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On the period of the continued fraction for

values of the square root of power sums

by

Amedeo Scremin (Udine)

1. Introduction. It is well known that the continued fraction for a
rational number is finite and that the one for the square root of a positive
integer a which is not a square is periodic of the form [a0; a1, . . . , aR−1, 2a0]
(here a1, . . . , aR−1, 2a0 denotes the periodic part), where R ≥ 1 is the length
of the period. About R, we know that R ≪ √

a log a (see [4] and [6]).

A power sum α is a function on N of the form

(1) α(n) = b1c
n
1 + b2c

n
2 + · · · + bhcn

h,

where the roots ci are distinct integers and the coefficients bi are nonzero
integers or rationals. We know from Corollary 1 in [2] that, apart from
the case when α is the square of a power sum of the same kind on an
arithmetic progression of naturals,

√

α(n) is a quadratic irrational for all
but finitely many n ∈ N. This means that the continued fraction expansion
for

√

α(n) is periodic for n large, raising the problem whether the length of
the period is bounded or not for n → ∞, which will be considered in this
paper. This problem first appeared in the Final Remark (b) in [3], where it
was predicted that “under suitable assumptions on the power sum α with
rational roots and coefficients, the length of the period of the continued
fraction for

√

α(n) tends to infinity with n”. Very recently, Bugeaud and
Luca (see [1]) found some partial results on the problem, giving a sufficient
condition on α, similar to that appearing in Corollary 3.3 below, under which
the length of the period tends to infinity with n.

Remarkable results on a similar problem, but considering a nonconstant
polynomial f with rational coefficients instead of the power sum α, were
obtained by Schinzel in [7] and [8]. He provided necessary and sufficient
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conditions on f under which the length of the period of the continued frac-
tion for

√

f(n) tends to infinity as n → ∞.

In the present paper we first prove that if a power sum α with rational
coefficients cannot be approximated “too well” by the square of a power sum
of the same kind (which implies that

√

α(n) /∈ Q, i.e. its continued fraction
is periodic, for all but finitely many n ∈ N), then the length of the period of
the continued fraction for

√

α(n) tends to infinity as n → ∞ (Corollary 3.3).

Then we show that for any fixed r ∈ {0, 1}, if the length of the period
of the continued fraction for

√

α(2m + r) is constant for all m in an infinite
set, then for all but finitely many m in an arithmetic progression, the values
of the partial quotients of the numerical continued fraction for

√

α(2m + r)
can be expressed by power sums of the same kind (Main Theorem 3.4).
Moreover, we will prove that

√

α(2m + r) has an identical continued fraction
expansion involving power sums.

The results above will be deduced from some lower bounds for the quan-
tities |

√

α(n)−p/q| (Corollary 3.2) and |(
√

α(n) + β(n))/γ(n)−p/q| (The-
orem 3.1) respectively, where α, β, γ are power sums and p, q are integers,
which we shall obtain using Schmidt’s subspace theorem in a way similar to
that of Corvaja and Zannier in [2] and [3].

Theorem 3.1 and Corollary 3.2 (for α = 0 and q = 1 respectively) are
the analogues of the Theorem in [3] and of Theorem 3 in [2].

The work in this paper carries out the suggestions in Final Remark (b)
in [3].

2. Notation. In the present paper we will denote by Σ the ring of
functions on N, called power sums, of the form

(2) α(n) = b1c
n
1 + b2c

n
2 + · · · + bhcn

h,

where the distinct roots ci 6= 0, and the coefficients bi 6= 0 are in Z. For rings
A, B ⊆ C, let AΣB denote the ring of power sums with coefficients in A
and roots in B. In the case B = Z, we will write for simplicity AΣ instead
of AΣZ.

If B ⊆ R, it is enough to deal with power sums with only positive roots,
since the positivity of the roots may be achieved by writing 2n + r instead
of n, and considering the cases of r = 0, 1 separately.

If α ∈ QΣQ is defined by (2), we set l(α) := max{c1, . . . , ch}. It is
immediate that l(αβ) = l(α)l(β), l(α + β) ≤ max{l(α), l(β)} and l(α)n ≫
|α(n)| ≫ l(α)n.

Note. In the statements and proofs of our results we will always omit
the condition of the existence of

√

α(n) ∈ R, i.e. that α(n) ≥ 0 for n large.
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3. Statements. Theorem 3.1 below states that for power sums α, β, γ
∈ QΣ, if (

√
α + β)/γ cannot be well approximated on the subsequence of

even (or odd) numbers by a power sum in QΣ, then (
√

α(n) + β(n))/γ(n)
cannot be well approximated by rationals with exponentially bounded de-
nominators, except for a finite number of even (odd) n. This Diophantine
approximation result will be obtained using Schmidt’s subspace theorem in
a way similar to that of Corvaja and Zannier in [2] and [3]. Theorem 3.1 is
the main tool we will use to prove the corollaries and the Main Theorem.

