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δ-rings and factorial sequences preservation
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Youssef Fares (Amiens)

1. Introduction. For every subset E of Z, and more generally of a
Dedekind domain D, Bhargava [2] introduced a notion of generalized fac-
torials associated to E which preserves the classical properties of factorials.
Proving a conjecture of Gilmer and Smith [8], we showed in [7] that if a
polynomial f ∈ Q[X] maps an infinite subset E of Z onto a subset f(E)
which has the same factorials as E, then f is of degree 1. This proof extends
easily to the imaginary quadratic number fields but not to all number fields
since the group of units may be infinite. The aim of this paper is to give a
proof for all number fields. In fact, we prove a stronger result: if a rational
function ϕ with coefficients in a number field K transforms an infinite subset
E of OK into a subset ϕ(E) which has the same factorials as E, then ϕ is a
homographic function (Proposition 26).

These questions have strong links with integer-valued polynomials and
integer-valued rational functions.

Notation. In this paper, D denotes an infinite domain with quotient
field F and E denotes a subset of D.

Recall [4] that the ring of integer-valued polynomials on E with respect

to D is

Int(E,D) = {f ∈ F [X] | f(E) ⊆ D}

and that the ring of integer-valued rational functions on E with respect to

D is the ring

IntR(E,D) = {ϕ ∈ F (X) | ϕ(E) ⊆ D}.

When E = D, one writes Int(D) and IntR(D) instead of Int(D,D) and
IntR(D,D).

Definition 1 ([2]). The nth factorial ideal of E with respect to D,
denoted by (n!)DE , is the conductor in D of the fractional ideal formed by
the coefficients of the polynomials of Int(E,D) with degree n.
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Thus, if Int(E,D) = Int(f(E), D), then E and f(E) have the same se-
quence of factorial ideals and it is easy to see that, if f(E) ⊆ E, the converse
is true. It is in terms of the rings Int(E,D) and Int(f(E), D) that Gilmer and
Smith proposed their conjecture: does the equality Int(f(E), D) = Int(E,D)
imply that f is of degree 1?

Notation. In this paper, K denotes a number field and OK the ring of
integers of K. Let UK be the unit group of K.

It is known [4] that for every number field K,

IntR(OK) = Int(OK).

In other words, an integer-valued rational function on OK is in fact an
integer-valued polynomial. We say that OK is a d-ring (Definition 2 below).
In particular,

IntR(Z) = Int(Z).

This property remains true if we replace Z by an infinite subset E ⊆ Z:

IntR(E,Z) = Int(E,Z).

This equality is easy to check: if ϕ = g/f ∈ IntR(E,Z), g = qf + r where
deg r < deg f , and a ∈ Z is such that aq ∈ Z[X], then the rational function
ar/f = aϕ − aq is integer-valued on E while lim|x|→∞ ar(x)/f(x) = 0.
Consequently, r = 0 and ϕ is a polynomial.

In order to extend this property to arbitrary number fields, we introduce
a property similar to that of d-rings but for infinite subsets E; it is the
notion of δ-ring (Definition 6) which we will study in the following section.
We will then show in Section 3 that, for every number field K, the ring OK
is a δ-ring (Corollary 18). Lastly, we will use this result to show that if ϕ
is a rational function and E is an infinite subset of OK such that E and
ϕ(E) have the same factorial sequence, then ϕ is a homographic function
(Proposition 26). In particular, if ϕ is a polynomial, then degϕ = 1.

2. δ-rings. Let us recall the definition of a d-ring introduced indepen-
dently by Brizolis [3] and Gunji and McQuillan [9].

Definition 2. Let D be an infinite integral domain with quotient
field F . One says that D is a d-ring when, for every ϕ ∈ F (X), ϕ(x) ∈ D
for almost all x ∈ D implies ϕ ∈ F [X].

Proposition 3 ([3], [4], [9], [10]). Let D be an infinite integral domain

with quotient field F and unit group U(D). The following assertions are

equivalent :

(1) D is a d-ring.

(2) For all f, g ∈ F [X], if f(x) divides g(x) for almost all x ∈ D, then

f divides g in F [X].
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(3) For every non-constant f ∈ D[X], there exists a ∈ D such that

f(a) 6∈ U(D).
(4) For every non-constant f ∈ D[X], there exists a maximal ideal M

of D such that f admits a root in D modulo M.

