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and the number of cycles of the power generator
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1. Introduction. A common pseudorandom number generator is the
power generator: x — ' (modn). Here, I, n are fixed integers at least 2, and
one constructs a pseudorandom sequence by starting at some residue mod n
and iterating this /th power map. (Because it is the easiest to compute,
one often takes [ = 2; this case is known as the BBS generator, for Blum,
Blum, and Shub.) To be a good generator, the period should be large. Of
course, the period depends somewhat on the number chosen for the initial
value. However, a universal upper bound for this period is A(A(n)) where X is
Carmichael’s function. Here, A(m) is defined as the order of the largest cyclic
subgroup of the multiplicative group (Z/mZ)*. It may be computed via the
identity A(lem{a, b}) = lem{\(a), A\(b)} and its values at prime powers: with
¢ being Euler’s function, A(p?) = ¢(p®) = (p — 1)p*~! for every odd prime
power p® and for 2 and 4, and \(2%) = $(2%)/2 = 22 for a > 3.

Statistical properties of A(n) were studied by Erdés, Schmutz, and
the second author in [7], and in particular, they showed that A(n) =
n/exp((1 4+ o(1)) loglognlogloglogn) as n — oo through a certain set of
integers of asymptotic density 1. This does not quite pinpoint the normal
order of A(n) (even the sharper version of this theorem from [7] falls short
in this regard), but it is certainly a step in this direction, and does give the
normal order of the function log(n/A(n)).

In this paper we prove a result of similar quality for the function A(A(n)),
which we have seen arises in connection with the period of the power genera-
tor. We obtain the same expression as with A(n), except that the loglogn is
squared. That is, A(A(n)) = n/exp((1+0(1))(loglogn)? logloglogn) almost
always.

2000 Mathematics Subject Classification: Primary 11N37.

G.M. is supported in part by the National Sciences and Engineering Research Council
of Canada. C.P. is supported in part by the National Science Foundation. The authors
thank the referee for a very careful reading which resulted in the correction of several
minor errors.

[305]



306 G. Martin and C. Pomerance

We are able to use this result to say something nontrivial about the
number of cycles for the power generator. This problem has been consid-
ered in several papers, including [3], [4], and [15]. We show that for almost
all integers n, the number of cycles for the [th power map modulo n is
at least exp((1 + o(1))(loglogn)?logloglogn), and we conjecture that this
lower bound is actually the truth. Under the assumption of the Generalized
Riemann Hypothesis (GRH), and using a new result of Kurlberg and the
second author [12], we prove our conjecture. (By the GRH, we mean the Rie-
mann Hypothesis for Kummerian fields as used by Hooley in his celebrated
conditional proof of the Artin conjecture.)

For an arithmetic function f(n) whose values are in the natural numbers,
let fx(n) denote the kth iterate of f evaluated at n. One might ask about
the normal behavior of A\;x(n) for £ > 3. Here we make a conjecture for each
fixed k. We also briefly consider the function L(n) defined as the least k such
that Ap(n) = 1. A similar undertaking was made by Erdds, Granville, Spiro,
and the second author in [5] for the function F'(n) defined as the least k with
¢r(n) = 1. Though A is very similar to ¢, the behavior of L(n) and F(n)
seems markedly different. We know that F'(n) is always of order of magnitude
logn, and it is shown in [5], assuming the Elliott—Halberstam conjecture
on the average distribution of primes in arithmetic progressions with large
moduli, that in fact F(n) ~ alogn on a set of asymptotic density 1 for a
particular positive constant . We know far less about L(n), not even its
typical order of magnitude. We raise the possibility that it is normally of
order loglogn and show that it is bounded by this order infinitely often.

A more formal statement of our results follows.

THEOREM 1. The normal order of log(n/A(A(n))) is
(loglog n)? log log log n.
That is,
AA(n)) = nexp(—(1+ o(1))(loglog n)?loglog log n)

as n — oo through a set of integers of asymptotic density 1.

We actually prove the slightly stronger result: given any function (n)
going to infinity arbitrarily slowly, we have

A(A(n)) = nexp(—(loglogn)*(logloglog n + O(4(n))))

for almost all n.

Given integers [,n > 2, let C(I,n) denote the number of cycles when
iterating the modular power map z +— x! (modn).

THEOREM 2. Given any fized integer | > 2, there is a set of integers of
asymptotic density 1 such that as n — oo through this set,

(1) C(1,n) > exp((1 + o(1))(loglogn)? loglog log n).
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Further, if £(n) tends to 0 arbitrarily slowly, we have C(I,n) < n'/?==®)
for almost all n. Moreover, for a positive proportion of integers n we have
C(l,n) < n4%. Finally, if the Generalized Riemann Hypothesis (GRH)
is true, we have equality in (1) on a set of integers n of asymptotic den-
sity 1.

CONJECTURE 3. The normal order of log(n/Ag(n)) is

(1/(k — 1)!)(loglog n)* log log log n.
That is, for each fixed integer k > 1,

1
Ak(n) = nexp (— (W + 0(1)) (loglog n)¥ log log log n>
for almost all n.

Define L(n) to be the number of iterations of A required to take n to 1,
that is, L(n) equals the smallest nonnegative integer k such that Ag(n) = 1.

THEOREM 4. There are infinitely many integers n such that
L(n) < (1/log2 + o(1)) log log n.

2. Notation, strategy, and preliminaries. The proof of Theorem 1,
our principal result, proceeds by comparing the prime divisors of A(A(n))
with those of qb(aﬁ(n)) The primes dividing ¢(m) and A\(m) are always the
same. However, this is not always true for ¢(¢(m)) and A\(A(m)). The prime 2
clearly causes problems; for example, we have ¢(4(8)) =2 but A(A(8)) =1.
However this problem also arises from the interaction between different
primes, for example, ¢($(91)) = 24 but A(A(91)) = 2.

We shall use the following notation throughout the paper. The letters
p,q,r will always denote primes. Let vy(n) denote the exponent on ¢ in the
prime factorization of n, so that

n =] ¢"®
q

for every positive integer n. We let P, = {p: p =1 (modn)}. We let x >
be a real number and y = y(x) = loglogz. By ¥ (x) we denote a function
tending to infinity but more slowly than logloglog z = log y. In Sections 2-5,
the phrase “for almost all n” always means “for all but O(x/¢(z)) integers
n <z’

First we argue that the “large” prime divisors typically do not contribute
significantly:

PROPOSITION 5. For almost all n < x, the prime divisors of ¢(¢(n))
and A(A\(n)) that exceed y* are identical.
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PROPOSITION 6. For almost all n < x,

(2) > u(d(g(n)) logq < Y ().
vq(¢(q¢>(%)))22

Next we argue that the contribution of “small” primes to A(A(n)) is
typically small:
PROPOSITION 7. For almost all n < x, we have
> v(AA()) log g < y?o(x),
q<y?