Theorem 3.1. Let α, β, γ ∈ QΣ, γ not identically zero, and fix ε > 0
and r ∈ {0, 1}. Suppose that there does not exist a power sum η ∈ QΣ such

that
∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− η(m)

∣

∣

∣

∣

≪ e−mε.

Then there exist k = k(α, β, γ) > 2 and Q = Q(ε) > 1 with the following

properties. For all but finitely many naturals n ≡ r mod 2 and for all integers

p, q, 0 < q < Q2m+r, we have

(3)

∣

∣

∣

∣

√

α(n) + β(n)

γ(n)
− p

q

∣

∣

∣

∣

≥ 1

qk
e−εn.

Remark 1. Taking α = 0 in Theorem 3.1, we obtain again the result of
the Theorem in [3].

Corollary 3.2 below is just a simplified version of Theorem 3.1, but we
state it here because it is sufficient to prove Corollary 3.3. It states that if
a power sum α ∈ QΣ cannot be well approximated on the subsequences of
even and odd numbers by the square of a power sum from the same ring,
then

√

α(n) cannot be well approximated by rationals with exponentially
bounded denominators, except for a finite number of n.

To simplify the notation, we define

αr(m) := α(2m + r).

Corollary 3.2. Let α ∈ QΣ, and fix ε > 0. Assume that for every

r ∈ {0, 1} and for all ξ ∈ QΣ,

l(αr − ξ2) ≥ l(αr)
1/2.

Then there exist k = k(α) > 2 and Q = Q(ε) > 1 with the following property.

For all but finitely many n ∈ N and for all integers p, q, 0 < q < Qn, we

have

(4)

∣

∣

∣

∣

√

α(n) − p

q

∣

∣

∣

∣

≥ 1

qk
e−εn.

Remark 2. Taking q = 1, we can see that Corollary 3.2 is a generaliza-
tion of Theorem 3 in [2].
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Remark 3. In concrete cases, it is easy to verify whether the assumption
of Corollary 3.2 holds or not. Once α is given, it is enough to check with
elementary algebraic methods, taking r = 0, 1 separately, that for all ξ ∈
QΣ, in the power sum αr − ξ2 there cannot be cancellations of all the
coefficients of the roots with absolute value ≥

√

l(αr). To do this, it is

enough to check the cancellations for power sums ξ with l(ξ) =
√

l(αr), since

otherwise l(αr − ξ2) ≥ l(αr)
1/2 holds automatically. Having this bound on

the size l of the dominant root of ξ, since ξ ∈ QΣ, the problem is reduced to
a problem in a vector space of finite dimension, which can be easily handled
with a system of algebraic equations.

By the same method, it is also easy to verify the assumption of Theo-
rem 3.1.

The following Corollary 3.3 states that if a power sum α ∈ QΣ cannot be
well approximated by the square of a power sum of the same kind, then the
length of the period of the continued fraction for

√

α(n) tends to infinity as
n → ∞. This result was already obtained with a similar proof by Bugeaud
and Luca in [1, Theorem 2.1].

Corollary 3.3. Let α ∈ QΣ be as in Corollary 3.2. Then the length of

the period of the continued fraction for
√

α(n) tends to infinity as n → ∞.

Remark 4. Recall from the introduction that the assumption of Corol-
lary 3.3 ensures that

√

α(n) /∈ Q for all but finitely many n ∈ N, i.e. the

period of the continued fraction for
√

α(n) is well defined for all n large
enough.

The Main Theorem 3.4 below follows again from Theorem 3.1, and states
that if the length of the period of the continued fraction for the square root
of a power sum is constant for infinitely many even (resp. odd) n, then the
values of the partial quotients of the numerical continued fraction can be
expressed by power sums on an arithmetic progression of even (resp. odd) n,
except finitely many.

We will say that the functional relation
√

α = [β0; β1, . . . , βR]

holds identically if, putting τ := [β1, . . . , βR], the second degree algebraic
relation

ατ2 = (β0τ + 1)2

holds in the ring of power sums.

Main Theorem 3.4. Let α ∈ QΣ, and fix r ∈ {0, 1}. Suppose that

there exists an infinite set A ⊆ N and a constant R ≥ 0 such that for m ∈ A
the length of the period of the continued fraction expansion for

√

α(2m + r)
is R. Then there exist an arithmetic progression P containing infinitely many



Period of the continued fraction 301

elements of A, and power sums β0, . . . , βR ∈ QΣ integer-valued on the pro-

gression P, such that for all but finitely many m ∈ P, we have the numerical

continued fraction expansion

(5)
√

α(2m + r) = [β0(m); β1(m), . . . , βR(m)].

Moreover , the functional continued fraction expansion (5) holds identically.