Proposition 3 shows that, as soon as U(D) is finite, D is a d-ring. In
fact, both propositions below proved by Gunji and McQuillan [9] may be
used for any ring of integers of a number field.

Proposition 4. Let D be a d-ring and let B be a domain containing D.

If B is integral over D or if B is a finitely generated ring over D, then B
is a d-ring.

Proposition 5. If the group of units U(D) of D is of finite type and

D 6= F , then D is a d-ring.

Thus, the ring OK of integers of a number field K is a d-ring. When
U(D) is infinite, there are infinite subsets E of D such that IntR(E,D) 6=
Int(E,D). Indeed, for every a ∈ D, every subset E contained in a + U(D)
and every n ∈ N, 1/(X − a)n ∈ IntR(E,D). Since we have to take this
example into account, we introduce the following definition:

Definition 6. One says that D is a δ-ring if for every infinite subset
E ⊆ D, ϕ ∈ IntR(E,D) implies that ϕ admits at most one pole (in an
algebraic closure of K).

Examples 7.

(1) Z and every ring of integers of an imaginary quadratic number field
are δ-rings.

(2) A non-algebraically closed field F is not a δ-ring. Indeed, there ex-
ists f ∈ F [X] of degree ≥ 2 without any root in F . Let ϕ(X) =
1/f(X)f(X + 1). The inclusion ϕ(F ) ⊆ F implies that F is not a
δ-ring.

Remarks 8. Assume that D is a δ-ring.

(1) A priori, the poles of ϕ ∈ F (X) belong to an algebraic closure of F ,
but if ϕ has only one pole it is an element of F .

(2) For a fixed infinite subset E of D, the poles of all the rational func-
tions ϕ ∈ IntR(E,D) are equal to a unique element e of F . Indeed, if
ϕ1, ϕ2 ∈ IntR(E,D), then ϕ1ϕ2(E) ⊆ D and ϕ1ϕ2 has at most one
pole.

(3) The Jacobson radical J(D) of D is equal to (0). Indeed, let a ∈ J(D)
and let ϕ(X) = 1/(1 + aX)(1 + a2X). Then ϕ(D) ⊆ U(D). Thus
a2 = a. Since a 6= 1, a = 0.

(4) For every polynomial f ∈ F [X] and every infinite subset E of D,
f(E) ⊆ U(D) implies that f is of the form λ(X−e)n where λ, e ∈ F
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and n ∈ N (N is the set of non-negative integers); we then say that
f is a monomial of F [X].

Proposition 9. A δ-ring is a d-ring.

Proof. Suppose that D is a δ-ring. Let f ∈ F [X] be such that f(x) ∈
U(D) for almost every x in D. Then f(X) = λ(X−e)n. Let E be an infinite
subset of D such that f(x), f(x+ 1) ∈ U(D) for any x ∈ E. Such a subset
exists because D is infinite. Then ϕ1(X) = 1/f(X)f(X + 1) is such that
ϕ(E) ⊆ U(D) and consequently has at most one pole. This implies that
n = 0 and f is a constant. Thus, D is a d-ring.

It is interesting to give for δ-rings a proposition similar to Proposition 3.
For that, we make an additional assumption on D. Let us recall:

Definition 10. The ring D is a FFD (finite factorization domain) if
every non-zero element of D has only a finite number of non-associate divi-
sors.

Thus, Krull domains are FFD (see [1]) and in particular, Dedekind do-
mains are FFD. More generally, every Noetherian domain with finite residue
fields is a FFD. It is the case of orders of number fields.

Proposition 11. Suppose D is a FFD. Then D is a δ-ring if and only

if , for every infinite subset E of D, all polynomials f ∈ F [X] such that

f(E) ⊆ U(D) are monomials.

Proof. The necessity results from Remark 8(4). Conversely, suppose
that, for every infinite subset E ⊆ D and for every f ∈ F [X], f(E) ⊆ U(D)
implies that f is a monomial. Fix an infinite subset E of D and a non-zero
rational function ϕ ∈ IntR(E,D). Write ϕ(X) = g/f with f, g ∈ D[X] rel-
atively prime in F [X]. By Bézout, there exist u, v ∈ D[X] and a non-zero
d ∈ D such that uf + vg = d. Since f(x) divides g(x) for every x ∈ E,
f(x) divides d for every x ∈ E. Since d has only finitely many non-associate
divisors, there exists an infinite subset E0 ⊆ E such that the ideals (f(x))
and (f(y)) are equal for all x, y ∈ E0. Fix x0 ∈ E0 and let λ = f(x0). Then
f0(X) = (1/λ)f(X) is such that f0(E0) ⊆ U(D). Thus, f0 is a monomial
and ϕ admits at most one pole.