Finally, we develop an understanding of the typical contribution of small
primes to ¢(¢(n)) by comparing it to the additive function h(n) defined by

(3) h(n) =3 ) wy(r—1)logg.
pln 7lp—1q¢<y?
PROPOSITION 8. For almost all n < x,
> vg(@(¢(n)) logq = h(n) + O(ylogy - ().
q<y?
PROPOSITION 9. For almost all n < z, we have h(n) = y?logy + O(y?).

Proof of Theorem 1. Let x be a sufficiently large real number. For any
positive integer n < x we may write

n n ¢(n) P(¢(n))
1 1 .
X)) T e B em) A m)
Since n/¢(n) < loglogn, the first two terms are both O(logloglogz). Thus,
it suffices to show that

= log + log

(4) log fgfgg; = (loglog z)?(logloglog x 4+ O((z)))
=y?logy + O(y*¢(x))
for almost all n < 2. We write

) oyl = L (w(6(6(n) - v logg

q

= Y vg(@(é(n))logqg — Y vg(A(A(n))) logg

q<y? q<y?
+ Y (0g(¢(6(n))) — vg(A(A(n)))) log g.

Since A(A(n)) always divides ¢(¢p(n)), the coefficients of logq in this last
sum are all nonnegative.
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On the other hand, Proposition 5 tells us that for almost all n < =z,
whenever vg(¢(4(n))) > 0 we have vg(A(A(n))) > 0 as well. Therefore the
primes ¢ for which vy (¢(¢(n))) < 1 do not contribute to this last sum at all,
that is,

0< > (vg(@((n)) = vg(A(A(n)))) logg

= > (0(6(6(n)) — vg(AM(A(n)))) log g

g>y?
vq(p(¢(n)))=2

> ulé(6(n))logq < yPu(x)

q>y?
vq(p(¢(n)))=2
for almost all n < x by Propositions 5 and 6. Moreover, Proposition 7 tells
us that the second sum on the right-hand side of (5) is O(y?w(z)) for almost
all n < z. Therefore equation (5) becomes

og % = > vg(d(6(n))) log g + O(y*¢())

for almost all n < z. By Proposition 8, the sum on the right-hand side
can be replaced by h(n) for almost all n < z, the error O(ylogy - ¥ (x)) in
that proposition being absorbed into the existing error O(y?y(z)). Finally,
Proposition 9 tells us that h(n) = y?logy + O(y?) for almost all n < z. We
conclude that equation (4) is satisfied for almost all n < x, which establishes
the theorem. =

IN

Given integers a and n, recall that 7(¢; n, a) denotes the number of primes
up to ¢ that are congruent to a (modn). The Brun—Titchmarsh inequality
(see [10, Theorem 3.7]) states that

t
¢(n)log(t/n)
for all ¢ > n. We use repeatedly a weak form of this inequality, valid for all
t > e,

log logt
(7) Z - )

p<t
PEP

(6) n(t;n,a) <

which follows from the estimate (6) with a = 1 by partial summation. When
n/¢(n) is bounded, this estimate simpliﬁes to

(8) Z 1 1og logt

p<t
PEPn
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For example, we shall employ this last estimate when n is a prime or a prime
power and when n is the product of two primes or prime powers; in these
cases we have n/¢(n) < 3. We also quote the fact (see Norton [13] or the
paper [14] of the second author) that

(9) Z—_M+o<%).

p<t
This readily implies that
1 loglogt logn
(10) P +0 <_)
21 olm O\ o)
p<t

as well, since (noting that the smallest possible term in the sum is p = n+1)
the difference equals

> S e <

ot (p—1p — P in(in + 1)

p<i

We occasionally use the Chebyshev upper bound

(11) D logp <Y An) < 2,

p<z n<z
where A(n) is the von Mangoldt function, as well as the weaker versions
lo log?
(12) Zﬂ < log z, Zﬂ < log? 2
p<z p<z
and the tail estimates

logp 1 1 1
1 E Z E -
(13) p? < 2’ p2<<zlogz’

p>z p>z

each of which can be derived from the estimate (11) by partial summation.
We shall also need at one point a weak form of the asymptotic formula of
Mertens,

(14) Zlogp = log z + O(1).
p<z

For any polynomial P(x), we also note the series estimate

> P(a
>

a=0
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uniformly for m > 2, valid since the series > o7 ) P(a)z® converges uniformly
for |z| < 1/2. The estimates

P(a) 1 P(a) 1
15 — -
(15) D P 2 T <P
aeN aeN
me>z

valid uniformly for any integer m > 2, follow easily by factoring out the first
denominator occurring in each sum.

3. Large primes dividing ¢(¢(n)) and A(A(n))

Proof of Proposition 5. If q is any prime, then ¢ divides ¢(¢(n)) if and
only if at least one of the following criteria holds:
.« ¢*ln,
e there exists p € Pz with p|n,
there exists p € P, with p? | n,
there exist r € B, and p € P, with p|n,
q?|n and there exists p € P, with p|n,
there exist distinct p1, p2 € P, with pip2 | n.

In the first four of these six cases, it is easily checked that ¢ | A(A(n)) as well.
(This is not quite true for ¢ = 2, but in this proof we shall only consider
primes g > y2.) Therefore we can estimate the number of integers n < x for
which ¢ divides ¢(¢(n)) but not A(A(n)) as follows:

)OERED DD SEED D DEDDEED DY~~~ 1D DI Dl

n<zx pEP; nlx P1EP; p2€P; nlzx pE’Pq P1EP; p2€F, pip2
alo(e(n)) a?pln p2#p1 P1p2(n
atA(A(n))

Using three applications of the Brun—Titchmarsh inequality (8), we conclude
that for any odd prime gq,

3 1<<—+i<<i
n<lx q

al¢(6(n))
aA(A(n))

Consequently, by the tail estimate (13) and the condition ¥ (x) = o(logy),
y? x x
S OX ewy e <t
5 = = logy “logy < (@)

alo(s(n))
atA(A(n))

Therefore for almost all n < z, every prime ¢ > y? dividing ¢(¢(n)) also
divides A(A(n)), as asserted. =
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LEMMA 10. Given a real number x > 3 and a prime q¢ > y>, define
Sq = Sq(z) to be the set of all integers n < x for which at least one of the
following criteria holds:
@ |n,
there exists p € P with p|n,
there exist distinct p1,p2 € Py with pip2 | n,
there exist r € Py and p € Pr with p | n,
there exist distinct 1,712,173 € Py and p € Pryyry with pln,
there exist distinct m1,72,73,74 € Py, p1 € Priry, and pa € Pryp, with
pip2 | n.
Then the cardinality of S, is O(zy*/q?).

Note that if ¢> | #(n), then at least one of the first three of the six con-
ditions in the statement of the lemma must be satisfied.

