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The �rst negative He
ke eigenvalue of a Siegel 
uspform of genus twoby
Winfried Kohnen (Heidelberg) and Jyoti Sengupta (Mumbai)
1. Introdu
tion and statement of result. Re
ently there have beenseveral works on sign 
hanges of Fourier 
oe�
ients and He
ke eigenvaluesof ellipti
 
usp forms (
f. e.g. [4, 8, 10, 12, 13℄).Notably in [8℄ it was shown that if f is a normalized He
ke eigenform ofintegral weight k ≥ 2 and level N ∈ N, and λ(n) (n ∈ N) denote its He
keeigenvalues, then there exists n ∈ N with

n ≪ (k2N)29/60su
h that λ(n) < 0. Here the 
onstant implied in≪ is absolute and e�e
tively
omputable. The proof uses 
onvexity estimates for the He
ke L-fun
tion of
f and exploits the He
ke relations satis�ed by the λ(n).Let Sk(Γ2) be the spa
e of Siegel 
usp forms of integral weight k on thegroup Γ2 := Sp2(Z) ⊂ GL4(Z) and let F be a non-zero eigenfun
tion of allthe He
ke operators T (n) (n ∈ N) (
f. e.g. [2, 7℄ for details). Denote by λ(n)
(n ∈ N) the 
orresponding eigenvalues.If k is even and F is 
ontained in the Maass subspa
e S∗

k(Γ2) ⊂ Sk(Γ2)(
f. e.g. [5℄), it was proved in [3℄ that λ(n) > 0 for all n. On the otherhand, if either k is odd, or k is even and F is in the orthogonal 
omplementof S∗
k(Γ2), then under the validity of the Ramanujan�Petersson 
onje
turefor F (a proof of whi
h was announ
ed in [15℄) it was re
ently shown in [11℄that the sequen
e (λ(n))n∈N indeed 
hanges sign in�nitely often.In the present paper we shall prove
Theorem. Let F be a non-zero Siegel�He
ke eigenform in Sk(Γ2) andsuppose that either k is odd, or k is even and F is in the orthogonal 
omple-ment of S∗

k(Γ2). Assume that F satis�es the Ramanujan�Petersson 
onje
-ture (
f. Se
t. 2). Denote by λ(n) (n ∈ N) the eigenvalues of F . Then there2000 Mathemati
s Subje
t Classi�
ation: Primary 11F46.Key words and phrases: Siegel modular form, He
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© Instytut Matematy
zny PAN, 2007



54 W. Kohnen and J. Senguptaexists n ∈ N with
n ≪ k2 log20 ksu
h that λ(n) < 0. Here the 
onstant implied in ≪ is absolute and e�e
tively
omputable.We note that the �rst 
ase where a form F as above exists is k = 35 if kis odd and k = 20 if k is even.The proof of the Theorem follows a similar pattern to that in [8℄, withthe He
ke L-fun
tion repla
ed by the spinor zeta fun
tion. However, sin
ethe He
ke relations for λ(n) are more involved in genus 2 than in the ellipti

ase, exploiting them naturally turns out to be more di�
ult.Notations. If in an estimate we write ≪, it is always understood thatthe implied 
onstant is absolute.2. Preliminaries on Siegel modular forms. For basi
 fa
ts on Siegelmodular forms we refer to [2, 7, 9℄. For n ∈ N there is a He
ke operator T (n)on Sk(Γ2) given by

(2.1) F |T (n) =
∑

γ∈Γ2\O2,n

F |kγwhere O2,n is the set of integral symple
ti
 similitudes of size 4 and s
ale nand
(F |kγ)(Z) := (det γ)k/2 det(CZ + D)−kF ((AZ + B)(CZ + D)−1)for
γ =

(

A B

C D

)

, Z ∈ H2 = Siegel upper half spa
e of genus 2.Note that our 
hoi
e of normalization in (2.1) di�ers from the usual one bythe s
alar fa
tor nk−3/2.The spa
e Sk(Γ2) has a basis 
onsisting of 
ommon eigenfun
tions of allthe T (n). The Maass subspa
e S∗
k(Γ2) (k even) is invariant under all He
keoperators.Let F be a non-zero eigenfun
tion of all T (n), with F |T (n) = λ(n)F .Then λ(n) is real for all n.One has

(2.2)
∑

n≥1

λ(n)n−s =
1

ζ(2s + 1)
ZF (s) (σ := ℜ(s) ≫ 1)where ZF (s) is the spinor zeta fun
tion of F , i.e.

