only if p ≡ 1 (mod 8), and similarly
for Q. Let E be the companion field of PK and QK. This E is real if and
only if either p ≡ q ≡ 1 (mod 8) or p ≡ q ≡ 5 (mod 8). Moreover, E is cyclic
over Q(

√
p) and Q(

√
q), since PK/Q(

√
p) and QK/Q(

√
q) are elementary.

It follows that E is elementary over K0 and that E = E1E2 where both Ei
are solutions of the embedding problem (K0/Q, Z4). Of course, E = KEi
for each i.

Let L be the companion field of F and E. By Propositions 3.3 and 3.2
this L = Lpq is the unique field belonging to KS(Q8).

Proposition 5.1. The field F of Theorem 2 may be described as follows.
There exist integers x, y with the same parity such that x2−qy2 = 4ph where
h = h(q) = h+(q) is odd. If x, y are odd, then choose the sign of x such that
x ≡ 3 (mod 4). If x, y are even, which happens when q ≡ 1 (mod 8), then
x/2 is odd and we choose the sign of x such that x/2 ≡ 3 (mod 4) if p ≡ 5
(mod 8) and x/2 ≡ 1 (mod 4) if p ≡ 1 (mod 8). In both cases we have
F = Q(

√
p,
√
θ) where θ = 1

2(x+ y
√
q). In particular, h(pq) is divisible by 4

(hence F is real) if and only if x > 0 in these choices.

Proof. We know that h is as asserted (Lemma 2.5), and p splits in
Q(
√
q) (as

( q
p

)
= 1). We find integers x, y with the same parity such that

x2 − qy2 = 4ph. Suppose first that x, y are odd. Hence 1−q ≡ 4 (mod 8) and
q ≡ 5 (mod 8). Choose then the sign of x such that x ≡ 3 (mod 4). Suppose
next that x = 2x0 and y = 2y0 are even. Then x20 − qy20 = ph and ph ≡ p

(mod 8) as h is odd. From p ≡ q ≡ 1 (mod 4) we get x20 − y20 ≡ 1 (mod 4).
It follows that x0 must be odd and y0 be even, and we choose the sign of x

as defined above. In both cases we let θ = 1
2(x+ y

√
q), and F = Q(

√
θ,
√
p).

It follows from Lemma 2.8(b) that F is Galois over the rationals with
group D8, and F is cyclic over K0 = Q(

√
pq). Also, F is unramified out-

side S ∪ {∞} except possibly that some dyadic prime of Q(
√
q) ramifies in

Q(
√
q,
√
θ). We shall rule the latter out by showing that θ is a 2-primary

integer in Q(
√
q), that is, θ is an odd integer (relatively prime to 2) such

that the congruence X2 ≡ θ (mod 4) has a solution in the integers of Q(
√
q)
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(see Hecke [12, Theorem 120]). Here θ is odd as its absolute norm equals ph.
If x, y are odd, then (x − 1)2 ≡ 4 (mod 16) as x ≡ 3 (mod 4), and
ρ = (1 + y

√
q)/2 is a solution of the congruence since

ρ2 − θ =
1

4
(1 + qy2 − 2x) =

1

4
(1− 2x+ x2 − 4ph)

=
1

4
(x− 1)2 − ph ≡ 0 (mod 4).

Suppose next that x = 2x0 and y = 2y0 are even, where x20 − qy20 = ph

and θ = x0 + y0
√
q. Since x0 is odd, we get 1 − qy20 ≡ p ≡ 1 or 5 (mod 8).

Thus y0/2 is even when p ≡ 1 (mod 8), in which case x0 ≡ 1 (mod 4)
and so (q − x0)/2 is even likewise. If p ≡ 5 (mod 8), then y0/2 is odd,
where by definition x0 ≡ 3 (mod 4) and hence (q − x0)/2 is odd. Thus
λ = 1

4(q − x0 − y0
√
q) is an integer of Q(

√
q), and q − θ = 4λ. Hence

√
q is

a solution of the congruence in this case.