Remark 5. The case R = 0 of the Main Theorem states that for α ∈
QΣ, if

√

α(2m + r) ∈ Z for infinitely many m ∈ N, then α(2m + r) is the
square of a power sum in QΣ. This is a particular case of Corollary 1 in [2].

Remark 6. The result of Corollary 3.3, together with the Main Theorem
3.4, carries out the program outlined in the Final Remark (b) in [3].

Remark 7. Under the assumption of the Main Theorem, it remains an
open problem whether the length of the continued fraction for

√

α(2m + r)
is uniformly bounded for all m ∈ N. For the polynomial case studied by
Schinzel [8], he proved that even when the numerical continued fraction
for

√

f(n), where f ∈ Z[x], is bounded for infinitely many n and
√

f(n)
admits a functional continued fraction expansion with bounded length (i.e.
the same situation as above), the length of the numerical continued fraction
expansion can tend to infinity on some subset E ⊆ N. Schinzel provided a
full characterization of such sets E (Theorems 2 and 3 in [8]).

4. Auxiliary results. We state a version of Schmidt’s subspace the-
orem due to H. P. Schlickewei, which will be our main tool to prove The-
orem 3.1. It can be found in [10, Theorem 1E, p. 178] (a complete proof
requires also [9]).

Theorem 4.1. Let S be a finite set of absolute values of Q, including

the infinite one and normalized in the usual way (i.e. |p|v = p−1 if v | p).
Extend each v ∈ S to Q in some way. For v ∈ S let L1,v, . . . , Ln,v be n
linearly independent linear forms in n variables with algebraic coefficients

and let δ > 0. Then the solutions x := (x1, . . . , xn) ∈ Zn to the inequality

∏

v∈S

n
∏

i=1

|Li,v(x)|v < max
1≤i≤n

|xi|−δ

are contained in finitely many proper subspaces of Qn.

The following lemma is a special case of a result by Evertse; a short proof
can be found in [2, Lemma 2].

Lemma 4.2. Let ξ ∈ QΣQ and let D be the minimal positive integer such

that Dnξ ∈ QΣ. Then, for every ε > 0, there are only finitely many n ∈ N

such that the denominator of ξ(n) is smaller than Dne−nε.
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5. Proofs. We start with the following very simple

Lemma 5.1. Let α, β, γ ∈ QΣ, γ not identically zero, and let t be any

positive real number. Then for every r ∈ {0, 1} there exists ηr ∈ QΣQ such

that
∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− ηr(2m + r)

∣

∣

∣

∣

≪ t2m.

Such an ηr can be effectively computed in terms of r, α, β, γ and t.

Proof. Let α(n) =
∑h

j=1 bjc
n
j with cj ∈ Z, cj 6= 0 and bj ∈ Q∗ for all

j = 1, . . . , h. We can suppose c1 > · · · > ch > 0. For a real (resp. real

positive) determination of b
1/2
1 (resp. c

1/2
1 ), fixed for the rest of the proof,

we have

(6) α(n)1/2 = (b1c
n
1 )1/2

(

1 +
h

∑

j=2

bj

b1

(

cj

c1

)n)1/2

= (b1c
n
1 )1/2(1 + σ(n))1/2,

with σ(n) ∈ QΣQ, and σ(n) = O((c2/c1)
n).

Expanding the function x 7→ (1 + x)1/2 in a Taylor series, we have

(7) (1 + σ(n))1/2 = 1 +

H
∑

j=1

(

1/2

j

)

σ(n)j + O(|σ(n)|H+1),

where H > 0 is an integer that can be chosen later. For every r ∈ {0, 1},
substituting (7) in (6) we obtain

α(2m + r)1/2 = b
1/2
1 c

r/2
1 cm

1

(

1 +

H
∑

j=1

(

1/2

j

)

σ(2m + r)j

)

(8)

+O

((

c2

c1

)2m(H+1)

cm
1

)

.

Let

(9) β(n) =
k

∑

j=1

dje
n
j ∈ QΣ

with ej ∈ Z, ej 6= 0 and dj ∈ Q∗ for all j = 1, . . . , k. We can suppose

e1 > · · · > ek > 0. Fix H such that (c2/c1)
H+1c

1/2
1 < e1.

Let γ(n) =
∑l

j=1 fjg
n
j ∈ QΣ with gj ∈ Z, gj 6= 0 and fj ∈ Q∗ for all

j = 1, . . . , l.
We can suppose g1 > · · · > gk > 0. Using the same method as in the

proof of Theorem 1 in [2], we can write

(10) γ(n)−1 = f−1
1 g−n

1

s
∑

j=0

φ(n)j + O((g2/g1)
n(s+1)g−n

1 ),



Period of the continued fraction 303

where

φ(n) := −
l

∑

i=2

fi

f1

(

gi

g1

)n

∈ QΣQ,

φ(n) = O(g2/g1)
n, and s > 0 is an integer that will be chosen later.

