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1. Introduction and statement of result. Recently there have been
several works on sign changes of Fourier coefficients and Hecke eigenvalues
of elliptic cusp forms (cf. e.g. [4, 8, 10, 12, 13]).

Notably in [8] it was shown that if f is a normalized Hecke eigenform of
integral weight k£ > 2 and level N € N, and A(n) (n € N) denote its Hecke
eigenvalues, then there exists n € N with

n< (kQN)29/6O

such that A(n) < 0. Here the constant implied in < is absolute and effectively
computable. The proof uses convexity estimates for the Hecke L-function of
f and exploits the Hecke relations satisfied by the A(n).

Let Sk(I%) be the space of Siegel cusp forms of integral weight k& on the
group I := Spy(Z) C GL4(Z) and let F' be a non-zero eigenfunction of all
the Hecke operators T'(n) (n € N) (cf. e.g. [2, 7] for details). Denote by A(n)
(n € N) the corresponding eigenvalues.

If k is even and F' is contained in the Maass subspace S} (I32) C Sk(I3)
(cf. e.g. [5]), it was proved in [3] that A(n) > O for all n. On the other
hand, if either k£ is odd, or k is even and F' is in the orthogonal complement
of S;(I3), then under the validity of the Ramanujan-Petersson conjecture
for F' (a proof of which was announced in [15]) it was recently shown in [11]
that the sequence (A(n))nen indeed changes sign infinitely often.

In the present paper we shall prove

THEOREM. Let F' be a non-zero Siegel-Hecke eigenform in Si(I%) and
suppose that either k is odd, or k is even and F' is in the orthogonal comple-
ment of Si(I%). Assume that F' satisfies the Ramanujan—Petersson conjec-
ture (cf. Sect. 2). Denote by A\(n) (n € N) the eigenvalues of F. Then there
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exists n € N with
n < k*log?" k

such that \(n) < 0. Here the constant implied in < is absolute and effectively
computable.

We note that the first case where a form F' as above exists is k = 35 if k
is odd and k£ = 20 if k is even.

The proof of the Theorem follows a similar pattern to that in [8], with
the Hecke L-function replaced by the spinor zeta function. However, since
the Hecke relations for A\(n) are more involved in genus 2 than in the elliptic
case, exploiting them naturally turns out to be more difficult.

Notations. If in an estimate we write <, it is always understood that
the implied constant is absolute.

2. Preliminaries on Siegel modular forms. For basic facts on Siegel
modular forms we refer to [2, 7, 9]. For n € N there is a Hecke operator T'(n)
on Si(I%) given by

(2.1) FITn)= Y Fhy

vYeIL\O2 pn
where O3 ), is the set of integral symplectic similitudes of size 4 and scale n
and

(F|x7)(Z) := (dety)*? det(CZ + D) *F((AZ + B)(CZ + D)™ 1)

for

A B
v = (C D> ,  Z € Hg = Siegel upper half space of genus 2.

Note that our choice of normalization in (2.1) differs from the usual one by
the scalar factor n*=3/2,

The space Sk(I%2) has a basis consisting of common eigenfunctions of all
the T'(n). The Maass subspace S} (I%) (k even) is invariant under all Hecke
operators.

Let F' be a non-zero eigenfunction of all T'(n), with F|T'(n) = A(n)F.
Then A(n) is real for all n.

One has

1

(2.2) ;A(n)n—s = @D Zr(s)  (0:=RN(s)>1)

where Z(s) is the spinor zeta function of F, i.e.

(2.3) Zr(s) = [[ Zep0™)™ (0>1)
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with
(2-4) ZF,p(X)
= (1 — appX)(1 — agpa1pX)(1 — aopazpX) (1 — agparpaspX)
and where gy, a1 p, a2 are “the” Satake p-parameters attached to F'. For
details we refer to [1].
Note that due to our normalization one has
(2.5) a(2)7pa17pa27p =1.

Indeed, in comparison to the “classical” normalization we have replaced the
variable s by s+ k — 3/2.
The function

Zi(s) = (20) (s + k — 3/2) (s + 1/2) Zp(s)

has meromorphic continuation to C and is (—1)*-invariant under s — 1 — s
(see [1]). It is entire if and only if either & is odd, or k is even and F' is in
the orthogonal complement of S} (I%) 6, 14].

In the latter case the Ramanujan—Petersson conjecture says that

(2.6) |1p = lazp| =1 (vp)
(a proof was announced in [15]). By (2.5) we then also have
(2.7) lagpl =1 (Vp).

3. Convexity estimates. Let F' € Si(I3) be a non-zero Hecke eigen-
form with normalized eigenvalues A(n) (n € N). We assume that either k is
odd, or k is even and F' is not contained in S} (I%). We also assume (2.6).

The purpose of this section is to derive estimates uniform with respect
to k for Zp(s) on lines s = 6 + it (t € R) where 0 < § < 1/2. The arguments
will be analogous to those given in Sect. 3 of [12] and therefore we will be
brief.