Proof. The number of integers up to « for which any particular one of the
six criteria holds is easily shown to be O(zy?/q?). For the sake of conciseness,
we show the details of this calculation only for the last criterion, which is
the most complicated. The number of integers n up to x for which there
exist distinct ri,re, 73,74 € Py, P1 € Priry, and pa € Pryr, with pipa|n is at

most
22 s D)
1p2
r1,72,73,74€PG P1EPrry N 71,72,73,74€Py P1E€Pr 1y
pQEP'r3T4 ppo‘n szPr3r4

Using six applications of the Brun—Titchmarsh estimate (8), we have

2
- LY acy y
> > < ) ——— K < =,
r1rar3rT
172,738,714 €Py PLEPr 1y pipz T1,r2,73,m4€P, 1h27sla q ¢
p2€P’r3r4

the last inequality being valid due to the hypothesis ¢ > y>. =

Proof of Proposition 6. Define S = S(z) to be the union of S, over all
primes g > y?, where Sq is defined as in the statement of Lemma 10. If we
use #A to denote the cardinality of a set A, Lemma 10 implies that

2
y Ty T
#S <D #5, <D - <
= = y2logy?  (x)

by the tail estimate (13) and the condition ¢(x) = o(logy). Therefore to
prove that the estimate (2) holds for almost all integers n < z, it suffices to
prove that it holds for almost all integers n < z that are not in the set S.
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This in turn is implied by the upper bound

(16) > Z vg($(6(n))) log g < xy?,

n<z >
ngs 7Jq(<¢>(¢>( )))
which we proceed now to establish.

Fix a prime ¢ > y? and an integer a > 2 for the moment. In general,
there are many ways in which ¢ could divide ¢(¢(n)), depending on the
power to which ¢ divides n itself, the power to which ¢ divides numbers of
the form p — 1 with p|n, and so forth. However, for integers n ¢ S, most of
these various possibilities are ruled out by one of the six criteria defining the
sets Sq. In fact, for n ¢ S, there are only two ways for ¢ to divide ¢(¢(n)):

e there are distinct r1,...,7, € B, and distinct p1 € P, ..., pa € Pr,
with p; -+ pa | 1,
e there are distinct rq,...,7, € By, distinct p1 € B, ..., pa—2 € Pr,_,,

and p € Pr,_yr, With p1---pa—ap|n

(We refer to the former case as the “supersquarefree” case.)
Still considering g and «a fixed, the number of integers n up to x satisfying
each of these two conditions is at most

DIETD DI DI EID DI I Dl

T, Ta€Py  p1€P,  n<z T1,Ta€Py  PLEP P
' p1-paln
paepra pu,epra
and
O D DRD DR
2l(a —2)!
T, €Py p1EP n<z
P1-Pa—2p|N
pa72€7>7"a,2
pEPra_lr,l
1 x
< E W E —,
CL— . e _
1,70 €Py P1EP p1 Pa—2P
pa—2€7)ra,2
PEPr_ira

respectively, the factors 1/a! and 1/2!(a —2)! coming from the various possi-
ble permutations of the primes r;. Letting ¢ > 1 be the constant implied in
the Brun—Titchmarsh inequality (8) as applied to moduli n that are divisible
by at most two distinct primes, we see that

a 2a
S a X g X ogathsty
a' plp a! rl...ra a!qd

. a
Tl,...,Taqu plep'rl rl?"'vrﬂepq

Pa Ep'ra
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and
1 1 a—1
e D DD D e R
T1,.,Ta€Py ’ p1E€P a- T1,.Ta€Py ’ a
pa—Qéﬁra_
pePTa_ITGQ x(cy)Qa—l
~ (a=2)lg7
Therefore the number of integers n < x such that n ¢ S and ¢ | ¢(¢(n)) is
(17) - x(cy)m x(cy)2a—l C2a:13y4

alq® (a—2)lg* = (a—2)¢?
where we have used the assumption ¢ > 7.
We now establish the estimate (16). Note that

> Z vg(9(¢(n))) log g

n<x

q> y
n€S vy (¢((n)))>2

<237 Y (@6m) - Disg=23 logad> 3 1.

n<z g>y? >v? @22 ngs
n¢sS y n)))>2 nes
o(B(6(n)))> 7*|¢(¢(n))

Therefore, using the bound (17) for each pair ¢ and a,

Z Z vg(P(d(n)))logq < 2 Z long c? gcy

n<x >y q>y? a>2
nES vy (¢(¢(n)))>2
1
= 2c%e¢ :Uy4 Z qu ny
a>y?

by the tail estimate (13). This establishes the estimate (16) and hence the
proposition. =

4. Small primes and the reduction to h(n)

LEMMA 11. For any prime power q%, the number of positive integers
n < x for which q® divides A(\(n)) is O(xy?/q%).

Proof. When ¢ is an odd prime, the prime power ¢* divides A(A(n)) if
and only if at least one of the following criteria holds:

o ¢“**|n,

e there exists p € Pjar1 with p|n,

e there exists p € Py with p? |n,

e there exist r € Py and p € P, with p|n.
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Even when g = 2, at least one of these four conditions must hold for ¢% to
divide A(A(n)), although they are not quite sufficient. In either case, we still
have the upper bound

(18) o1 > 1+ > Y1

n<x n<x pG’P at1 N
q*|A(A(n)) q°T2In pln
DD RED DI I
pEPga nlz r€Pa p€P n<z
p?n pln
o o TS S D S ok
pE’P at+1 p€73'a r€P,a p€73'r
p<m p<T p<z

In the second of these three sums, it is sufficient to notice that any p € Pya
must exceed ¢, which leads to the estimate
x x x

2. om< D m2 S

PEPa m>q®

p<Vx
To bound the first and third sums in (18), we invoke the Brun—Titchmarsh
estimate (8) a total of three times:

Yol Yy iey

pEan+1 p r€Pa pEPr r€Pa
p<x p<z r<z
By these three estimates, (18) gives
2 2
Ty T oy Ty
Yool + e
a+2 a+1 a a a ’
= q q ¢ q q
7*|A(A(n))

which establishes the lemma. m

Proof of Proposition 7. We have

> uAOM))logg =Y logg Y 1

q<y? q<y? a€N
q*|A(A(n))
T IEED S TED D!
q<y? aeN q<y? a€eN
q°<y? q*>y?

7*A(A(n))
Since the first sum is simply

Zlogq Z 1= Z A(m) < y?

q<y? aeN m<y?
q2<y?
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by the Chebyshev estimate (11), we have, uniformly for n < z,

(19) Z ve(A(\(n)))logq < y* + Z log ¢ Z 1.
q<y? q<y? aeN
q*>y?
q*IA(A(n))
To show that this quantity is usually small, we sum this last double sum
over n and apply Lemma 11 to obtain

ZZlogq Z I—ZIquZ Z 1<<Zlong y

n<z q<y? aeN q<y? aeN n<lz q<y? a€N
q*>y? 7>y q*A(\(n)) q@>y?
q*|A(A(n))

If we use the geometric series sum (15) and the Chebyshev estimate (11),
this becomes

log q 1K logq-x—zﬂ<<$y2.
Y2

n<w q<y? acN q<y?
q*>y?
7*|A(A(n))
Therefore if we sum both sides of (1 ) over n, we obtain
Z Z vg(A ) logq < zy?.