It follows that F is unramified outside S ∪ {∞} (where S = {p, q}).
Let E be as in the proof of Theorem 2. Then F ∩ E = Q(

√
p,
√
q), and by

Proposition 3.3 the companion field L of F and E is quaternion over the
rationals, and it is unramified outside S∪{∞}. Hence L = Lpq by uniqueness.
Thus F ⊂ LpqE is the companion field of Lpq and E, as desired.

Example. In Proposition 5.1 the situation is symmetric in p and q. Let
for instance S = {p, q} = {17, 101}. (In this case the absolute Galois group
GS(2) is known to be infinite; see [6, Theorem 3.1].) Using 132−22 ·17 = 101
and 132 − 101 = 4 · 17 we deduce that

F = Q
(√
−13 + 2

√
17,
√

101
)

= Q
(√

(−13 +
√

101)/2,
√

17
)

is not real. Thus h(pq) is not divisible by 4 in this case. Indeed h(pq) = 2
here, so that F is the narrow Hilbert class field of Q(

√
pq). Note also that

Lpq is real in this example.

6. Proof of Theorem 3. Let the prime p satisfy p ≡ 1 (mod 2n−1) for
some integer n > 3. We first show that there is a field in KS(D2n) which is
cyclic over k0 = Q(

√
2). Let H0 = Gal(k0/Q) act on the cyclic group U0 of

order 2n−1 by inverting the elements. Embed k0 into E = Q(ζ2n−1), and let
H = Gal(E/Q). Then H0 is an epimorphic image of H, whence U0H0

∼= D2n

is an epimorphic image of the semidirect product U0H. We may also replace
U0 by any free (Z/2n−1Z)H-module U 6= 0 since U0 is a quotient module
of U .

The prime p splits totally in E. By Weber’s theorem (see e.g. [9, p. 68])
the class number h of E is odd. Let p be a prime of E above p. Then ph = (α)
for some α ∈ E. We have vp(α) = h and vq(α) = 0 for each prime q 6= p
of E. In particular, vp(α

σ) = 0 for all 1 6= σ ∈ H (but vpσ(ασ) = h). Since
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h is odd, the order of α, and of the ασ, in E∗/E∗
2n−1

is 2n−1. Let

Ê = E( 2n−1√
ασ : σ ∈ H).

Then U = Gal(Ê/E) is a free (Z/2n−1)H-module of rank 1 and, by Kummer

theory, Ê is a Galois extension of Q whose group is an extension of H =
Gal(E/Q) by U . Hence the extension splits. (This argument follows closely
that given by Serre [21, p. 18].)

By construction, Ê is unramified outside S ∪ {∞}, where S = {2, p}.
Moreover, U0H0

∼= D2n is a quotient group of Gal(Ê/Q) ∼= UH. Conse-
quently, there is a field L1 in KS(D2n) which is cyclic over k0 = Q(

√
2).

Let X1 = Gal(L1/Q), and let K be the fixed field on L1 of Z(X1) (so that
Gal(K/Q) ∼= D2n−1). Let L be the companion field of L1 and B2K. By
Proposition 3.3 this L is a field in KS(Q2n), and it is cyclic over Q(

√
2). We

also know from the Corollary to Proposition 3.3 that K is real, and we may
modify L, if necessary, so that it is a real field (Lemma 2.1).

Uniquenes of L in K+
S (Q2n) is settled by induction on n. In fact, this

allows us to assume that K is the unique field in K+
S (D2n−1) which is cyclic

over Q(
√

2), and then the Corollary to Proposition 3.2 applies.

Example. The prime p = 113 is the smallest prime congruent to 1 mod-
ulo 8 (here even p ≡ 1 (mod 16)) for which the class number h(8p) of Q(

√
2p)

is divisible by 8. Indeed, h(8p) = 8, and the Hilbert class field of Q(
√

2p) is
given explicitly by Cohen [3, p. 537]. By the Remark in Section 4 we know
that there are subfields E1, E2 of Q(ζ16p) containing Q(

√
2p) and cyclic over

Q of degree 4. Hence application of Proposition 3.3 and Lemma 2.1 shows
that there are unique real and complex fields in KS(Q16) for S = {2, p}
which are cyclic over Q(

√
2p).