Thus, by equations (8)–(10), by the choice of H and the definition of φ,
we obtain
√

α(2m + r) + β(2m + r)

γ(2m + r)
= f−1

1 g−r
1 g−2m

1

(

s
∑

i=0

φ(2m + r)i
)

×
(

b
1/2
1 c

r/2
1 cm

1

(

1 +
H

∑

i=1

(

1/2

j

)

σ(2m + r)i

)

+
k

∑

i=1

die
2m+r
i

)

+ O((g2/g1)
2m(s+1)g−2m

1 e2m
1 ).

Fix now s such that (g2/g1)
s+1g−1

1 e1 < t and put, for r = 0, 1,

ηr(2m + r) := f−1
1 g−r

1 g−2m
1

(

s
∑

i=0

φ(2m + r)i
)

×
(

b
1/2
1 c

r/2
1 cm

1

(

1 +

H
∑

i=1

(

1/2

j

)

σ(2m + r)i

)

+

k
∑

i=1

die
2m+r
i

)

.

By definition ηr ∈ QΣQ for r = 0, 1. Thus for r ∈ {0, 1} we have effectively
constructed a power sum ηr(n) ∈ QΣQ such that

∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− ηr(2m + r)

∣

∣

∣

∣

≪ t2m,

completing the proof.

Remark 8. Notice that in ηr the root with largest absolute value is

g−1
1 max{e1, c

1/2
1 } and that the other roots appearing are rational with de-

nominator of the form ca
1g

b
1 with a, b ∈ N, a ≥ 0, b ≥ 1.

Proof of Theorem 3.1. Let ηr, for r ∈ {0, 1} fixed, be as in Lemma 5.1,
with t = 1/9. We can write (recall Remark 8, and the definition of g1 in the
proof of Lemma 5.1)

ηr(2m + r) = b
1/2
1,r dm

1 (g−2m
1 + b2d

2m+r
2 + · · · + bhd2m+r

h )

for some b1,r, bi ∈ Q
∗
, d1, g1 ∈ Z \ {0}, d2, . . . , dh ∈ Q∗, and g−1

1 > d2 >
· · · > dh > 0.

We define k := h + 3 and, for ε > 0 fixed (which we may take < 1/2k,
say), Q := eε. We suppose that there are infinitely many triples (m, p, q) of
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integers with 0 < q < Q2m+r, m → ∞ and

(11)

∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− p

q

∣

∣

∣

∣

≤ 1

qk
e−ε(2m+r).

We shall eventually obtain a contradiction, which will prove what we want.

We proceed to define the data for an application of the Subspace The-
orem 4.1. We let S be the finite set of places of Q containing the infinite
one and all the places dividing the numerators or denominators of g1 and of
di, i = 1, . . . , h. We define linear forms on X0, . . . , Xh as follows. If v 6= ∞
or i 6= 0 we set simply Li,v = Xi. We define the remaining form by

L0,∞ := X0 − b
1/2
1,r X1 − b2,rX2 − · · · − bh,rXh,

where bi,r = bib
1/2
1,r , i = 2, . . . , h. For each v, these linear forms are clearly

independent.

Let d be the minimal integer such that did ∈ Z for every i = 1, . . . , h
(recall Remark 8). For our choice of the set S, d is an S-unit.

Define e1 := d1dg−2
1 , ei := ddi, i = 2, . . . , h. Note that ei ∈ Z for every

i = 1, . . . , h. Set

x = x(m, p, q) = (pd2m+r, qem
1 dm+r, qdm

1 e2m+r
2 , . . . , qdm

1 e2m+r
h ) ∈ Zh+1.

We now estimate the double product
∏

v∈S

∏h
i=0 |Li,v(x)|v. We have

(12)
∏

v∈S

h
∏

i=0

|Li,v(x)|v = |L0,∞(x)| ·
h

∏

i=1

∏

v∈S

|Li,v(x)|v ·
∏

v∈S\{∞}

|L0,v(x)|v.

By definition
∏

v∈S |L1,v(x)|v =
∏

v∈S |qem
1 dm+r|v ≤ q and, for i ≥ 2,

∏

v∈S |Li,v(x)|v =
∏

v∈S |qdm
1 e2m+r

i |v ≤ q, since d, d1 and the ei are S-units
for every i (which implies that

∏

v∈S |d|v =
∏

v∈S |d1|v =
∏

v∈S |ei|v = 1)
and since

∏

v∈S |q|v ≤ q for the positive integer q. This means that

(13)
h

∏

i=1

∏

v∈S

|Li,v(x)|v ≤ qh.