This implies that for almost all n < x, we have
> vg(A(A(n)) log g < y*eb(),
q<y?

as desired. =

Proof of Proposition 8. Fix a prime ¢ for the moment. For any positive
integer m, the usual formula for ¢(m) readily implies

vg(¢(m)) = max{0,vy(m) — 1} + qu - 1),
plm
which we use in the form
D wg(p = 1) S vg(d(m)) < wg(p — 1) + vg(m).
plm plm

Using these inequalities twice, first with m = ¢(n) and then with m = n,
we see that

(20) Y vglp—1) S vg(d(8(n)) < Y vglp — 1) + vg($(n))
) plo(n)

< Z vg(p — 1) "‘qu —1) +vg(n).

plo(n)
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Now a prime r divides ¢(n) if and only if either 72 | n or there exists a prime
p|n such that r | p — 1. Therefore

Z Z vg(r—1) < Z vg(r —1) §Z Z vg(r—1) + Z vg(r —1),
pln rlp—1 rlo(n) pln rlp—1 r:r2n

the latter inequality accounting for the possibility that both criteria hold
for some prime r. When we combine these inequalities with those in (20)
and subtract the double sum over p and r throughout, we obtain

0 < vg(¢(¢(n) =D > wglr—1)

pln rp—1
< Z Ug(r —1) + qu(p — 1) +v4(n) < Qqu(p — 1) + v4(n).
r:r2|n pln pln

Now we multiply through by log ¢ and sum over all primes ¢ < y? to conclude
that for any positive integer n,

0< > vy(é(é(n)))logg — h(n)

q<y?
<QZqu -1) 10gq+2vq )loggq.
q<y? pln q<y?

It remains to show that the right-hand side of this last inequality is
O(ylogy - ¥ (x)) for almost all n < x, which we accomplish by establishing
the estimate

(21) ZZqu -1) logq+Zqu )log g < zylogy.

n<z q<y? pln n<w q<y?

We may rewrite the first term on the left-hand side as

g;;vq@—l)bgq
S 55 3D 3B SRTTED STTH DD BB BF

n<z gq<y2 pln a€N q<y? aeNpePja n<x
q*lp—1 pln
<Dlosad 3
q<y? a€eN pEP a

Using the Brun-Titchmarsh inequality (8) and the geometric series esti-
mate (15), we obtain

ZZZU‘I -1) logq<<:c210ng—<< Zlo%<<:nylogy2.

n<z g<y? pln q<y? aen 1 q<y?
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The second term on the left-hand side of (21) is even simpler: we have

Zqu logq—ZloquZl< Zlong

n<zx q<y? q<y? aeN n<|a: q<y? CLEN
q n

and using the geometric series bound (15) and the weak Chebyshev esti-
mate (12) yields

Z qu 10gq<<xz T <<sclogy

n<w g<y? q<y?

The last two estimates therefore establish (21) and hence the proposition. =

5. The normal order of h(n). Recall the definition (3): h(n) =
2 pln 2orlp—1 2uq<y? Va(r — 1)logg. We now calculate the normal order of

the additive function h(n) via the Turdn—Kubilius inequality (see [11, Lem-
ma 3.1]). If we define

2
) = M e - M

p<z p<z

then the Turan—Kubilius inequality asserts that

(22) > (h(n) = My(2))* < wMa(x).

n<x
PROPOSITION 12. We have My(x) = y*logy + O(y?) for all x > e
PROPOSITION 13. We have Ms(z) < y3log®y for all x > e

Proof of Proposition 9. Let N denote the number of n < z for which
|h(n) — My(z)| > 2. The contribution of such n to the sum in (22) is
at least y*N. Thus, Proposition 13 implies that N < z(logy)?/y. Hence,
Proposition 12 implies that h(n) = y?logy + O(y?) for all n < x but for a
set of size O(x(logy)?/y). This proves Proposition 9. =

To calculate Mi(x) and Ms(z) we shall first calculate - -, h(p) and
Zpgt h(p)? and then account for the weights 1/p using partial summation.
We begin the evaluation of > _, h(p) with a lemma.

LEMMA 14. Let b be a positive integer and t > e® a real number.

(a) If b > t'/* then
tlogt
Z w(t;r 1) < (Zg .
reP,
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(b) If b < tY/* then

bt tloglogt
S w3 (e 1) L1
= ¢(b)?logt = ¢(b)logt
r>tl/3

REMARK. The exponents 1/4 and 1/3 are rather arbitrary and chosen
only for simplicity; any two exponents 0 < a < 8 < 1/2 would do equally
well.

Proof. Notice that in all three sums, the only contributing terms are
those with > b and r < t. If b > t'/4, then the trivial bound 7 (¢;7,1) < t/r

gives
t t tlogt
Eﬂ(t;r,l)é E i E —< (;g,

reP, reP, m=1 (modb)
M/ A<r<t /4 <m<t

proving part (a) of the lemma.
We now assume b < t1/4, We have

> w(tsr, 1) = #{(m,r): r =1 (modb), r > /3, mr+ 1 <t

€
7"T>t71)})3 mr + 1 and r both prime}

Z #{r <t/m:r =1 (modb),

2/3
met mr + 1 and r both prime}

< Z log (t/mb)

t2/3

by Brun’s sieve method (see [10, Corollary 2.4.1]). Further, t/mb > t'/12
and so log(t/mb) > logt. We also have ¢(mb) > ¢(m)p(b) and the standard
estimate

(23) Z 5o < log 2.

m<z

Therefore

bt bt log t2/3 bt
doortr) < Y < 28 <

rep, 2, dm)o(b)2log”t T (b)*log?t — $(b)*logt’

r>tl/3

establishing the first estimate in part (b). Finally, by the Brun—-Titchmarsh
inequalities (6) and (8),

t t tloglogt
g m(t;r, 1) < E — < E < _
rem, R, ¢(r)log(t/r) rep, rlogt — #(b)logt
r<tl/3 r<tl/3 r<t1/3




320 G. Martin and C. Pomerance

Combining this estimate with the first half of part (b) and the standard
estimate b/¢(b) < loglogb establishes the second half. m

LEMMA 15. For all real numbers x > € and t > €°, we have

2tloglogtlo tloglogt  tlog?
" h(p) = 2loglostloy O< glog 8y

t3/*ogt - 42 ).
logt logt logt + o8ty

p<t

REMARK. In particular, we have

Z h(p) < xloglog xlogy/logx = xylogy/log x.
p<w

Proof. We may rewrite

Zh(P):ZZ qu(r—l)longzz Z Z log ¢

p<t p<t r|p—1 q<y? p<t rlp—1¢<y? a€N
q|r—1
—Elogqg E E 1—Elogq2 E w(t;r, 1).
q<y? aeN r: g¢|r—1 p<i q<y? aeNrePa
rlp—1

The main contribution to this triple sum comes from the terms with ¢@ < ¢1/4
and r < t'/3. In fact, using Lemma 14(a) we can bound the contribution
from the terms with ¢ large by

Zlogq Z Z (t;r, 1) <<Zlogq Z lq—<<tl Zloﬁf

< a€eN  rePa < a€N <
q<y? s q<y? s q<y?