For any prime p ≡ 1 (mod 8) there exist positive integers x, y such that

x2 − 2y2 = 2p (see [23, Satz 3, p. 65]). Then F = Q
(√

x+ y
√

2,
√

2p
)

is

a field in K+
S (D8) for S = {2, p} which is cyclic over Q(

√
p), by virtue of

Lemma 2.8(b). From [16, Proposition 4.2] it follows that F can be embed-
ded into a D16-field or Q16-field over the rationals if and only if (−p, x) = 1
in Br(Q). For p = 113 we have 262−2·152 = 2·p, and (−p, 26) = 1 in Br(Q).
Since the (real) subfield E of Q(ζp) of absolute degree 4 is a solution of the
embedding problem (Q(

√
p)/Q, Z4), we conclude that in this case there are

also unique real and complex fields in KS(Q16) which are cyclic over Q(
√
p).

7. Fields of Dedekind type. In what follows we fix a prime p ≡ 3
(mod 8), and let S = {2, p}. A normal number field L of 2-power degree is
said to be of Dedekind type (with respect to p) if it is unramified outside S.
Though these fields rely on the prime p chosen, the isomorphism type of the
lattice formed by them will be independent of it.
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The Schur multiplier of a profinite group Γ is the profinite (abelian)

group M(Γ ) = H2(Γ, Ẑ) whose Pontryagin dual is the discrete (abelian)
torsion group H2(Γ,Q/Z) (see e.g. [18, Theorem 2.2.9]); for finite G this
agrees with the usual definition. Given a prime p, H2(Γ,Zp) is the Sylow
p-subgroup of M(Γ ), and we may write M(Γ ) = H2(Γ,Zp) when Γ is a
pro-p-group. Since the Leopoldt conjecture is true for Q (and for every
abelian number field), M(Γ ) = 0 for Γ = GS(2) (cf. [9, Theorem 4.9] or [18,
Theorem 10.3.6]). We shall see that this also holds for G+

S (2), the absolute
Galois group of the maximal 2-extension Q+

S (2) of the rationals unramified
outside S.

Let us introduce the 2-groups which will appear as (finite) quotient
groups of G+

S (2). Define

Gnm = Gnm(p) = 〈x, y | x2m = 1 = y2
n
, y−1xy = yp〉

for positive integers m,n with m ≤ n+ 1, and let

G̃nm = G̃nm(p) = 〈x, y | x2m = 1, y2
n

= x2
m−1

, y−1xy = yp〉
for m ≤ n + 2. Both Gnm and G̃nm are metacyclic groups of order 2m+n.
They are abelian if and only if m = 1, and Gn1 is of type (2, 2n) whereas

G̃n1
∼= Z2n+1 is cyclic of order 2n+1. Also, G1

2 = D8 and G̃1
2 = Q8, and G̃1

3

is the semidihedral group of order 16 (independent of the particular prime
p ≡ 3 (mod 8)).

Lemma 7.1. The Schur multiplier M(Gnm) of Gnm = Gnm(p) has order
2 whereas that of G̃nm vanishes. If m < n + 1, then Gnm+1 and G̃nm+1 are
(nonisomorphic) Schur covers of Gnm, and G̃nm+1 is a Schur cover of Gnm
when m = n+ 1.

This follows from [1, Proposition 9.2]. We see that the groups Gnm, G̃nm
are not isomorphic, and their isomorphism type is determined by m,n and
the prime p.

Proposition 7.2. Let S = {2, p} with p ≡ 3 (mod 8), and let G be a
finite noncyclic 2-group. Then K+

S (G) 6= ∅ if and only if G is isomorphic

to Gnm(p) or G̃nm(p) for some positive integers m,n, in which cases K+
S (G)

consists of a single field Fmn (p) respectively F̃mn (p) when m < n+ 2, and has

cardinality 2 when m = n+ 2 and hence G ∼= G̃nn+2(p).