Moreover,

∏

v∈S\{∞}

|L0,v(x)|v =
∏

v∈S\{∞}

|pd2m+r|v(14)

=
∏

v∈S\{∞}

|p|v ·
∏

v∈S\{∞}

|d2m+r|v ≤ d−(2m+r),

the last inequality holding since p is an integer and d is an S-unit.
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Finally, we have

|L0,∞(x)| = d2m+r|p − q(b
1/2
1,r dm

1 g−2m
1 + b2,rd

m
1 d2m+r

2 + · · · + bh,rd
m
1 d2m+r

h )|
= qd2m+r|ηr(2m + r) − p/q|,

which, combined with (12)–(14), gives

(15)
∏

v∈S

h
∏

i=0

|L0,v(x)|v ≤ qh+1|ηr(2m + r) − p/q|.

Since qk < Qk(2m+r) = e(2m+r)kε, we have q−ke−(2m+r)ε > e−(2m+r)(k+1)ε,
which means that q−ke−(2m+r)ε > t2m+r (recall that ε < 1/2k, k ≥ 3 and
t = 1/9). Thus, for a certain constant l > 0, we have

∣

∣

∣

∣

ηr(2m + r) − p

q

∣

∣

∣

∣

≤
(∣

∣

∣

∣

p

q
−

√

α(2m + r) + β(2m + r)

γ(2m + r)

∣

∣

∣

∣

+

∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− ηr(2m + r)

∣

∣

∣

∣

)

≤
(

1

qk
e−(2m+r)ε + lt2m+r

)

≤ 2

qk
e−(2m+r)ε.

This means that

∏

v∈S

h
∏

i=0

|L0,v(x)|v ≤ 2qh+1−ke−(2m+r)ε ≤ e−(2m+r)ε,

since we have k = h + 3. Also,

max
0≤i≤h

|xi| ≃ qem
1 dm+r ≤ Q2m+rem

1 dm+r.

Hence, choosing δ > 0 with δ < ε/log(Q2e1d), we get, for m large,

∏

v∈S

h
∏

i=0

|L0,v(x)|v ≤ e−(2m+r)ε < (Q2m+rem
1 dm+r)−δ ≤ ( max

0≤i≤h
|xi|)−δ,

i.e. the inequality of the Subspace Theorem 4.1 is satisfied. This implies that
the vectors

x = x(m, p, q) = (pd2m+r, qem
1 dm+r, qdm

1 e2m+r
2 , . . . , qdm

1 e2m+r
h ) ∈ Zh+1

are contained in a finite set of proper subspaces of Qh+1. In particular, there
exists a fixed subspace, say of equation z0X0−z1X1−· · ·−zhXh = 0, zi ∈ Q,
containing infinitely many of the vectors in question. We cannot have z0 = 0,
since this would entail

z1e
m
1 dm+r + z2d

m
1 e2m+r

2 + · · · + zhdm
1 e2m+r

h

= dm
1 d2m+r(z1g

−2m
1 + z2d

2m+r
2 + · · · + zhd2m+r

h ) = 0
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for infinitely many m; in turn, the fact that g−1 and the di are pairwise
distinct would imply zi = 0 for all i, a contradiction.

Therefore we can suppose that z0 = 1, and we find that, for m corre-
sponding to the vectors in question,

(16)
p

q
= dm

1

(

z1g
−2m
1 +

h
∑

i=2

zid
2m+r
i

)

=: ξ(m) ∈ QΣQ.

Let us show that actually ξ ∈ QΣ. Assume the contrary; then the minimal
positive integer D so that Dmξ ∈ QΣ is ≥ 2. But then equation (16) to-
gether with Lemma 4.2 implies that q ≫ 2me−mε. Since this would hold for
infinitely many m, we would find Q ≥ q1/2m ≥

√
2 e−ε/2, a contradiction

since Q = eε, ε < 1/2k and k ≥ 3. Therefore ξ ∈ QΣ.

Substituting (16) in (11) we find that there exists a power sum ξ ∈ QΣ
such that

∣

∣

∣

∣

√

α(2m + r) + β(2m + r)

γ(2m + r)
− ξ(m)

∣

∣

∣

∣

≪ e−2mε,

a contradiction, concluding the proof.

Proof of Corollary 3.2. We know that

l(αr − ξ2) ≥ l(αr)
1/2

for every ξ ∈ QΣ by assumption, and for every r ∈ {0, 1},
|
√

αr(m) + ξr(m)| < 2max{
√

αr(m), |ξr(m)|}.
If for a certain ξ ∈ QΣ we have |ξr(m)| ≤ k

√

αr(m) for m large enough and
for some constant k > 0, then for such ξ ∈ QΣ and m large,

|
√

αr(m) − ξr(m)| >
1

2
min

{

1,
1

k

}

.

If for a certain ξ ∈ QΣ we have |ξr(m)| ≫ αr(m)(1+δ)/2 for some δ > 0, we
get

|
√

αr(m) − ξr(m)| ≫ αr(m)(1+δ)/2.