< 34 logt - 2,

where the last two estimates are due to the geometric series bound (15) and
the Chebyshev bound (11). Similarly, using the first half of Lemma 14(b)
we can bound the contribution from the terms with ¢% small and r large by

Zlogq Z Z (t;r 1) < Zlogq Z f lotgtzlogq
<y?

q%logt
q<y? acN  rcPa q<y? acN
qe<tt/4 r>t1/5 qa<tl/4
tlogy
logt ’

where again the last two estimates are due to the geometric series bound
(15) and the weak Chebyshev bound (12). In light of these two estimates,
equation (24) becomes

(25) Zh Z log q Z Z (t;r, 1)4+0 <t3/4logt 2+t11(;3ggty)‘

p<t qu aeN TGP a
qa<tl/4 7"<t1/3
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Define E(t;r,1) = w(t;r, 1) —1i(¢)/(r — 1). We have

(26) Y logg > > w(tr1)

q<y? aeN  rePu
qa<tl/4 T<t1/5

=Y X3 (7

(t;r, 1)>
q<y aeN T'E’Pa
qa<tl/4 L pi)s

:ZIqu Z Z ri(_t)l—i-O(Zlogq Z Z \E(t;r,l)]).

q<y? acN  r€Pua q<y? aeN  rePu
qa<tl/4 7"<t1/3 qa<ti/4 T<t1/5

Let 2(m) denote the number of divisors of m that are primes or prime
powers. Using the estimate £2(m) < logm, we quickly dispose of

Zlong Z E(t;r,1)] < log(y? Z|Etr1|221

q<y? aeN  rePua r<tl/3 q<y? a€N
qr<tl/4 r<t1/3 q|r—1
<2logy Y |E(tr,1)[Qr—1)
r<tl/3
tlogy
< logylogt E(t;r,1
gylogt > |E( D<o
r<tl/3

by the Bombieri-Vinogradov theorem (we could equally well put any power
of logt in the denominator of the final expression if we needed). Inserting
this estimate into (26), we see that equation (25) becomes

e ) =10 Y s> Y

p<t q<y? a€N r€Pa
r<tl/3

t1
+O<t3/4logt-y2 + ogy>'
logt

We have, by equation (10),

- log log t1/3 log ¢*
2 loga D m_zlong( ¢(q) +O( q° >>

q<y? acN reFa q<y? aeN
r<tl/3
= (loglogt+0O(1 Zloqu( < a+1>>+O<Zlog qz >
q<y? a€eN q<y? aGN
1 1 1
= (loglogt + O(1)) Z ( o84 +O( qu)) —|—O( Z o8 q),
q<y? 1 @ q<y? e
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using the geometric series estimate (15). Using the Mertens formula (14) to
evaluate the main term and the weak Chebyshev estimates (12) to bound
the error terms, we see that

Z long Z = loglogtlogy? + O(logy + loglogt + log? Y).
q<y? a€N r€Pa
r§t1/3

We conclude from equation (27) and the fact that li(t) = ¢/logt+O(t/log? t)
that

Z h(p) = li(t)(loglog tlog y* + O(logy + loglogt + log®y))

p<t
tl
logt

_ 2tloglogtlogy (tloglogt N tlog?y

logt logt logt + LY )

as asserted. m

Proof of Proposition 12. In an explicit example of the technique of par-
tial summation, we write

M) =3 M M S (241

p<z p p<e¢ ee<p<z
1 ¢ dt
1)+5 > h(p)‘FSt—g > h(p)
e¢<p<z e€ e¢<p<t

The quantity Zpgt h(p) has been evaluated asymptotically in Lemma 15,

and the quantity > .., h(p) differs by only O(1). Therefore we may use
Lemma 15 and the remark following its statement to write

Mi(2) =O(1) + - o(mylogy>

T log =
2
d_ 2tloglogtlogy 0 tloglogt+t10g y+t3/4logt~y2
2 logt logt IOgt

1 ¢ 2loglogt
=0 L250) logy | 208 gy
log e tlogt

T

loglogt Codt 5 ¢ dt
+O<§e tlog dt +log yesetlogt+y ;@W ’
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Each of these integrals can be explicitly evaluated, which results in the
asymptotic formula

My (z) = logy((loglog ) — 1)

1
+0 <% + (loglog z)? + log?y - log log  + y2>

= y*logy + O(y?),
as claimed. =
Now we turn our attention to Ma(x), beginning with some preliminary

lemmas.

LEMMA 16. For all real numbers x > e and t > €, we have

> logqloggy > > S

Q17QQ§Z/2 alaQQGN TE’anl ﬂ’ang pSt
1 2 p=1(modr)

tloglogt - log?
<<t7/810gt-y210gy+ 08087 08 Y

logt
Proof. Since the exact form of qul N quz depends on whether or not
q1 = q2, we split the expression in question into two separate sums:

(28) > loggilogge Y > o

q1,92<y? a1,02€N 7€P a1 NP az p<t
1 2 p=1(modr)

= Zlog2q Z Z w(t;r, 1)

q<y? a1,a2€N Tepqmax{al,az}

+ Z log q1 log qo Z Z m(t;r, 1).

q1,q2<y? a1,a2EN 7€P ay as
Q#q2 192

Noting that there are exactly 2a — 1 ordered pairs (aj,az) for which
max{ai,as} = a, we have

Z log? g Z Z m(t;r, 1) = Z logqu(Qa -1) Zw(t; r, 1)

q<y? a1,a2€N reP  masc{ag,az} q<y?2 a€N r€Pa
at log t at log logt
< Yoty Y WOl 5,y otloslon
q<y? a€eN q<y? a€eN
q® >tl/4 a<t1/4

by Lemma 14. Since

atlogt
Zlog q Z g <<t10gtlogy2z Yz <<t3/4logt-y210gy

< a€eN <
q<y? a>t1/4 q<y?




324 G. Martin and C. Pomerance

by the Chebyshev bound (11), and

2 2
9 atloglogt tloglogt log“ q tloglogt - log”y
> lgta Y, oot 2 o <
— gy q%®logt ogt — 4 ogt
<y s a<y

by (11) and its weaker version (12), the first term on the right-hand side
of (28) is bounded by the estimate asserted in the statement of the lemma.