(2.3) ZF (s) =
∏

p

ZF,p(p
−s)−1 (σ ≫ 1)
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ke eigenvalue 55with
(2.4) ZF,p(X)

:= (1 − α0,pX)(1 − α0,pα1,pX)(1 − α0,pα2,pX)(1 − α0,pα1,pα2,pX)and where α0,p, α1,p, α2,p are �the� Satake p-parameters atta
hed to F . Fordetails we refer to [1℄.Note that due to our normalization one has
(2.5) α2

0,pα1,pα2,p = 1.Indeed, in 
omparison to the �
lassi
al� normalization we have repla
ed thevariable s by s + k − 3/2.The fun
tion
Z∗

F (s) := (2π)−sΓ (s + k − 3/2)Γ (s + 1/2)ZF (s)has meromorphi
 
ontinuation to C and is (−1)k-invariant under s 7→ 1 − s(see [1℄). It is entire if and only if either k is odd, or k is even and F is inthe orthogonal 
omplement of S∗
k(Γ2) [6, 14℄.In the latter 
ase the Ramanujan�Petersson 
onje
ture says that

(2.6) |α1,p| = |α2,p| = 1 (∀p)(a proof was announ
ed in [15℄). By (2.5) we then also have
(2.7) |α0,p| = 1 (∀p).3. Convexity estimates. Let F ∈ Sk(Γ2) be a non-zero He
ke eigen-form with normalized eigenvalues λ(n) (n ∈ N). We assume that either k isodd, or k is even and F is not 
ontained in S∗

k(Γ2). We also assume (2.6).The purpose of this se
tion is to derive estimates uniform with respe
tto k for ZF (s) on lines s = δ + it (t ∈ R) where 0 < δ < 1/2. The argumentswill be analogous to those given in Se
t. 3 of [12℄ and therefore we will bebrief.Let us write
ZF (s) =

∑

n≥1

a(n)n−s (σ ≫ 1).

Then from (2.3), (2.4), (2.6) and (2.7) we obtain
|a(n)| ≤ d4(n) (n ≥ 1)where d4(n) is the nth 
oe�
ient of ζ4(s). Sin
e ζ4(s) has a pole at s = 1 oforder 4, a standard Tauberian argument gives

(3.1)
∑

x0≤n≤x

|a(n)| ≪ x log3 x (x0 > 1).



56 W. Kohnen and J. SenguptaUsing integration by parts for Stieltjes integrals we dedu
e from (3.1) ina similar way to [12℄ that
(3.2) |ZF (c + it)| ≪ 1 +

c

(c − 1)4whenever c > 1.Next by the fun
tional equation of Z∗
F (s) we get

|ZF (1 − s)| = (2π)2−4σ

∣

∣

∣

∣

Γ (s + k − 3/2)Γ (s + 1/2)

Γ (−s + k − 1/2)Γ (3/2 − s)

∣

∣

∣

∣

· |ZF (s)|.Putting s = c+it and observing that |Γ (z)| = |Γ (z)|, we in parti
ular obtain
|ZF (1−c−it)| = (2π)2−4c

∣

∣

∣

∣

Γ (k − 3/2 + c + it)Γ (c + 1/2 + it)

Γ (k − 1/2 − c + it)Γ (3/2 − sc + it)

∣

∣

∣

∣

·|ZF (c+it)|.We estimate the quotients of Γ -fa
tors in the same way as in [12℄ to dedu
ethat
|ZF (1 − c − it)| ≪ |k − 1 + 2it|2c−1|1 + it|2c−1|ZF (c + it)|,hen
e

(3.3) |ZF (1 − c − it)| ≪ k2c−1|1 + it|4c−2|ZF (c + it)|.Now put
c := 1 +

1

2 log k
.Then from (3.2) we infer that

(3.4)

∣

∣

∣

∣

ZF

(

1 +
1

2 log k
+ it

)∣

∣

∣

∣

≪ log4 kand therefore 
ombining with (3.3) it follows that
(3.5)

∣

∣

∣

∣

ZF

(

− 1

2 log k
+ it

)∣

∣

∣

∣

≪ k log4 k · |1 + it|2+2/log k.Let us now re
all the following �strong 
onvexity� prin
iple, due to Rade-ma
her (
f. e.g. [12, Se
t. 3℄).Lemma 1. Suppose that g(s) is 
ontinuous on the 
losed strip a ≤ σ ≤ band holomorphi
 and of �nite order on a < σ < b. Furthermore suppose that
|g(a + it)| ≤ E|P + a + it|α, |g(b + it)| ≤ F |P + b + it|β.Here E and F are positive 
onstants and P , α and β are real 
onstants thatsatisfy

P + a > 0, α ≥ β.Then for all a < σ < b we have
|g(s)| ≤ (E|P + s|α)(b−σ)/(b−a)(F |P + s|β)(σ−a)/(b−a).
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ke eigenvalue 57We apply Lemma 1 to ZF (s) with
a = − 1