This proves that there does not exist a power sum ξ ∈ QΣ and ε > 0 such
that

|
√

αr(m) − ξr(m)| ≪ e−2mε.

Thus we can apply Theorem 3.1 with β = 0 and γ = 1, and get the conclu-
sion.

Proof of Corollary 3.3. For notation and basic facts about continued
fractions we refer to [5] and [9, Ch. I].

Recall from Remark 4 that under our present assumption the period of
the continued fraction for

√

α(n) is well defined for all n large enough.
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Suppose by contradiction that there exists an integer R > 0 and an
infinite set A ⊆ N such that

√

α(n) = [a0(n); a1(n), . . . , aR(n)] for n ∈ A.
Let pi(n)/qi(n), i = 0, 1, . . . , with q0(n) = 1, be the (infinite) sequence of
convergents of the continued fraction for

√

α(n). We recall the relation
∣

∣

∣

∣

√

α(n) − pi(n)

qi(n)

∣

∣

∣

∣

< (ai+1(n)qi(n)2)−1 for i ≥ 0,

which implies that

(17) ai+1(n) <

∣

∣

∣

∣

√

α(n) − pi(n)

qi(n)

∣

∣

∣

∣

−1

qi(n)−2 for i ≥ 0.

Since α satisfies the assumptions of Corollary 3.2, for some ε > 0 to be fixed
later there exist k > 2 and Q > 1 as in the statement of Corollary 3.2. As
in the proof of Theorem 3.1 (from which Corollary 3.2 follows), we can take
Q = eε.

Define now the increasing sequence c0, c1, . . . by c0 = 0 and cr+1 =
(k + 1)cr + 1, and choose a positive number ̺ < c−1

R log Q, so ecR̺ < Q.
Proceeding by induction as in the proof of Corollary 1 in [3], it can be shown
that for every i = 0, . . . , R, and for large n, we have qi(n) < eci̺n, which
implies that qi(n) < Qn for every i = 0, . . . , R and n large. Thus, we can
apply Corollary 3.2 with p = pi(n), q = qi(n), and ε > 0 to be chosen later.
Recalling that Q = eε, from (17) we see that, for all but finitely many n,

ai+1(n) <

∣

∣

∣

∣

√

α(n) − pi(n)

qi(n)

∣

∣

∣

∣

−1

qi(n)−2 ≤ qi(n)kenε(18)

< Qknenε = en(k+1)ε

for every i = 0, . . . , R and ε > 0. Taking δ := (k + 1)ε we can rewrite the
above inequality as

(19) ai(n) < enδ

for i = 0, . . . , R and for all but finitely many n.
From now on, let n ∈ A be such that ai(n) < enδ. By assumption, for

every n,

(20)
√

α(n) = a0(n) +
1

β(n)
,

where β(n) has the continued fraction expansion

β(n) = [a1(n), . . . , aR(n)].

This means that β(n) satisfies

β(n) = [a1(n), . . . , aR(n), β(n)],

which can be rewritten as a quadratic equation

(21) q′R(n)β(n)2 + (q′R−1(n) − p′R(n))β(n) − p′R−1(n) = 0,
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where p′i(n)/q′i(n) = [a1(n), . . . , ai(n)]. It is well known that p′i(n), q′i(n) sat-
isfy the recursive equations p′i+2(n) = ai+2(n)p′i+1(n) + p′i(n) and q′i+2(n) =
ai+2(n)q′i+1(n) + q′i(n) for all i ≥ −1, with initial values p′0(n) = q′−1(n) = 1
and q′0(n) = p′−1(n) = 0. It follows that the integers p′R−1(n), p′R(n), q′R−1(n)

and q′R(n) appearing in (21) are all ≪ (max1≤i≤R ai(n))R.

From (19) it follows that max1≤i≤R ai(n) < enδ, which implies that
p′R−1(n), p′R(n), q′R−1(n) and q′R(n) are all ≪ eRnδ. Taking the trace of
both terms of (20) we see that for infinitely many n,

(22) 2a0(n) =
q′R−1(n) − p′R(n)

p′R−1(n)
.

Estimating the absolute value on both sides of (22), on the left side we get

|2a0(n)| = 2⌊
√

α(n)⌋ ≫ 2n/2

(since α can be supposed to be a nonconstant power sum), while on the
right side we have

∣

∣

∣

∣

q′R−1(n) − p′R(n)

p′R−1(n)

∣

∣

∣

∣

≪ |q′R−1(n)| + |p′R(n)| ≪ eRnδ,

yielding a contradiction for δ < (ln 2)/2R, i.e. ε < (ln 2)/2(k + 1)R.