Let us write

Zp(s) = Za(n)n_s (c>1).

n>1
Then from (2.3), (2.4), (2.6) and (2.7) we obtain
a(n)] < da(n) (n=>1)

where d4(n) is the nth coefficient of (*(s). Since ¢*(s) has a pole at s = 1 of
order 4, a standard Tauberian argument gives

(3.1) Z la(n)| < zlogdz  (xg > 1).

ro<n<lz
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Using integration by parts for Stieltjes integrals we deduce from (3.1) in
a similar way to [12] that

(3.2) \Ze(e+it)| < 1+ ﬁ

whenever ¢ > 1.

Next by the functional equation of Z5.(s) we get
I'(s+k—3/2)[(s+1/2)

— — — | 12r(s)l.
I'(—s+k—-1/2)I'(3/2 - s)
Putting s = c+it and observing that |I'(z)| = |I'(Z)|, we in particular obtain
I'k—=3/2+c+it)['(c+1/2+it)
T(k—1/2 — c+it)[(3/2 — sc + it)
We estimate the quotients of I'-factors in the same way as in [12] to deduce
that

1Zp(1 - 5)] = (2m)2

| Zp(1—c—it)| = (2m)?74¢

'-\Zp(cﬂ‘t)y.

1Zp(1 — ¢ —it)] < |k — 1+ 20|71 +it|* 7Y Zp(c + it)),

hence
(3.3) | Zp(1 — ¢ —it)] < k271 +it|* 72| Zp(c + it)).
Now put
1
=1 .
¢ + 2logk

Then from (3.2) we infer that

1
Zp( 1+ — +it
F<+210gk+z>

and therefore combining with (3.3) it follows that

(3.4) < loghk

(3.5)

1
Zp| ———— +it || < kloghk - |1 + it|>T2/losk,
2logk
Let us now recall the following “strong convexity” principle, due to Rade-
macher (cf. e.g. [12, Sect. 3]).

LEMMA 1. Suppose that g(s) is continuous on the closed strip a < o <b
and holomorphic and of finite order on a < o < b. Furthermore suppose that

lg(a+it)| < E|P +a+dt|*, |g(b+it)] < F|P +b+it|]’.
Here E and F' are positive constants and P, o and (8 are real constants that
satisfy
P4+a>0, a>p.
Then for all a < o < b we have
l9(s)| < (B|P + 5|™) 0=/ =) (P|P 4 %) (o) (=),
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We apply Lemma 1 to Zp(s) with
1

1
- _ b=P=1+——— E==Fklog*k., F =1log*k
“ 2log k’ +210g;l<:7 o8 o8

1
@ ( * logk)’ p=0
and s = 4 it where 0 < 6 < 1/2. From (3.4) and (3.5) we then obtain easily

PROPOSITION 1. Let F' € Si(I%2) be a non-zero Hecke eigenform with
normalized eigenvalues A\(n) (n € N). Assume that either k is odd, or k is
even and F ¢ S} (I3). Let 0 < 0 < 1/2. Then for all t € R one has
2+4+1/log k—26

1
(3.6) |Zp(6 4 it)| < K10 logh k- ‘1 + ok + 6+t

4. An upper bound for sums of eigenvalues. We shall prove

PROPOSITION 2. Let F' € Si([%2) be a non-zero Hecke eigenform with

normalized eigenvalues A(n) (n € N). Assume that either k is odd, or k is
even and F' ¢ S} (I3). Also suppose that (2.6) holds. Then

Z A(n) log? <£> < klog®k - z?/3lgk
n<x n
Proof. By Perron’s formula and (2.2) we have
2+i0c0
2 1 T
; ©8 < > omi 2_81,00 s 11) F) G ds

(cf. |12, Sect. 5]).

Let @ < § < 1/2. We shift the line of integration to the line o = §
and recall the well-known estimate (say)

1

— | < b6
o] <70
valid (uniformly) for o > 1, where

1 if [¢] < 10,

B(t) = .

log |t| if |t| > 10.

Applying (3.6) we then obtain in a standard way

(41) > A(n)log? ()

n<z 0o ‘1+ 1 +6+it‘2+l/logk—26
_ 2log k
<ot § LB

— 00

dt - 0.
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Note that the integral on the right-hand side of (4.1) is absolutely convergent
since 2 + 1/log k — 2§ < 2 by hypothesis.