Corollary 12. When D is a FFD, the following assertions are equiv-

alent :

(1) D is δ-ring.

(2) For every f ∈ F [X] which is not a monomial and every infinite

subset E of D, there exists x ∈ E such that f(x) 6∈ U(D).
(3) For every infinite subset E of D and for every f ∈ F [X], if (f(x)) =

(f(y)) for all x, y ∈ E, then f is a monomial.
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Proposition 13. Let D be a FFD with a finite group of units, E be

an infinite subset of D and ϕ ∈ IntR(E,D). Then ϕ is a polynomial. In

particular , D is a δ-ring.

Proof. Let ϕ(X) = g(X)/f(X) with f, g ∈ F [X] relatively prime in
F [X]. By Bézout, there exist d ∈ D and u, v ∈ D[X] such that uf + vg = d.
Since f(x) divides g(x) for every x ∈ E, f(x) divides d for every x ∈ E.
Since D is a FFD and U(D) is finite, the set of divisors of d in D is finite.
Hence, f is a constant.

Proposition 14. Assume that D is a δ-ring and let E be a fixed infinite

subset of D. Then the elements of the group of units

U(IntR(E,D)) = {ϕ ∈ F (X) | ϕ(E) ⊆ U(D)}

are of the form

uϕ0(X)k where u ∈ U(D), k ∈ Z and ϕ0(X) = λ0(X − e)n0 .

Proof. Let ϕ ∈ U(IntR(E,D)). Then ϕ, 1/ϕ ∈ IntR(E,D) imply that
ϕ(X) = λ(X − e)n where e ∈ F and n ∈ Z. Let n0 be the least positive
integer for which there exist λ0 ∈ F such that ϕ0(X) = λ0(X − e)n0 ∈
U(IntR(E,D)). Let n = kn0 + r with 0 ≤ r < n0. Then ϕ(X) = (ϕ0(X))k ·
λ−k0 λ(X − e)r. Consequently, λ−k0 λ(X − e)r ∈ U(IntR(E,D)), and hence,

r = 0 and λ−k0 λ ∈ U(D).

Proposition 15. Let D be an integrally closed δ-ring and let E be an

infinite subset of D. If there exists f ∈ F [X] of degree ≥ 1 such that f(E) ⊆
U(D), then there exists a polynomial h ∈ F [X] of degree one such that

E ⊆ h(U(D)) and f(h(x)) ∈ U(D) for every x ∈ U(D).

Proof. If f(E) ⊆ U(D), then f(X) = λ(X − e)n with λ, e ∈ F and
n ∈ N, n 6= 0. Write e = α/β where α, β ∈ D. Let x0 ∈ E. For all x ∈ E,
one has

(

βx− α

βx0 − α

)n

∈ U(D).

In particular, since D is integrally closed, (βx− α)/(βx0 − α) ∈ U(D).
Thus, for every x ∈ E, there exists u ∈ U(D) such that βx−α = u(βx0−α)
and x = u(x0 − α/β) + α/β. Let h(X) = (x0 − α/β)X + α/β; on the one
hand E ⊆ h(U(D)), on the other hand f(h(U(D))) ⊆ U(D).

3. Rings of integers of number fields. Let K be a number field
with ring of integers OK . Denote by Max(OK) the set of ideals of OK . Let
S = {M1, . . . ,Ms} be a finite subset of Max(OK) with cardinality s. Denote
by OK,S the set formed by the S-units of K, that is,

OK,S = {x ∈ K | vM(x) ≥ 0 ∀M 6∈ S},
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and by UK,S the group of units of OK,S , that is,

UK,S = {x ∈ K | vM(x) = 0 ∀M 6∈ S}.