Proof. Let Γ = G+
S (2). It follows from [14, Satz 6.3] that, as a pro-

2-group, Γ is generated by two elements σ, τ with the defining relation
τ−1στ = σp. So we are in a situation similar to that studied in [19].
One knows that the commutator subgroup Γ ′ = [Γ, Γ ] is closed in Γ ,
as is every finite-index subgroup. Of course, K+

S (G) 6= ∅ if and only if
G ∼= Γ/R is a quotient group of Γ , and then we have a natural epimor-
phism M(G) � (R∩Γ ′)/[R,Γ ] by the 5-term exact homology sequence (see
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e.g. [1, Lemma 4.1]). We shall confirm the Hopf–Schur relation

M(G) ∼= (R ∩ Γ ′)/[R,Γ ]

for all such quotient groups, which will imply that M(Γ ) = 0 [9, Propo-
sition 4.1]. The relation trivially holds when M(G) = 0. We have Γ/Γ ′ ∼=
Z2 × Z2 since B∞(

√
p) is the maximal abelian subextension of Q+

S , were
B∞ =

⋃
i≥0Bi is the (cyclotomic) Z2-extension of B0 = Q. The cyclic sub-

fields of B∞(
√

2) are easily described, and their Galois groups over Q have
trivial multiplier.

Let G ∼= Γ/R be noncylic. Then G can be generated by two elements
x, y such that y−1xy = xp. Suppose the normal subgroup 〈x〉 of G has
order 2m, and |G/〈x〉| = 2n. Then m ≥ 1, n ≥ 1 and x2

m
= 1 and

y2
n

= xs for some positive integer s. Here 2m must be a divisor of p2
n − 1 =

(p2
n−1 − 1)(p2

n−1
+ 1). Since p ≡ 3 (mod 8), p2 − 1 is divisible by 23 but

not by 24, and p2
n−1

+ 1 ≡ 2 (mod 8) for n > 1. By induction we see
that the 2-part (p2

n − 1)2 is 2n+2 and so m ≤ n + 2. One may “nor-
malize” the presentation of G by demanding that s is a divisor of 2m

and of ((p2
n − 1)/(p− 1))2 = 2n+1 (cf. [1, Lemma 9.1]). Now G′ = 〈[x, y]〉

has order 2m−1 (as [x, y] = xp−1 and p − 1 ≡ 2 (mod 8)), and from
1 = [xs, y] = [x, y]s = xs(p−1) we infer that 2m is a divisor of 2s. Thus
either s = 2m and m ≤ n+ 1, or s = 2m−1 and m ≤ n+ 2.

Consequently, G is isomorphic to Gnm or to G̃nm for m ≤ n + 1, or

G ∼= G̃nn+2. In the case where G ∼= G̃nn+2 we have s = 2n+1 and M(G) = 0,

but 〈yx〉 is a complement to 〈x〉 in G (as (yx)2
n

= y2
n
x1+p+···+p

2n−1
=

y2
n
x(p

2n−1)/(p−1) = y2
n
x2

n+1
= 1). So in this particular case G is also a split

extension (as it is when G ∼= Gnm with m ≤ n+ 1).

By definition (and [14, Satz 6.3]) the groups Gnm, G̃
n
m appear as quotient

groups of Γ . Fix n in what follows. Since Gn1 is abelian of type (2, 2n),
we may write uniquely Gn1 = Γ/Rn1 by the structure of Γ/Γ ′, so that
F 1
n(p) = Bn(

√
2) is the fixed field of Rn1 on Q+

S . We show by induction

on m that, for 2 ≤ m ≤ n + 2, Gnm = Γ/Rnm and G̃nm = Γ/R̃nm, for

unique normal subgroups Rnm, R̃
n
m of Γ . By the above lemma M(Gn1 ) has

order 2 and maps onto Γ ′/[Rn1 , Γ ]. Now Rn1/Γ
′ ∼= Z2 is a free pro-2-group

(of rank 1), so that there are exactly |Hom(Z2, Γ
′/[Rn1 , Γ ])| complements

to Γ ′/[Rn1 , Γ ] in Rn1/[R
n
1 , Γ ]. Both Gn2 and G̃n2 are (nonisomorphic) Schur

covers of Gn1 , and they appear as quotient groups Γ/Rn2 respectively Γ/R̃n2
of Γ such that Rn2/[R

n
1 , Γ ] and R̃n2/[R

n
1 , Γ ] are such complements. We con-

clude that the Hopf–Schur formula holds for Gn1 (and trivially also for G̃n1 ),
and that we have just two complements. This proves uniqueness of Rn2
and R̃n2 . Now we proceed by induction using Rnm−1/(R

n
m−1 ∩ Γ ′) ∼= Z2 and

|Hom(Z2,M(Gnm−1))| = 2.
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Hence we have K+
S (Gnm) = {Fmn } and K+

S (G̃nm) = {F̃mn } for 2≤m<n+ 2,

where Fmn and F̃mn are the fixed fields of Rnm and R̃nm, respectively, on Q+
S .

