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Density of rational points on elliptic fibrations
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Ritabrata Munshi (Piscataway, NJ)

1. Introduction. Let V be a Fano variety defined over Q, and let H
denote the anticanonical height function defined on V . For any open set
U ⊂ V , we define the counting function

NU,H(B) := #{x ∈ U(Q) : H(x) ≤ B}.
Manin et al. have put forward a conjecture about the asymptotic behavior
of NU,H for suitable open sets U . For simplicity, we state a weak form of the
conjecture for two-dimensional Fano varieties, or del Pezzo surfaces.

Conjecture (Manin et al.). Let V be a del Pezzo surface with at most

rational double points over Q. Let H be the anticanonical height function

defined on V . Then for the open set U obtained by deleting the exceptional

divisors from V, and for any positive ε, we have

NU,H(B) = O(B1+ε).

Geometrically, the smooth del Pezzo surfaces are projective surfaces iso-
morphic to P1 × P1 or the blow up of P2 in up to eight points in general
position. In the latter case the del Pezzo surface has degree equal to 9 minus
the number of points blown up. The arithmetic of del Pezzo surfaces over
number fields has drawn a huge amount of research in recent times. It is well
known that the arithmetic complexity of the surface increases as the degree
falls. The above conjecture has been proved for the surfaces of degree 6 and
higher. For the surfaces of degree 5 and degree 4, the conjecture has been
established in a few instances. For lower degree the situation is rather less
satisfactory.

The smooth cubic surfaces are del Pezzo surfaces of degree 3. If such a
surface contains three coplanar lines defined over Q, then Heath-Brown [4]
has proved that NU,H(B) ≪ε B4/3+ε. In particular, this bound holds for the
Fermat cubic surface x3

0 + x3
1 + x3

2 + x3
3 = 0. Better estimates are available
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for singular cubics. (See the survey article by T. D. Browning [2] on the
subject, and the references listed therein.)

For the del Pezzo surfaces of degree 2, even the basic bound NU,H(B) ≪ε

B2+ε is not yet known. In this case, Broberg [1] has established the weaker
bound NU,H(B) ≪ε B9/4+ε. However, for the del Pezzo surfaces of degree 2
given by the equation

Y 2 = ax4
0 + bx4

1 + c2x4
2,

where a, b and c are non-zero integers, one may do better. For fixed x0 and
x1, using the standard estimate for the divisor function, we see that there
are O(Bε) pairs of integers (Y, x2), satisfying the equation

(Y − cx2
2)(Y + cx2

2) = ax4
0 + bx4

1.

Summing over all possible x0 and x1, we get NU,H(B) ≪ε B2+ε. (The author
wishes to thank the referee for this observation.)

In this article we focus on the del Pezzo surfaces of degree 1. These sur-
faces are intimately linked to elliptic surfaces. Recall that an elliptic surface

is a morphism π : S → C, where S is a projective surface and C is a smooth
projective curve, and such that for all but finitely many points t ∈ C, the
fiber π−1(t) is an elliptic curve (with a choice of 0-section). Now, in a del
Pezzo surface of degree 1 the anticanonical system consists of irreducible
cubic curves and has a fixed point. Suppose the fixed point is rational. Then
blowing up that point yields an elliptic surface with all its fibers irreducible.
Of course, since the del Pezzo surface is rational the associated elliptic sur-
face is also rational. Conversely, starting from a rational elliptic surface we
can produce a del Pezzo surface by contracting the 0-section.

A rational elliptic surface over a projective line has a Weierstrass model
given by

Y 2 = X3 + g4(T )X + g6(T ),

where g4 is a polynomial of degree 4 and g6 is a polynomial of degree 6
(see [5]). Our next task is to define an appropriate height function on such
elliptic fibrations. Perhaps the easiest way is to embed the surfaces in the
weighted projective space P(1, 1, 2, 3). To do so, we homogenize g4 and g6

by introducing a new variable S. Then assigning weight 1 to both S and T ,
weight 2 to X and weight 3 to Y , we see that the above equation is homo-
geneous of degree 6. Hence it defines a variety in the weighted projective
space P(1, 1, 2, 3). Then the anticanonical height of a point P = (S, T, X, Y )
with reduced (weighted) homogeneous coordinates is given by

H(P ) = max{|S|, |T |, |X|1/2, |Y |1/3}.
Our problem is now reduced to counting the number of integers S, T , X
and Y , reduced with respect to the above weights, with |S| < B, |T | < B,
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|X| < B2 and |Y | < B3, and satisfying the Weierstrass equation. Moreover,
they need to satisfy certain inequalities so that the corresponding point lies
outside the lines.