Then OK,S is a Dedekind domain. Let us recall the following result of
Evertse [6]:

Theorem 16. Let K be a number field of degree n. Let S={M1, . . . ,Ms}
be a finite subset of Max(OK) with cardinality s and let a and b be two

non-zero elements of K. Then the number of solutions (x, y) ∈ U2
K,S of the

equation ax+ by = 1 is less than N(n, s) = 3.7n+2s.

As a consequence, we have:

Theorem 17. Let K be a number field of degree n. Let S={M1, . . . ,Ms}
be a finite subset of Max(OK). Then, for every f ∈ OK,S [X] of degree r
and leading coefficient a, there exists N = N(n, s, r, a) such that , for every

E ⊆ OK,S of cardinality > N , f(E) ⊆ UK,S implies that f is a monomial

of K[X], that is, f(X) = a(X − e)r with e ∈ K.

Proof. Let f = arX
r + · · ·+ a1X + a0 ∈ OK,S [X]. Let L be the spliting

field of f over K and let T be the set of maximal ideals of OL either lying
over a maximal ideal of S, or containing ar. Then we can write f(X) =
ar(X −α1) · · · (X −αr) with α1, . . . , αr ∈ OL,T . Let E ⊆ OK,S be such that
f(E) ⊆ UK,S . For every x ∈ E, one has f(x) = ar(x − α1) · · · (x − αr) ∈
UK,S ⊆ UL,T . Therefore, x− αi ∈ UL,T for i = 1, . . . , r. Suppose that there
exist 1 ≤ i < j ≤ r such that αi 6= αj . Then for every x ∈ E the element
(αi − x, x−αj) of U2

L,T is a solution of the equation bx1 + bx2 = 1 with b =
1/(αi − αj) ∈ L. Therefore, there exist at least card(E) solutions. However,
according to Theorem 16, this number is less than N(m, t) = 3.7m+2t where
m = [L : Q] and t is the cardinality of T . Thus, if card(E) > N(m, t), then
α1 = · · · = αr and f is of the form ar(X − e)r.

Note that m and t only depend on n, s, r and a: m = [L : Q] ≤ nr! and
t ≤ (s+s′)r! where s′ is the number of maximal ideals of OK,S containing a.

Corollary 18. For every number field K and every finite set S of

maximal ideals of OK , OK,S is a δ-ring.

Proof. Let f ∈ K[X] and let E be an infinite subset of OK,S such that
f(E) ⊆ UK,S . Let d ∈ OK be such that df ∈ OK [X] and let S1 be the
finite set of maximal ideals of OK containing d. Let S2 = S ∪ S1; then
f ∈ OK,S2

[X]. Theorem 17 shows that f is a monomial of K[X] and thus
OK,S is a δ-ring according to Proposition 11.

Remark 19. Let S and T be two finite subsets of Max(OK). Let E be
an infinite subset of K such that E ⊆ OK,S and E ⊆ OK,T . Let ϕ, ψ ∈ K(X)
be such that ϕ(E) ⊆ UK,S and ψ(E) ⊆ UK,T . Then (ϕ.ψ)(E) ⊆ OK,S∪T .
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Thus ϕ and ψ have the same pole. In other words, the pole of all the rational
functions ϕ ∈ K(X) such ϕ(E) ⊆ UK,S does not depend on S.

We also have

Theorem 20. Let K be a number field , S be a finite subset of Max(OK)
of cardinality s, and ϕ ∈ K(X). Then there exists M = M(ϕ, s) such that ,
for every subset E ⊆ OK,S , if card(E) > M and ϕ(E) ⊆ OK,S , then ϕ has

at most one pole (in an algebraic closure of K).

Proof. Let ϕ(x) = g(x)/f(x) where f and g are relatively prime inK[X].
By Bézout, there exist d ∈ OK and u, v ∈ OK [X] such that uf + vg = d.
Let E ⊆ OK,S be such that ϕ(E) ⊆ OK,S . Then, for all x ∈ E, f(x)
divides d. Let m be the number of non-associated divisors of d in OK . Let
f(X) = arX

r+ · · ·+a1X+a0 and n = [K : Q]. If card(E) > mN(n, s, r, ar),
then there exist a divisor d0 of d in OK,S and a subset E0 ⊆ E of cardinality
≥ N(n, s, r, ar) such that f(x)/d0 ∈ UK,S for every x ∈ E0. According to
Theorem 17, ϕ has at most one pole (in an algebraic closure of K).