For m = n+ 2 the group G̃nm is, up to isomorphism, the unique Schur cover
of Gnm−1 = Γ/Rnm−1 appearing as a quotient group of Γ . But there are still

two distinct complements and fixed fields Fmn 6= F̃mn . Hence K+
S (G̃nm) =

{Fmn , F̃mn } has cardinality 2 in this exceptional case.

Corollary 1. The lattice of the fields of Dedekind type (with respect
to p) is completely determined by the above. Indeed, Fmn (p) ⊆ Fm′n′ (p) if and

only if n ≤ n′ and m ≤ m′, and F̃mn (p) is the companion field of Fmn (p) and
Fm−1n+1 (p) (2 ≤ m ≤ n+ 2).

By the above for 2 ≤ m ≤ n+2 we haveGnm−1 = Γ/Rnm−1,R
n
mR̃

n
m=Rnm−1

and Rnm ∩ R̃nm ⊇ [Rnm−1, Γ ]. From Lemma 7.1 we infer that (Rnm ∩ R̃nm)Γ ′

= Rn+1
1 (and Γ/Rn+1

1 = Gn+1
1 ). Consequently, Rm+1

1 ∩ Rnm−1 = Rn+1
m−1 and

Rn+1
1 ∩ Rnm = Rn+1

m = Rnm ∩ R̃nm, by considering the corresponding fibre
products of Gn+1

1 with Gnm−1 and Gnm. This also holds in the exceptional

case m = n+ 2 where Γ/Rnm and Γ/R̃nm are copies of G̃nm. Finally, note that
if Gnm is an epimorphic image of Gn

′
m′ , then by the orders of the groups and

their commutator factor groups, 2m+n ≤ 2m
′+n′ and 2n+1 ≤ 2n

′+1.
Recall that

⋃
n≥1 F

1
n(p) = B∞(

√
2), and we may similarly introduce the

fields Fm∞(p) =
⋃∞
n≥m F

m
n (p) for all m ≥ 1. Then

Q+
S (2) =

⋃
m≥1

Fm∞(p).

Corollary 2. We have M(G+
S (2)) = 0, and KS(Q2n) = ∅ for all n > 3.

The first statement has already been settled in the course of the proof of
the proposition. SinceQ2n is not isomorphic toG1

n−1(p) or G̃1
n−1(p) for n> 3,

we also find that then K+
S (Q2n) = ∅. We finish by applying Lemma 2.1.

Example. As before let S = {2, p} with p ≡ 3 (mod 8). By Theo-
rem 1 there exist positive odd integers a, b such that a2p− b2 = 2 (yielding

Lp = F̃ 2
1 (p)). Combining Lemma 2.8(b) and Proposition 7.2, we see that

F 2
1 (p) = Q

(√
ap+ b

√
p,
√

2
)

is the unique field belonging to K+
S (D8), and it is cyclic over Q(

√
2). Observe

that F 2
1 (p) can be embedded into the semidihedral fields F 3

1 (p) and F̃ 3
1 (p).

Added in proof (August 2014). Let G = Q2n for some n > 3, and let S = {p, q}
for some distinct odd primes p, q. It follows from Theorems A, B in [6] that KS(G) 6= ∅
only when p ≡ q ≡ 1 (mod 4) and ( p

q
) = 1. The recent work of Kisilevsky, Neftin and

Sonn on semiabelian groups [Compos. Math. 146 (2010), 599–606] yields the following:
Suppose that in addition p ≡ 1 (mod 2n) and that the fundamental unit u of Q(

√
q) is a



Quaternion extensions with restricted ramification 139

2n−1th power in the residue class fields of the primes above p, which just requires that
p splits completely in Q(

√
q, ζ2n , 2n−1√

u) (Chebotarev). Then there is a unique field in
KS(G) which is cyclic over Q(

√
q).
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