2 log k
, b = P = 1 +

1

2 log k
, E = k log4 k, F = log4 k,

α = 2

(

1 +
1

log k

)

, β = 0and s = δ+ it where 0 < δ < 1/2. From (3.4) and (3.5) we then obtain easilyProposition 1. Let F ∈ Sk(Γ2) be a non-zero He
ke eigenform withnormalized eigenvalues λ(n) (n ∈ N). Assume that either k is odd , or k iseven and F 6∈ S∗
k(Γ2). Let 0 < δ < 1/2. Then for all t ∈ R one has

(3.6) |ZF (δ + it)| ≪ k1−δ log4 k ·
∣

∣

∣

∣

1 +
1

2 log k
+ δ + it

∣

∣

∣

∣

2+1/log k−2δ

.

4. An upper bound for sums of eigenvalues. We shall proveProposition 2. Let F ∈ Sk(Γ2) be a non-zero He
ke eigenform withnormalized eigenvalues λ(n) (n ∈ N). Assume that either k is odd , or k iseven and F 6∈ S∗
k(Γ2). Also suppose that (2.6) holds. Then
∑

n≤x

λ(n) log2

(

x

n

)

≪ k log8 k · x2/3 log k.

Proof. By Perron's formula and (2.2) we have
∑

n≤x

λ(n) log2

(

x

n

)

=
2

2πi

2+i∞\
2−i∞

1

ζ(2s + 1)
ZF (s)

xs

s3
ds(
f. [12, Se
t. 5℄).Let 1

2 log k < δ < 1/2. We shift the line of integration to the line σ = δand re
all the well-known estimate (say)
∣

∣

∣

∣

1

ζ(σ + it)

∣

∣

∣

∣

≪ β(t)valid (uniformly) for σ > 1, where
β(t) :=

{

1 if |t| ≤ 10,
log |t| if |t| > 10.Applying (3.6) we then obtain in a standard way

(4.1)
∑

n≤x

λ(n) log2

(

x

n

)

≪ k1−δ log4 k ·
∞\
−∞

β(t)

∣

∣1 + 1
2 log k + δ + it

∣

∣

2+1/log k−2δ

|δ + it|3 dt · xδ.



58 W. Kohnen and J. SenguptaNote that the integral on the right-hand side of (4.1) is absolutely 
onvergentsin
e 2 + 1/log k − 2δ < 2 by hypothesis.We have to estimate this integral from above uniformly in k. Repla
ing
t by −t, it is su�
ient to get an upper bound on
(4.2) Ik,δ :=

∞\
0

β(t)

∣

∣1 + 1
2 log k + δ + it

∣

∣

2+1/log k−2δ

|δ + it|3 dt.Note that for 0 < B < A one has
|A + it| ≤ A

B
|B + it| (∀t ∈ R).Applying this with

A := 1 +
1

2 log k
+ δ, B := δwe see that the integrand in (4.2) is bounded from above by

Ck,δβ(t)|δ + it|−1+1/log k−2δwhere
Ck,δ :=

(

1 +
1 + 1

2 log k

δ

)2+1/log k−2δ

.We split up Ik,δ into an integral from 0 to 10 and an integral from 10to ∞. The �rst integral is 
learly bounded by
≪ Ck,δδ

−1+1/log k−2δ.The se
ond integral is bounded by
≪ Ck,δ

∞\
10

log t · t−1+1/log k−2δ dt ≪ Ck,δ

(

1

2δ − 1
log k

)2

,where the last estimate follows by partial integration.We now 
hoose
δ :=

2

3 log k
.We then obtain

Ik,δ ≪ log2 k · (log k + log2 k) ≪ log4 k.Also k1−δ ≪ k (in fa
t k1−δ is of the same order of magnitude as k).Thus from (4.1) we obtain our assertion.5. A lower bound for sums of eigenvaluesProposition 3. Let F ∈ Sk(Γ2) be a non-zero He
ke eigenform andassume that either k is odd , or k is even and F 6∈ S∗
k(Γ2). Suppose that (2.6)
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ke eigenvalue 59holds. Let λ(n) (n ∈ N) be the normalized eigenvalues of F and suppose that
λ(n) ≥ 0 for 1 ≤ n ≤ x. Then

∑

n≤x

λ(n) log2

(

x

n

)

≫
√

x

log2 x
(x > 1).Proof. Clearly

∑

n≤x

λ(n) log2

(

x

n

)

≫
∑

n≤x/2

λ(n),

hen
e it su�
es to show that
(5.1)

∑

n≤x

λ(n) ≫
√

x

log2 x
(x > 1).By [1℄, for ea
h prime p the lo
al spinor polynomial ZF,p(X) given by (2.4)is equal to