It remains to satisfactorily bound the second term on the right-hand side
of (28). Again dividing the sum so that Lemma 14 can be applied, we have

Z log g1 log ¢ Z Z w(t;r, 1)

q1,92<y? a1,a2€N r€P ay ag
QF#q 492 tlogt
< Z log g1 log ¢o Z -
q1,¢2<y? anazeN 11 22
qytgy? >tl/4
tloglogt
+ Y logmloga Y. et
q1,q2<y? al,azeN 0 4927108
qyt gy <tl/4

In the first of these two terms, at least one of the ¢;* must exceed t1/8 and
so using the estimates (15), (11), and (12) we see that

tlogt
Z IOg q1 IOg q2 Z “a1 .as

q1,92<y? a1,a2€N I %2
g1 g22 >t1/4
<2tlogt » logq1 »_ e Z log g2 Z
q1<y? a1€N g q2<y? a2€N 2
1> 118
log ¢1 log g2 7/8 9
< tlogt < t"Plogt - y*logy.
gt ) 7178 Zz . gt-y logy
q<y? 2<y

In the second, we simply ignore the restriction ¢{'¢5> < t'/4 and use the
estimates (15) and (12), obtaining

tloglogt tloglogt
Z og 0 10g 62 Z Q?lqgﬂogt: logt Z ng

q1,q2<y? a1,a2€N q<y? aEN

tloglogt log q 2 tloglogt - log?y
< log ¢ < Z < log ¢ '

q<y?
This concludes the proof of the lemma. =

The following lemma is similar in spirit to Lemma 14 but is a bit more
complicated to state and prove.
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LEMMA 17. Let by and by be positive integers and t > e® a real number.
(a) If by > t'/3 or by > t'/8 then
tlog?t
Z Z t 179, 1 << .
b1bs
1€y, 12€R,
(b) If neither by nor by exceeds t'/® then

botloglogt
> 2 rlnm)< =
rich, rachy, ¢(b1)¢(b2)* logt

rire>tl/3

t(loglogt)?
2 2 ) < o et

T1E€EPy, 72€Pb,

REMARK. Again, the values 1/8 and 1/3 for the exponents are rather
arbitrary.

Proof. The bound in part (a) follows from the trivial estimate 7 (¢; 7172, 1)
& t/rire, just as in the proof of Lemma 14(a). For the first estimate in
part (b), we my assume that r; < rg by symmetry. We use Brun’s method
again:

Z Z 7T(t; riro, 1)
r1€PRy,  T2€R,
r1<r2

7"17‘2>t1/3

=#{(m,r1,m2): r1 =1 (modby), ro =1 (mod by), r1 < 1o, riry > t1/3,
mrire + 1 < t, and rq, ro, and mriry + 1 are all prime}

DS D

m<t2/3 ri<:/t/m ro<t/mry
T1€77b1 TZGsz

mrira2+1 prime

mribs t/mrl
< . 3 .
m;/s Zt/m ¢(b2)p(mribz) log®(t/mr1bs)
T1€’Pbl

Notice that t/mriby > (\/t/m)/by > 751/6/751/8 = t1/24 and so

T b2
2 2 )i DD et

r1€Py; 12€P, m<152/3 ri<+/t/m
<
1”1:12;:%/3 1€y,
bot log logt Z bgtlog logt
¢ (b1)p(b2)? log? t s ¢ (b1)¢(b2)? logt
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by the estimates (7) and (23), as desired. The second estimate of part (b)
is a consequence of the first estimate and

t(loglogt)?
Z Z t7’17“2, )<< (Og Og)

TER,, 2P, d(b1)p(ba) logt

rira<tt/3

which follows from the Brun—-Titchmarsh inequality just as in the proof of
Lemma 14(b). =

Proof of Proposition 13. We may rewrite

Yo=Y (XX Y teq)

p<t p<t rlp—1¢<y? a€N
q%|lr—1
= Z log g1 log g2 Z Z Z 1
q1,92<y? a1,a2€N 11 €P,ay gggtd :
p=1(modr
TQEPQSZ pzl(modr;)
= Z log g1 log g2 Z Z Z 1
q1,q2<y? a1,a2€N 11€P 0y (pgtd |
p=1(modr
T2€quz pEl(mOd’r‘;)
r17#r2
tloglogt - log?
+O<t7/810gt-yzlogy+ & lg ; & y),
og

the last step due to Lemma 16. Since r; and 7y are distinct primes, the
innermost sum is simply 7 (¢; 7172, 1), and thus

(29) D h(p)?< Y loggiloggr Y. > w(tirire,1)

p<t q1,q2<y> a1,a2€N 11 €P, 0y
TQEquz
tloglogt - log?
+O(t7/810gt'9210gy+ s y)
og

The contribution to the sum on the right-hand side of (29) from those
terms for which ¢f* > /8 ig

Z log g1 log ¢ Z Z m(t;rire, 1)

q1,92<y? awgeN reP, a1
q >t 1/8 T'QEP a2
tlog?t
< Z log q1 IOg qz Z W
q1,92<y? a1,a2€N 2

g1 >t1/8
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<<tlog " Z Z 108}(11 Z Z 108}(]2

@1<y? a1€eN q2<y? az€N
qa1>t1/8
log ¢1 log g2
2 7/87 . 2, 2
<L tlog~t E Ve E ; < t'Clog”t-y“logy
q1<y? q2<y?

by Lemma 17(a) and the estimates (15), (11), and (12); the contribution

from the terms for which ¢5* > t1/8 is bounded likewise. The remaining
contribution is

Z log ¢1 log ¢ Z Z m(t;rirg, 1

q1,02<y? a1,a2€N 11 €EP ay
ayt g2 <t1/8 !

TZE'qug

log log t)?

< Z log q1 log q2 Z (—210)15
q1,92<y? [ a1a2€N N G208
‘11 45 2<t1/8
log log t)? Z Z logq t(loglogt)? log? y
log t logt
q<y? aeN

by Lemma 17(b) and the estimates (15) and (12). Using both these bounds
in equation (29), we conclude that

t(log log t)? log?
S h(p)? < 17510t 4 logy + (log Olgg)t gy
(0]
p<t

We now evaluate Ms(x) using partial summation. We have

2 2 i
Maa) = M S ML S a2 [ S wi?

p<lx p<le® ec<p<z ec e¢<p<t
1 z(loglogz)?lo
<14 L. zlloglogz)®logy
x log

xX
dt t(loglog t)? log®
+S—2 t7/8logt-y2logy+ (loglog t)"log”y
t logt

e

2] ¢ log ¢ (loglogt)?
<Y ogy+2loys dH g2 S(ogog)

dt.
log x 9/8 tlogt

ee

Evaluating these two integrals explicitly, we obtain

1
Ms(z) < yloggy +ylogy +log”y - (loglog z)* < y*log”y

as claimed. =
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6. Normal number of cycles for the power generator. If (u,n)=1,
then the sequence u’ (modn) for i = 1,2,... is purely periodic. We de-
note the length of the period by ord(u,n), which of course is the multi-
plicative order of u in (Z/nZ)*. Even when (u,n) > 1, the sequence u’
(modn) is eventually periodic, and we denote the length of the eventual
cycle by ord*(u, n). So, letting n(,) denote the largest divisor of n coprime
to u, we have ord*(u, n) = ord(u,n(,). For example, let u = 2, n = 24.
The sequence u! (modn) is 2,4,8,16,8,16,... with cycle length 2, and so
ord"(2,24) = ord(2,3) = 2.