We have to estimate this integral from above uniformly in k. Replacing
t by —t, it is sufficient to get an upper bound on

. —25
0o ‘1_'_211 k+5+2t‘2+1/10gk 2
(4.2) Iis == S B(t) = |6 + it[3 dt.
0

Note that for 0 < B < A one has

A

|A +it| < 5 |B +it|] (VteR).
Applying this with
1
A=14+4——+90, B:=6
+ 2log k +9

we see that the integrand in (4.2) is bounded from above by

Ck,&ﬁ(t”(s + it|_1+1/10gk_26

14 1 2+1/log k—28
Chs = (1 ; —> |

where

]

We split up I s into an integral from 0 to 10 and an integral from 10
to oco. The first integral is clearly bounded by

< Ck 65—1+1/10g kJ—Q(S'

The second integral is bounded by

00 2
1
< Cps | logt - 71 108k=20 gt « Oy 5 ———— ),
b 9 26 41
10 log k
where the last estimate follows by partial integration.

We now choose
2

0= gk

We then obtain
Is < log?k - (logk +log? k) < log* k.

Also k' 7% < k (in fact k'~ is of the same order of magnitude as k).
Thus from (4.1) we obtain our assertion.

5. A lower bound for sums of eigenvalues

PROPOSITION 3. Let F' € Si(I%2) be a non-zero Hecke eigenform and
assume that either k is odd, or k is even and F' & S} (I%2). Suppose that (2.6)
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holds. Let A(n) (n € N) be the normalized eigenvalues of F' and suppose that
A(n) >0 for1 <n <z Then

> An log<)>>L;E (z > 1).

n<x

Proof. Clearly

3 A(n) log? (%) > 3 An),

n<z n<z/2

hence it suffices to show that

(5.1) D An) > */25 (x> 1).

log“ x

n<x

By [1], for each prime p the local spinor polynomial Zg,(X) given by (2.4)
is equal to

Zpp(X) = 1= Ap)X + (A(p)> = A(p?) = 1/p)X* = M(p)X® + X*,
hence by (2.2) we have
1X2

(5.2) Z Ap

ZFp

Clearly (5.2) is equivalent to saying that
(5.3) A" = AP = (A@)? = AP?) = 1/p)AP"?)
+APAP" ) = A"

for all n > 0, with the convention that A(p™) = 0 for n < 0.
Note that (2.4), (2.6), (2.7) and (5.2) imply that

(5.4) @)L, AP IAE)] < 1.
To prove (5.1), bearing in mind that A(n) > 0 for n < x, let us write
(5.5) DA = D APPA) + D AP+ D Apg)
n<e Pg< VT Pg< VT Pg< VT

where on the right-hand side p and ¢ run over primes.
Taking n =4 in (5.3) we obtain

(5.6) A" = AW*)? + AR)AP®) + AP*) (=A(D)* + 1/p) + A(p)* —
Similarly, for n = 3 we find that
(5.7) A®%) = Ap) A7) + 1+ 1/p = A(p)?).
From (5.6), observing (5.4) we see that
A@") > Ap?)? —a
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where ¢; > 0 is an absolute constant. Thus
2
(5.8) > AP > ( > A(1)2)) — e (Va)
pg< Yz p< Yz

where as usual 7(z) (x > 1) denotes the number of primes p < x.
Next, from (5.7) taking into account (5.4) we see that

AP®) > Mp)A(P®) — 2
where ¢y > 0 is an absolute constant. Hence
(5.9 > A > (X A)) (X M) - en(Va).
Pa< Yz p<Vz p<Vaz
We finally look at the sum
> Apa)
PV

n (5.5). For p < ¥/ the quantities A\(p®), A(p?) and \(p) are non-negative,
hence we deduce from (5.7) for such p that

A(p®) > Mp)® - e3
where c3 > 0 is an absolute constant. Therefore as before
2
(5.10) > w0 > (D M) - (V).
pa<Vz p< ¥z
Combining (5.8), (5.9) and (5.10) we infer from (5.5) that
(5.11) Sam > (3 AH+ D A ) — en(¥7)
n<x p< ¥z p<Vz

where ¢ > 0 is an absolute constant.

We now claim that A(p?) and A(p) cannot be simultaneously small for
p < Y. Indeed, otherwise A(p®) would also be small, by (5.7), and then
(5.6) would give a contradiction since A(p*) > 0 by hypothesis. Thus there
exists an absolute constant o > 0 such that

AP +Ap) = (p< Vo).
From (5.11) we now conclude using the prime number theorem that

S A > Yy

n<x log X

as claimed.
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6. Proof of Theorem. Assuming that A(n) > 0 for n < x, we infer
from Propositions 2 and 3 that
(6.1) Lzz < klogdk - x?/3lek (5> 1).
log” x
Clearly for x large this is a contradiction.
To get an explicit bound, quoting the more general Lemma 4 in [4] we
see that (6.1) implies that

ANY° A
(6.2) T < <5_2> log?/® <§>

where ) 5
A:=klog®k, &:=_-— :

o8 2 3logk
We have

L, 8

5 3loghk — 4’
Hence

A1/5 — (k lOgS k)2+8/(310gk—4) < 2 loglﬁ k

and

A
log2/6 (ﬁ) < logQ/‘s A < log* k.

Thus (6.2) implies that
z < k%log? k.

Therefore we obtain the assertion of the Theorem.
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