Proof of the Main Theorem 3.4. The case of α constant is trivial; thus
we can suppose α to be nonconstant for the rest of the proof. For r ∈ {0, 1}
fixed, let
√

α(2m + r) = [a0(m); a1(m), a2(m), . . .] = [a0(m); a1(m), . . . , aR(m)(m)]

be the numerical continued fraction expansion for
√

α(2m + r), and let
pi(m)/qi(m), i = 0, 1, . . . , with q0(m) = 1, be the (infinite) sequence of
its convergents. If m ∈ A, we have R(m) = R.

We recall the relations aR(m) = 2a0(m) for every m ∈ A (if R > 0), and

(23) ai+1(m) <

∣

∣

∣

∣

√

α(2m + r) − pi(m)

qi(m)

∣

∣

∣

∣

−1

qi(m)−2

for every i ≥ 0 and m ∈ N.

By our present assumption, the hypothesis of Corollary 3.3 cannot hold
for α and for the fixed r, since the period of the continued fraction for

√

α(n)
cannot tend to infinity as n → ∞. This means that for some ̺ > 0, there
exists a power sum η ∈ QΣ such that

(24) |α(2m + r) − η(m)2| ≪ α(2m + r)1/2−̺.

From (24) it follows that

(25) |
√

α(2m + r) − η(m)| ≪ α(2m + r)−̺ < 1,
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the last inequality holding for m ∈ N large. It follows that for every large
enough m ∈ N,

(26) a0(m) = ⌊
√

α(2m + r)⌋ ∈ {⌊η(m)⌋ − 1, ⌊η(m)⌋, ⌊η(m)⌋+ 1}.

Since η has integral roots and rational coefficients, there exist arithmetic
progressions As = {m = tm′ + s : m′ ∈ N}, for s = 0, . . . , t − 1 and some
t ∈ N, such that for all m ∈ As we have ⌊η(m)⌋ = ζs(m) for some power
sum ζs ∈ QΣ integer-valued on the progression As.

Choose a progression, say A0, that contains infinitely many elements
m ∈ A. For all m ∈ A ∩ A0 large enough,

(27) a0(m) = ⌊
√

α(2m + r)⌋ ∈ {ζ0(m) − 1, ζ0(m), ζ0(m) + 1}.

We claim that for all large enough m ∈ A0, either a0(m) = ζ0(m) − 1, or
a0(m) = ζ0(m), or a0(m) = ζ0(m)+1. In fact, a0(m) = ζ0(m)−1 when both
α(2m + r)− ζ0(m)2 + 2ζ0(m)− 1 ≥ 0 and α(2m + r)− ζ0(m)2 < 0; a0(m) =
ζ0(m) when both α(2m+r)−ζ0(m)2 ≥ 0 and α(2m+r)−ζ0(m)2−2ζ0(m)−1
< 0; and a0(m) = ζ0(m)+1 when both α(2m+r)−ζ0(m)2−2ζ0(m)−1 ≥ 0
and α(2m + r) − ζ0(m)2 − 4ζ0(m) − 4 < 0. Since α and ζ0 are power sums,
each of the above pairs of inequalities can hold for all large m ∈ N or for just
finitely many n ∈ N. Since (27) holds for infinitely many n ∈ N, we have
proved that for all large enough m ∈ A0, a0(m) = β0(m) for some power sum
β0 ∈ QΣ integer-valued on the progression A0 (recall that ζ0−1, ζ0+1 ∈ QΣ
are integer-valued on A0).

If R = 0, the proof is complete. Note that since α was supposed to be
nonconstant, also a0(m) is a nonconstant power sum on the progression A0.

Suppose now R > 0, and suppose by contradiction that for some arith-
metic progression P ⊆ A0 that contains infinitely many elements of A, there
exists h ∈ N, 1 ≤ h ≤ R, such that for all large enough m ∈ P and every
i = 0, . . . , h−1, ai(m) = βi(m) for some power sum βi ∈ QΣ integer-valued
on P, but there does not exist an arithmetic progression P ′ ⊆ P and a power
sum βh ∈ QΣ integer-valued on P ′ such that ah(m) = βh(m) for all large
enough m ∈ P ′.

We can exclude the case h = R, since for m ∈ A ∩ P large enough we
have aR(m) = 2a0(m) = 2β0(m) ∈ QΣ, and β0 is integer-valued on P.
Put a(m) := [a0(m); a1(m), . . . , ah−1(m)] = ph−1(m)/qh−1(m) ∈ Q. Since
ai(m) ∈ QΣ for every i = 0, . . . , h − 1, we have

(28) |
√

α(2m + r) − a(m)|−1 =

√

γ(m) + τ(m)

ξ(m)
=: αh(m)

for every large enough m ∈ A ∩ P and for certain power sums γ, τ and
ξ ∈ QΣ, ξ not identically zero.
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We claim that for every ε > 0 there is no power sum ζ ∈ QΣ such that

(29) |αh(m) − ζ(m)| ≪ e−mε.