In the next section we apply the theory of elliptic curves to establish the
following basic bound for the density of rational points on certain del Pezzo
surfaces of degree 1.

Theorem A. For surfaces given by

(i) Y 2 = X3 + f4(T, S)X,
(ii) Y 2 = X3 + bf2(T, S)3, or

(iii) Y 2 = X3 + bf3(T, S)2,

where fk(T, S) denotes a form defined over Z of degree k, and b ∈ Z, we

have NU,H(B) ≪ε B2+ε.

In the last section, we study the surface given by Y 2 = X3 + Q(S, T )3,
where Q is a positive-definite quadratic form defined over Z. Using a uniform
bound of Heath-Brown’s on the density of rational points on plane conics,
we establish a much refined bound.

Theorem B. For a positive-definite quadratic form Q defined over Z,
let S denote the surface given by Y 2 = X3 +Q(S, T )3. Let N(B) denote the

cardinality of the set

{(S, T, X, Y ) ∈ S : 0 < |X| < B2, |S| < B, |T | < B, 0 < |Y | < B3}.
Then N(B) ≪ε B4/3+ε.

Remark. In the above theorem, we have put the inequality Y 6= 0 to
avoid the points on the curve X = −Q(S, T ).

The results appearing in this article are taken from the last chapter of
the author’s Ph.D. thesis [6]. The author wishes to thank his advisor Prof.
Andrew Wiles for many enlightening discussions. The author also thanks
the referee for a thorough reading of the manuscript and many helpful sug-
gestions.

2. Proof of Theorem A. The proof involves some well known results
from the theory of elliptic curves. We start with the theory of descent. (For
details see Silverman [8].) Suppose E/Q is an elliptic curve with an m-torsion
point, P say. For all purposes (here), we may assume that E(Q)[m] ∼= µm

or µm × µm (depending on the choice of basis). Then we define the elliptic
curve E′/Q = E/〈P 〉 and an isogeny

φ : E → E′.

Then ker(φ) = 〈P 〉. Let

S = {∞} ∪ {p : E has bad reduction at p} ∪ {p : p |m}.
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We have the fundamental exact sequence

0 → E′(Q)/φ(E(Q)) → S(φ)(E/Q) → ST(E/Q)[φ] → 0

with the Selmer group S(φ)(E/Q) ⊂ H1(GK/K , E[φ]; S), and the Tate–

Shafarevich group ST. Now a choice of a basis of E(Q)[m] gives an iso-
morphism

H1(GK/K , E[φ]; S) ∼= Q(S, m)i,

where i = 1 or 2, depending on the dimension of E(Q)[m]. Hence

#E′(Q)/φ(E(Q)) ≤ #S(φ)(E/Q) ≤ m2#S .

Let φ̃ be the dual isogeny. Then we also have the inequality

#E(Q)/φ̃(E′(Q)) ≤ m2#S.

Then using the exact sequence

0 → E′(Q)[φ̃]

φ(E(Q)[m])
→ E′(Q)

φ(E(Q))
→ E(Q)

mE(Q)
→ E(Q)

φ̃(E′(Q))
→ 0,

we get

#
E(Q)

mE(Q)
≪ m4#S.

Hence

rankZ E(Q) ≤ dimZ/mZ

E(Q)

mE(Q)
≪ #S,

where the implied constant is absolute. Using this we get the following.

Lemma 1. Let E/Q be an elliptic curve given by any of the following

Weierstrass equations:

(1) Y 2 = X3 + DX,

(2) Y 2 = X3 + bD2, or

(3) Y 2 = X3 + bD3,

where D and b are integers, and b is considered to be fixed. Then

rankE(Q) ≪ 1 + ν(D),

where ν(D) denotes the number of prime factors of D. Here the implied

constant is 2 in case (1), and depends only on b in cases (2) and (3).

The above lemma and the following result of Silverman (see [7]) are the
crucial ingredients in our argument.

Lemma 2 (Silverman). For the elliptic curves Y 2 = X3 + D and Y 2 =
X3 + DX, the number of integral points is bounded by c12

c2×rankE for some

absolute constants c1 and c2.
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Coupling the above two results together, we find that the number of inte-
gral points on ED : Y 2 = X3+DX is bounded by O(2c3×ν(D)) = O(d(D)c3).
Here d denotes the divisor function, and c3 is an absolute constant. Hence

#ED(Z) ≪ε Dε.