ZF,p(X) = 1 − λ(p)X + (λ(p)2 − λ(p2) − 1/p)X2 − λ(p)X3 + X4,hen
e by (2.2) we have
(5.2)

1 − 1
pX2

ZF,p(X)
=
∑

n≥0

λ(pn)Xn.Clearly (5.2) is equivalent to saying that
λ(pn) = λ(p)λ(pn−1) − (λ(p)2 − λ(p2) − 1/p)λ(pn−2)(5.3)

+ λ(p)λ(pn−3) − λ(pn−4)for all n ≥ 0, with the 
onvention that λ(pn) = 0 for n < 0.Note that (2.4), (2.6), (2.7) and (5.2) imply that
(5.4) |λ(p)|, |λ(p2)|, |λ(p3)| ≪ 1.To prove (5.1), bearing in mind that λ(n) ≥ 0 for n ≤ x, let us write
(5.5)

∑

n≤x

λ(n) ≥
∑

p,q≤ 4
√

x

λ(p2q2) +
∑

p,q≤ 4
√

x

λ(p2q) +
∑

p,q≤ 4
√

x

λ(pq)

where on the right-hand side p and q run over primes.Taking n = 4 in (5.3) we obtain
(5.6) λ(p4) = λ(p2)2 + λ(p)λ(p3) + λ(p2)(−λ(p)2 + 1/p) + λ(p)2 − 1.Similarly, for n = 3 we �nd that
(5.7) λ(p3) = λ(p)(2λ(p2) + 1 + 1/p − λ(p)2).From (5.6), observing (5.4) we see that

λ(p4) ≫ λ(p2)2 − c1



60 W. Kohnen and J. Senguptawhere c1 > 0 is an absolute 
onstant. Thus
(5.8)

∑

p,q≤ 4
√

x

λ(p2q2) ≫
(

∑

p≤ 4
√

x

λ(p2)
)2

− c1π( 4
√

x)

where as usual π(x) (x > 1) denotes the number of primes p ≤ x.Next, from (5.7) taking into a

ount (5.4) we see that
λ(p3) ≫ λ(p)λ(p2) − c2where c2 > 0 is an absolute 
onstant. Hen
e

(5.9)
∑

p,q≤ 4
√

x

λ(p2q) ≫
(

∑

p≤ 4
√

x

λ(p2)
)(

∑

p≤ 4
√

x

λ(p)
)

− c2π( 4
√

x).

We �nally look at the sum
∑

p,q≤ 4
√

x

λ(pq)

in (5.5). For p ≤ 4
√

x the quantities λ(p3), λ(p2) and λ(p) are non-negative,hen
e we dedu
e from (5.7) for su
h p that
λ(p2) ≫ λ(p)2 − c3where c3 > 0 is an absolute 
onstant. Therefore as before

(5.10)
∑

p,q≤ 4
√

x

λ(pq) ≫
(

∑

p≤ 4
√

x

λ(p)
)2

− c3π( 4
√

x).

Combining (5.8), (5.9) and (5.10) we infer from (5.5) that
(5.11)

∑

n≤x

λ(n) ≫
(

∑

p≤ 4
√

x

λ(p2) +
∑

p≤ 4
√

x

λ(p)
)2

− cπ( 4
√

x)

where c > 0 is an absolute 
onstant.We now 
laim that λ(p2) and λ(p) 
annot be simultaneously small for
p ≤ 4

√
x. Indeed, otherwise λ(p3) would also be small, by (5.7), and then(5.6) would give a 
ontradi
tion sin
e λ(p4) ≥ 0 by hypothesis. Thus thereexists an absolute 
onstant α > 0 su
h that

λ(p2) + λ(p) ≥ α (p ≤ 4
√

x).From (5.11) we now 
on
lude using the prime number theorem that
∑

n≤x

λ(n) ≫
√

x

log2 xas 
laimed.
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ke eigenvalue 616. Proof of Theorem. Assuming that λ(n) ≥ 0 for n ≤ x, we inferfrom Propositions 2 and 3 that
(6.1)

√
x

log2 x
≪ k log8 k · x2/3 log k (x > 1).Clearly for x large this is a 
ontradi
tion.To get an expli
it bound, quoting the more general Lemma 4 in [4℄ wesee that (6.1) implies that

(6.2) x ≪
(

A

δ2

)1/δ

log2/δ

(

A

δ2

)

where
A := k log8 k, δ :=

1

2
− 2

3 log k
.We have

1

δ
= 2 +

8

3 log k − 4
.Hen
e

A1/δ = (k log8 k)2+8/(3 log k−4) ≪ k2 log16 kand
log2/δ

(

A

δ2

)

≪ log2/δ A ≪ log4 k.Thus (6.2) implies that
x ≪ k2 log20 k.Therefore we obtain the assertion of the Theorem.
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