In fact, if such a power sum existed, in view of (29) we would have

|αh(m) − ζ(m)| < 1

for all large enough m ∈ A ∩ P, which implies that for all m ∈ A ∩ P large
enough,

ah(m) = ⌊αh(m)⌋ ∈ {⌊ζ(m)⌋ − 1, ⌊ζ(m)⌋, ⌊ζ(m)⌋+ 1}.
But since ζ has integral roots and rational coefficients, there would exist an
arithmetic progression P ′ ⊆ P, containing infinitely many elements of A,
such that for all large enough m ∈ A ∩ P ′, ⌊ζ(m)⌋ = ζ ′(m) for some power
sum ζ ′ ∈ QΣ integer-valued on P ′. This would entail (by the same argument
as after formula (27)) that for m ∈ P ′ large enough, ah(m) = ⌊αh(m)⌋ =
β(m) for a power sum β ∈ QΣ integer-valued on P ′, a contradiction proving
that αh satisfies the assumption of Theorem 3.1.

By the definition of αh(m), the length of the period of its continued
fraction is R again, when m ∈ A ∩ P. Let

αh(m) = [a′0(m); a′1(m), . . . , a′R(m)],

and let p′i(m)/q′i(m), i = 0, 1, . . . , with q′0(m) = 1, be the sequence of its
convergents. We have a′i(m) = ai+h(m) for i + h ≤ R, a′i(m) = ai+h−R(m)
for i + h > R, and

(30) a′i+1(m) <

∣

∣

∣

∣

αh(m) − p′i(m)

q′i(m)

∣

∣

∣

∣

−1

for i ≥ 0.

Since αh satisfies the assumption of Theorem 3.1, for some ε > 0 to be fixed
later there exist k ≥ 3 and Q > 1 as in that statement. As in the proof of
Theorem 3.1, we can put Q := eε.

As in the proof of Corollary 3.3, we have again the inequality q′i(m) <
Q2m+r for every i = 0, . . . , R and m ∈ A∩P large enough, i.e. we can apply
Theorem 3.1 to αh(m) with p = p′i(m), q = q′i(m) and some ε > 0 to be
fixed later. We infer that for every i ≥ 0 and for m ∈ A ∩ P large enough,

(31)

∣

∣

∣

∣

αh(m) − p′i(m)

q′i(m)

∣

∣

∣

∣

≥ q′i(m)−ke−mε.

Recalling that 0 < q′i(m) < Q2m+r = e(2m+r)ε for every i = 0, . . . , R and
m ∈ A∩P large enough, and considering the inequality (31) for i = R−h−1,
together with (30), we get, for large enough m ∈ A ∩ P,

aR(m) = a′R−h(m) ≤
∣

∣

∣

∣

αh(m) −
p′R−h−1(m)

q′R−h−1(m)

∣

∣

∣

∣

−1

≤ q′R−h−1(m)kemε(32)

< Q(2m+r)kemε = eε((2m+r)k+m) < emε′
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for ε′ = 3kε. Choosing ε < (ln 2)/3k (i.e. ε′ < ln 2), we see that for m ∈ A∩P
large enough,

aR(m) ≪ 2m(1−δ) for some δ > 0.

Recalling that a0(m) ∈ QΣ is nonconstant for m ∈ A∩P, from the relation

aR(m) = 2a0(m) ≫ 2m

we get a contradiction, proving that there exists an arithmetic progression
P such that (5) holds for all but finitely many m ∈ P.

We now prove the functional relation. From (5) we get

(33)
√

α(2m + r) = β0(m) +
1

τ(m)
for m ∈ P,

where τ(m) has the continued fraction expansion

τ(m) = [β1(m), . . . , βR(m)].

This means that for m ∈ P,

τ(m) = [β1(m), . . . , βR(m), τ(m)],

which can be rewritten as a quadratic equation

(34) q′′R(m)τ(m)2 + (q′′R−1(m) − p′′R(m))τ(m) − p′′R−1(m) = 0,

where p′′i (m)/q′′i (m) = [β1(m), . . . , βi(m)].
It is well known that p′′i (m), q′′i (m) satisfy the recursive equations p′′i+2(m)

= βi+2(m)p′′i+1(m) + p′′i (m) and q′′i+2(m) = βi+2(m)q′′i+1(m) + q′′i (m) for all
i ≥ −1, with initial values p′′0(m) = q′′−1(m) = 1 and q′′0 (m) = p′′−1(m) = 0.
It follows that p′′R−1(m), p′′R(m), q′′R−1(m) and q′′R(m) appearing in (34) are
all power sums in QΣ. This means that the equation (34) either holds for
just finitely many m ∈ N, or holds identically. Since it holds for all m ∈ P,
i.e. for infinitely many m, it must hold identically, concluding the proof.
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