When iterating the [th power map modulo n, the length of the eventual
cycle starting with = = w is given by ord” (I, ord"(u,n)). We would like to
have a criterion for when a residue is part of some cycle, that is, for when a
residue is eventually sent back to itself when iterating z — 2! (modn).

LEMMA 18. A residue u is part of some cycle under iteration of the map
z — ! (modn) if and only if (I,ord"(u,n)) = 1 and, with d = (u,n), we
have (d,n/d) = 1.

Proof. If (u,n) = d, then high powers of u will be = 0 (modn/n ).
Thus, for u to be in a cycle it is necessary that n/ng = d, that is,
(d,n/d) = 1. Further, it is necessary that (I,ord (u,n)) = 1. Indeed, if
o = ord"(u,n), we would need I’ (mode) to be purely periodic, which is
equivalent to (I,0) = 1. This proves the necessity of the condition. For the
sufficiency, we have just noted that (I,0) = 1 implies that I* (modo) is
purely periodic. This implies in turn that the sequence wu! (mod n(u)) is
purely periodic. But the condition (d,n/d) = 1 implies that n(,) = n/d, and
as each u!' = 0 (modd), we see that u!' (modn) is purely periodic. =

For d|n with (d,n/d) = 1, let C4(l,n) denote the number of cycles in
the [th power map mod n that involve residues u with (u,n) = d. For the
lower bound in Theorem 2 we shall deal only with C4(l,n), that is, cycles
involving numbers coprime to n.

LeEMMA 19. We have C1(l,n) > ¢(n)q)/A(A(n)).

Proof. 1t is easy to see that the subgroup of (Z/nZ)* of residues u with
(I,ord(u,n)) = 1 has size ¢(n)(;). (In fact, this is true for any finite abelian
group G: the size of the subgroup of elements with order coprime to [ is
|G|(1)-) As the length of any cycle in the lth power map is bounded above
by A(A(n)), the lemma follows immediately. m

To investigate the normal size of ¢(n)(;), we introduce the function

filn) = vy(¢(n)) log p.

|l
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We also make use of the notation ¢* || n, which means that ¢” is the exact
power of ¢ dividing n, that is, ¢® divides n but ¢+ does not.

PROPOSITION 20. For any fived I, we have fi(n) < (loglogn)? for almost
all n, in fact for all but O)(x/loglog x) integers n < x.

Proof. We have

Zfl ZZZ% logp<leong p

n<z pll n<zq*n plt g sz
<Y logp 30t o Y logy 3 D
p|l pe<z pll q<zx
Now
D logp 0 o S <ia
p|l pe<z
and, by (8),
v 1
NI DL P D D
pll q<x p|l a>1q€Pya,q<z q
loglog x
< leogpz g ag < rloglog z.
p
pll a>1
Hence,

Z fi(n) <; wloglog x,

n<x
so that the number of n < x with f;(n) > (loglogn)? is O;(z/loglog ). =
It is interesting that one can prove an Erdés—Kac theorem for f;(n) using

as a tool the criterion of Kubilius-Shapiro (see [11], [16]).

Proof of the lower bound in Theorem 2. Noting that ¢(n) )= p(n)/eft™
we have ¢(n) ) > ¢(n)/exp((loglogn)?) for almost all n by Proposition 20.
Of course, n > ¢(n) > n/loglogn for all n > 3. Therefore, using Lemma 19
and Theorem 2, we have

P(n)w 9(n)
C(l,n) > Ci(l,n) > AA(n)) 2 exp((loglogn)2)A(A(n))
¢(n)/n n

~ exp((loglogn)?)  A(\(n))
= exp((1 + o(1))(loglog n)? log log log )

for almost all n. This completes the proof of the lower bound in Theorem 2. =
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We now consider the upper bounds in Theorem 2, first establishing a
lemma.

LEMMA 21. Suppose m is a positive integer and (d,m) = 1. For any
integer j| A(m), the number of integers u € [1,m] with (u,m) = 1 and
ord(du,m) | A(m)/j is at most ¢p(m)/j.

Proof. In fact, we prove a more general statement for any finite abelian
group G: let A\(G) denote the exponent of G, that is, the order of the largest
cyclic subgroup of G, or equivalently, the least common multiple of the orders
of the elements of G. Then for any d € G and any j| A(G), the number of
elements u € G for which the order of du divides A\(G)/j is at most #G/j.
It is clear that the lemma follows immediately from this statement upon
taking G to be (Z/mZ)*. It is also clear that in this statement, the element
d plays no role whatsoever except to shuffle the elements of G around, and
so we assume without loss of generality that d is the identity of G.

Let p be any prime dividing A\(G), and choose a < b so that p®|| j and
P’ | M(G). When we write G' canonically as isomorphic to the direct product
of cyclic groups of prime-power order, at least one of the factors must be
isomorphic to Z/p’Z. In every such factor, only one out of every p® elements
has order dividing A(G)/j, since all but p’~® elements of the factor have
order divisible by p®~@*1. Since there is at least one such factor for every
p® || 7, we conclude that at most one out of every j elements of G has order
dividing A(G)/j, as claimed. =

Note that this result in the case d = 1 is Lemma 1 in [9]. The above
proof, while similar in spirit to the proof in [9], is simpler.
Let 7(m) denote the number of positive divisors of m.

PROPOSITION 22. For any integers I,n > 2 we have
C(l,n) < nr(A(n))7(n) ford" (I, A\(n)).

Proof. It is sufficient to show that for each [,n > 2 and each d|n with
(d,n/d) =1, we have

nT(A(n))

(30) Call.m) < S i Am))

Let d|n with (d,n/d) = 1. We have seen in Lemma 18 that for a residue
u (modn) with (u,n) = d to be involved in a cycle, it is necessary and
sufficient that (I, ord(u,n/d)) = 1. For each integer j | A(n/d), let Cq ;(l,n)
denote the number of cycles corresponding to residues uw with (u,n) = d
and ord(u,n/d) = A(n/d)/j. Writing such a residue u as duj, we have
uy € [1,n/d] and (ui,n/d) = 1. Thus, by Lemma 21, the number of such
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residues u is at most ¢(n/d)/j < n/dj. Hence we have
n/dj
Cq;(l,n) < .
w01 = GATAG D7)
Now A(n/d) = A(n)/dy for some integer dy < d. It is shown in (15) of [12]

that for k | m we have ord”(a, m/k) > ord” (a, m)/k for any nonzero integer a.
Hence

ord(l, A(n/d)/j) = ord(l, \(n)/d1j) > ord" (I, \(n))/d1j,
so that
n/dj < n
ord™(I,A\(n))/drj — ord* (I, A(n))
Letting j range over all divisors of A(n/d), we get

nT(A(n/d))
Cd(l7n) < ord*(l,)\(n))’

Cqj(l,n) <

which immediately gives (30). =

Proof of the upper bounds in Theorem 2. Note that from [6, Theorem 4.1],
we have 7(A(n)) < exp((loglogn)?) for almost all n. Furthermore, letting
2(n) denote the number of prime factors of n counted with multiplicity,
we know that the normal order of £2(n) is loglogn; in particular, we have
2(n) < loglogn/log?2 for almost all n. Since the inequality 7(n) < 22
is elementary, this implies that 7(n) < logn for almost all n. We conclude
from Proposition 22 that

C(l,n) < nexp(2(loglogn)?)/ord" (I, A(n))

for almost all n.