Remarks 21. Let K be a number field and let Q ⊆ C be the algebraic
closure of Q.

(1) Let ϕ(X) = g(X)/f(X) ∈ Q(X) with f and g relatively prime in
Q[X]. Proposition X.1.4 of [4] shows that, if E is an infinite subset
of OK,S such that ϕ(E) ⊆ OK,S , then ϕ ∈ K(X). In fact, this
assertion remains true for every finite subset E of OK,S such that
card(E) > deg f + deg g.

(2) Let ϕ ∈ K(X) be a rational function such that 0 is not a unique
pole of ϕ. Let E be a subset of OK , M ∈ N and E(M) = {z ∈ E :
|NK/Q(z)| ≤ M}. Theorem 3 of [5] shows that there are two con-
stants M0 > 0 and κ > 0 depending on ϕ such that, if M > M0 and
card(E(M)) > κ log(M)r1+r2−1, then ϕ(E) ⊆ OK implies ϕ ∈ K[X],
where r1 and r2 denote the numbers of real and complex isomor-
phisms of K into C. Note that, unlike Theorem 20, this theorem
does not allow to affirm that ϕ ∈ K[X] as soon as ϕ(E) ⊆ OK for
some infinite subset E.

4. Application to the preservation of factorial sequences. The
notion of generalized factorial was recalled in the introduction:

(n!)DE = {y ∈ D | yf ∈ D[X] ∀f ∈ Int(E,D), deg f = n}.

When the ring D is Noetherian, this notion behaves well under localization
[4]: For every maximal ideal M of D, one has Int(E,D)M = Int(E,DM), so
that

(n!)DM

E = (n!)DEDM
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and consequently,

(n!)DE =
⋂

M∈Max(D)

(n!)DM

E .

When D is a Dedekind domain, one is thus led to the case of a discrete
valuation domain. Let us recall Bhargava’s definition [2]:

Let V be the ring of a discrete valuation v and E be a non-empty subset
of V . A sequence (an)n≥0 of elements of E is a v-ordering of E if, for all
0 ≤ n ≤ N , one has

v
(

n−1
∏

k=0

(an − ak)
)

= inf
x∈E

v
(

n−1
∏

k=0

(x− ak)
)

.

It is easy to see that v(
∏n−1
k=0(an−ak)) does not depend on the sequence

(an)n≥0 because of the equality

(n!)VE =
n−1
∏

k=0

(an − ak)V.

Using v-orderings, we showed in [7] that, if E is an infinite subset of a
Dedekind domain D with finite residue fields and a finite unit group, then
for all f ∈ Int(E,D) the equalities (n!)DE = (n!)Df(E) for all n ∈ N imply that

f is of degree 1. Such a result, in the case of number fields, applies only to
Q and the imaginary quadratic fields. Here, we are going to extend it on the
one hand to the rings of integers of any number field, on the other hand to
rational functions instead of polynomials. Recall first the following result of
[7]:

Proposition 22. Let V be the ring of a discrete valuation v, E be a

precompact subset of V and ϕ : E → V a contracting map (∀x, y ∈ E,
v(ϕ(x) − ϕ(y)) ≥ v(x− y)). The following assertions are equivalent :

(1) (n!)VE = (n!)Vϕ(E) for all n ∈ N.

(2) ϕ is an isometry of E onto ϕ(E).

Thus, for a polynomial f ∈ V [X], the equalities (n!)VE = (n!)Vf(E) for all

n ∈ N are characterized by v(f(x) − f(y)) = v(x− y) for all x, y ∈ E.

From now on, we assume that K is a number field. Let E be an infinite
subset of OK and ϕ ∈ IntR(E,OK). Using Theorem 20, we will show that,
if E and ϕ(E) have the same factorial sequence, then ϕ is a homographic
function. We start with the case of polynomials.

Proposition 23. Let K be a number field , E be an infinite subset of

OK and f ∈ Int(E,OK). If ((n!)OK

E )M = (n!)
OK,M

f(E) for all n ∈ N and all

maximal ideals M of OK but a finite number , then f is of degree 1.
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Proof. For every maximal ideal M of OK , denote by vM the correspond-
ing valuation of K. Assume that (n!OK

E )M = (n!)
oK,M

f(E) for all n ∈ N and all

M 6∈ {M1, . . . ,Mr}. Let d ∈ OK be such that df ∈ OK [X]. Let S1 be the
set of maximal ideals of OK containing d and let S = S1 ∪ {M1, . . . ,Mr}.
According to Proposition 22, one has vM(f(x) − f(y)) = vM(x − y) for all
x, y ∈ E and all M 6∈ S. Let df(X) − df(Y ) = (X − Y )h(X,Y ). Then
vM(h(x, y)) = 0 for all x, y ∈ E with x 6= y and all M 6∈ S.

Let a ∈ E. Then h(x, a) is a unit of OK,S for every x ∈ E distinct from a.
Since OK,S is a δ-ring, there exist e independent of a (Remarks 8) and λ ∈ K
such that h(X, a) = λ(X−e)n. In particular, f(X)−f(a) = λ(X−a)(X−e)n

where n + 1 is the degree of f . If n 6= 0, then f(a) = f(e) for every a ∈ E
and f would be a constant. Thus, n = 0 and deg f = 1.

Corollary 24. Let K be a number field , E be an infinite subset of

OK and f ∈ Int(E,OK). The subsets E and f(E) have the same factorial

sequence if and only if f(X) = uX + b where u ∈ UK and b ∈ OK .

Proof. If E and f(E) have the same factorial sequence, then the preced-

ing proposition implies f(X) = uX+b. Since (n!)OK

f(E) = un(n!)OK

E for n ∈ N,

we have u ∈ UK . Finally, for x ∈ E, one has ux ∈ OK and ux + b ∈ OK ;
consequently, b ∈ OK .

The converse is obvious.

Corollary 25. Let K be a number field , E be an infinite subset of OK
and f ∈ Int(E,OK). If Int(E,OK) = Int(f(E), OK), then f(X) = uX + b
where u ∈ UK and b ∈ OK .

Proposition 26. Let K be a number field , E be an infinite subset of

OK and ϕ ∈ IntR(E,OK). If ((n!)OK

E )M = ((n!)OK

ϕ(E))M for all n ∈ N and

all maximal ideals M of OK but a finite number , then

ϕ =
aX + b

cX + d
where ad− bc 6= 0.

Proof. Write ϕ(X) = g(X)/f(X) where f and g are polynomials of
OK [X] relatively prime in K[X]. As OK is a δ-ring, ϕ admits at most one
pole. Thus, f(X) = λ(X − e)n where λ, e ∈ K and n = deg f . If n = 0,
Proposition 23 allows us to conclude. Assume now that n > 0. By Bézout,
there exist d ∈ OK and u, v ∈ OK [X] such that uf + vg = d. Let S1 be the

set of all maximal ideals M of OK such that ((n!)OK

E )M = ((n!)OK

ϕ(E))M and

let S2 be the set of all maximal ideals M containing d. Let S = S1 ∪ S2.

For x ∈ E, f(x) divides g(x), therefore f(x) divides d. Consequently, for
x ∈ E and M 6∈ S2, vM(f(x)) = 0. Thus for x, y ∈ E and M 6∈ S2,

vM(ϕ(x) − ϕ(y)) = vM(g(x)f(y)− f(x)g(y)) ≥ vM(x− y).
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According to Proposition 22, for all M 6∈ S and all x, y ∈ E, x 6= y, one
has

vM(g(x)f(y)− f(x)g(y)) = vM(x− y).

Write g(X)f(Y )−f(X)g(Y ) = (X−Y )h(X,Y ) where h(X,Y ) ∈ OK [X,Y ].
Fix y ∈ E \ {e}. Then, for all M 6∈ S and every x ∈ E \ {y}, one has
vM(h(x, y)) = 0. Since OK,S is a δ-ring (Corollary 18), one has h(X, y) =

µ(X − e)m where µ ∈ K and m ∈ N. Then (X − e)inf(n,m) divides f(X)
and g(X). Consequently, m = 0 since n > 0, in other words g(X)f(y) −
f(X)g(y) = µ(X − y). This equality implies deg f ≤ 1 and deg g ≤ 1.
Indeed, let g(X) = q(X)f(X) + r(X) where deg r < deg f ; then

(q(X)f(y) − g(y))f(X) + f(y)r(X) = µ(X − y)

shows that deg f ≤ 1.
Thus, ϕ(X) = (aX + b)/(cX + d) where ad − bc 6= 0 because ϕ cannot

be constant.