The three upper bounds in Theorem 2 therefore follow respectively from
three results in the new paper of Kurlberg and the second author [12]:
Theorem 4(1), which states that for any function e(n) — 0, we have
ord" (I, A\(n)) > n!/?*¢(™) almost always; Theorem 22, which states that a
positive proportion of integers n have ord” (I, A(n)) > n-592; and Theorem 28,
which states that if the GRH is true, then

ord" (I, A\(n)) = n/exp((1 + o(1))(log log n)?log log log n)

on a set of asymptotic density 1. (Note that the proof of this result uses
Theorem 1 of the current paper.) =

7. Higher iterates. Here we sketch what we believe to be a viable
strategy for establishing an analogue of Theorem 1 for the higher iterates
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Ar where k > 3. As in the case of kK = 2, we generally have
n__ n_ ¢n)
Ae(n)  d(n)  Ae(n)
We always have n/¢p(n) < (cloglogn)*, which is already a good enough
estimate for our purposes. Even better, however, it is known [5] that for each
fixed k, we have n/¢r(n) < (logloglogn)® for almost all n. The problem
therefore reduces to comparing Aip(n) to ¢x(n). Probably it is not hard
to get analogs of Propositions 5 and 6, where we replace y? with y*. The
problem comes in with the proliferation of cases needed to deal with small
prime factors. As with the second iterate, we expect the main contribution
to come from the “supersquarefree” case. In particular, let

hi(n) = Z Z Z Z vg(pr — 1) logg.
pilnp2lpi—1  prlpk—1—1q<y*
We expect hi(n) to be the dominant contribution to log(¢r(n)/Ax(n)) al-
most always. But it seems hard not only to prove this in general but also to
establish the normal order of hy(n).
It would seem useful in this endeavor to have a uniform estimate of the
shape

-~ for x > m!*e.

p ¢(m)
Even under the assumption of the Riemann Hypothesis for Dirichlet
L-functions, (31) seems difficult, and maybe it is false. It implies with z = m?
that the sum is < 1/¢(m), when all we seem to be able to prove, via sieve
methods, is that it is < (loglogm)/¢(m).

Assuming uniformity in (31), it seems that on average

hk(n) ~

(31)

Z 1 loglogx — loglogm

PEPm, p<x

ﬁ (loglogn)* logloglogn,
supporting Conjecture 3. It would be a worthwhile enterprise to try to verify
or disprove the conjecture in the case k = 3, which may be tractable.

Going out even further on a limb, it may be instructive to think of
what Conjecture 3 has to say about the normal order of L(n), the minimum
value of k with A\g(n) = 1. The expression (1/(k—1)!)(loglogn)* logloglogn
reaches its maximum value when k = loglogn. Is this formula then trying
to tell us that we have L(n) < loglogn almost always? Perhaps so.

There is a second argument supporting the thought that L(n) < loglogn
almost always. Let P(n) denote the largest prime factor of an integer n > 1,
and let I(n) = P(n) — 1 for n > 1, I(1) = 1. Clearly, I(n)| A(n) for all n, so
that if Lo(n) is the least k& with [x(n) = 1, then Ly(n) < L(n). It may be
that the difference L(n) — Lo(n) is usually not large. In any event, it seems
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safe to conjecture that Lg(n) is usually of order of magnitude loglogn,
due to the following argument. For an odd prime p, consider the quantity
logl(p)/logp =~ log P(p — 1) /log(p — 1). It may be that this quantity is dis-
tributed as p varies through the primes in the same way that log P(n)/logn
is distributed as n varies through the integers, namely the Dickman distri-
bution. Such a conjecture has been made in various papers. If so, it may be
that the sequence
logi(p) logl(p)
logp " logl(p)
behaves like a sequence of independent random variables, each with the
Dickman distribution. And if so, it may then be reasonable to assume that
almost always we get down to small numbers and terminate in about loglogn
steps. A similar probabilistic model is considered in [1], but for the simpler
experiment of finding the joint distribution of logarithmic sizes of the various
prime factors of a given number n.
At the very least, we can prove that L(n) < loglogn infinitely often.

PR

Proof of Theorem 4. Notice that the definition of A(n) as a least common
multiple, together with the fact that A(p®) | A\(p®*!) always, implies that

Alem{my,...,m;}) =lem{A(m1),..., A(m; )}
for any positive integers mq,...,m;. A trivial induction then shows that
Ap(lem{mq,...,m;}) = lem{Ag(m1),..., A\g(m;)}

for any k& > 0. Since the least common multiple of a set of numbers equals 1
precisely when each number in the set equals 1, we deduce that

L(lem{my,...,m;}) = max{L(my),...,L(m;)}.

We apply this identity with m; = i. Let n; = lem{1,...,j}. We have
logn; = Zz‘gj A(), which is asymptotic to j by the prime number theorem.
On the other hand, it is trivial that for any number n we have L(n) <
1+ (1/log2)logn, as N\i+1(n) < (1/2)Ai(n) for 1 <i < L(n). Therefore

log 1 log j
log2’ """ log2

log j 1
* log 2 <log2 ol )> g0t

L(n;) =max{L(1),...,L(j)} <1+ max{

We can improve on the estimate in Theorem 4, but not by much. Say
we let IV; be the product of all primes p < 3329 with p— 1] n;, with n; as in
the above proof. It follows from Friedlander [8] that a positive proportion of
the primes p < 5329 have the required property. Thus, N; > exp(cj>??) for
some positive constant ¢ and all sufficiently large values of j. But A(N;) | n;,

so that L(N;) <2+ j/log2. Hence L(N;) < .4391loglog N; for j sufficiently
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large. (This result can be improved by a very small margin using a more
recent result of Baker and Harman [2], but the argument is a bit more dif-
ficult, since they do not get a positive proportion of the primes with the
required property.) It is likely that L(n) < logloglogn infinitely often, pos-
sibly even that L(n) < log, n infinitely often for arbitrary k-fold-iterated
logarithms.

One may also study the maximal order of L(n). The analogous problem
for the iterated ¢-function is relatively trivial, but not so for A. If there
can exist very long “Sophie Germain chains”, that is, sequences of primes
Pi,...,pk where each p; = 2p;_1 + 1 for ¢ > 1, then we might have L(py) ~
(1/log 2) log pr,. We might even perturb such a chain by a small amount and
keep the asymptotic relation, say by occasionally having p; = 4p;—1 + 1. It
seems hard to prove that long enough chains to get the asymptotic relation
for L(px) do not exist, but probably they do not on probabilistic grounds.
We can at least say that L(n) > 14 (1/log 3) log n infinitely often, since this
inequality is attained when n is a power of 3.
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