Corollary 27. Let E be an infinite subset of OK and ϕ ∈ IntR(E,OK).
If Int(ϕ(E), OK) = Int(E,OK), then ϕ(X) = (aX + b)/(cX + d) where

ad− bc 6= 0.

One may omit the condition E ⊆ OK of the previous proposition by
considering more general fractional subsets of K. Recall that a subset E of
K is fractional if there exists a non-zero element d ∈ OK such that dE ⊆ OK .
Let E be such a subset of K. For every f ∈ K[X], f ∈ Int(E,OK) if and
only if f(X/d) ∈ Int(dE,OK). Thus, we have the formulas

(n!)OK

dE = dn(n!)OK

E and (n!)OK

E+ν = (n!)OK

E

for every d ∈ K∗ and ν ∈ K.
It is known that a subset E ofK is not fractional if and only if Int(E,OK)

= OK , and hence, (n!)OK

E = OK for every n ≥ 1. Moreover, a subset E is

of cardinality less than n ∈ N if and only if (n)!OK

E = (0). Consequently, we
have:

Lemma 28. For every infinite fractional subset E of K and every ϕ ∈
K(X) without any pole in E, if (n!)OK

ϕ(E) = (n!)OK

E for every n ∈ N, then

ϕ(E) is also an infinite fractional subset of K.

Theorem 29. Let K be a number field , E be an infinite fractional subset

of K and ϕ ∈ K(X). If (n!)OK

E = (n!)OK

ϕ(E) for all n ∈ N, then ϕ(X) =

(aX + b)/(cX + d) with ad− bc 6= 0.

Proof. Let δ ∈ OK be such that δE = E′ ⊆ OK and δϕ(E) ⊆ OK .

Since (n!)OK

E = (n!)OK

ϕ(E) for all n ∈ N, we have (n!)OK

E′ = (n!)OK

ψ(E′) for all

n ∈ N where ψ(X) = δϕ(X/δ). According to Proposition 26, ψ and ϕ are
homographic functions.
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Remark 30. LetK be a number field and let ϕ(X)=(aX + b)/(cX + d)
∈ K(X) with ad− bc 6= 0. Conversely, one may wish to know whether there

exists an infinite fractional subset E such that (n!)OK

E = (n!)OK

ϕ(E)
. There are

two distinct cases:

(1) If c = 0, then ϕ is a polynomial and the answer is affirmative if and
only if a is an element of UK (Corollary 24). In this case, we have

(n!)OK

E = (n!)OK

ϕ(E) for every infinite fractional subset E of K.

(2) If c 6= 0, again one distinguishes two cases:

(a) The unit group UK of OK is finite. It follows from Proposition
13 that the answer is negative.

(b) The unit group UK of OK is infinite. Let λ be a non-zero element
of K, E(λ) = UK ∪ λUK and ψ(X) = λ/X. Then E(λ) is an in-
finite fractional subset of K and ψ(E(λ)) = E(λ). In particular,
ψ preserves the factorial sequence of the infinite fractional sub-
set E(λ). Now write

ϕ(X) =
bc− ad

c2
1

X + d/c
+
a

c
.

Then ϕ(X) = f2 ◦ ϕ1 ◦ f1(X) where f1(X) = X + d/c,

ϕ1(X) = λ/X with λ =
bc− ad

c2
1

X

and f2(X) = X + a/c. Let E = E(λ) − d/c. Then ϕ preserves
the factorial sequence of the infinite fractional subset E because
ϕ(E) = E(λ) + a/c and the translation obviously preserves the
factorial sequence.The answer is then affirmative.

It would be interesting to characterize all the infinite fractional subsets of K
whose factorial sequence is preserved by a given ϕ(X) = (aX + b)/(cX + d)
∈ K(X) with ad− bc 6= 0 and c 6= 0.

We end with a proposition without proof because the previous proofs
may be easily extended to the following case:

Proposition 31. Let D be a Dedekind domain with quotient field F
and with finite residue fields. If , for every finite set S of maximal ideals of

D, DS = {x ∈ F | vM(x) = 0 ∀M 6∈ S} is a δ-ring , then Theorem 29 still

holds with F and D instead of K and OK .
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