Now consider the surface

V : Y 2 = X3 + f4(T, S)X.

Specializing S = s and T = t, with s and t ∈ Z, |s| < B and |t| < B, we get
an elliptic curve

Ef4(t,s) : Y 2 = X3 + f4(t, s)X

of the above type (ignoring any fourth power that might appear). Then
each of these curves has at most O(Bε) integral points. Adding up the
contribution of all the B2 many elliptic fibers we conclude that NU,H(B) ≪ε

B2+ε, for any open subset U of V .

Similarly we conclude the same bound for the surfaces given by

Y 2 = X3 + bf2(T, S)3, Y 2 = X3 + bf3(T, S)2.

This proves Theorem A.

3. Proof of Theorem B. Let K = Q(
√
−3), and ω = (−1 +

√
−3)/2

be a cube root of unity in K. Then the ring of integers in K is given by
OK = Z[ω], and the norm form is given by N(a + ωb) = a2 − ab + b2.

Lemma 3. Let d1 and d2 be a pair of coprime square-free integers, and

let d = d1d2. Then the number of integer solutions of the pair of equations

d1y
2
1 = x + z, d2y

2
2 = x2 − xz + z2,

with the restriction 0 < |x| < B, 0 < |z| < B, yi 6= 0, and (x, z) = 1, is

bounded by O((1 +
√

B/d)(Bd)ε).

Proof. Since x and z are coprime, it follows that x+ωz and x+ω2z are
coprime except for a possible common factor 1 − ω. Hence from the second
equation we conclude that

either x + ωz = (a + ωb)η2,

or x + ωz = (a + ωb)(1 − ω)η2,

for some η ∈ OK and a, b ∈ Z satisfying N(a+ωb) = d2. We note that there
are at most O(dε) choices for the pair (a, b).

Now write η = M +ωN ; then η2 = (M2−N2)+ω(2MN −N2). We will
only consider the first equation. The other one can be dealt with similarly.
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We get

x = a(M2 − N2) − b(2MN − N2),

z = a(2MN − N2) + b(M2 − N2) − b(2MN − N2).

Also,

M2 + N2 + (M − N)2 = 2(M2 − MN + N2) = 2N(η) ≪ B/
√

d2.

Hence |M |, |N | ≪
√

B/d
1/4
2 . Putting the values of x and z in the equation

d1y
2
1 = x + z, we get

d1y
2
1 = a(M2 + 2MN − 2N2) + b(M2 − 4MN + N2),

that is,

d1y
2
1 = (a + b)M2 + 2(a − 2b)MN − (2a − b)N2.

Let α = a + b, β = a− 2b, and γ = 2a− b = α + β. Then from above we get

d1y
2
1 = αM2 + 2βMN − γN2.

Now we want to use the following result of Heath-Brown [3] to count
the number of solutions of the ternary quadratic equations. Before that we
observe that M 6= 0, N 6= 0, and if δ = (M, N, y1), then δ | y2. But y1 and y2

are coprime, so we are only concerned with primitive solutions of the above
ternary form.

Lemma 4 (Heath-Brown). Let q be a ternary quadratic form with ma-

trix M. Let ∆ = |detM|, and assume that ∆ 6= 0. Write ∆0 for the highest

common factor of the 2 × 2 minors of M. Then the number of primitive

integer solutions of q(x) = 0 in the box |xi| < Ri is

≪ε

{
1 +

(
R1R2R3∆

2
0

∆

)1/3+ε}
(R1R2R3)

ε

for any ε > 0.

We apply the result to the ternary quadratic form

d1y
2
1 − αM2 − 2βMN + γN2.

In this case the determinant is

∆ = |d1(αγ + β2)| = d1(α
2 + αβ + β2) = 3d1d2 = 3d.

Also, the gcd of all 2 × 2 minors is (αd1, βd1, γd1, αγ + β2), which is either
1 or 3. The restrictions on y1, M and N are given by: 0 < |y1| <

√
B/

√
d1

and |M |, |N | <
√

B/d
1/4
2 . Hence in Heath-Brown’s notation

R1R2R3 =

√
B√
d1

(√
B

d
1/4
2

)2

=
B3/2

d1/2
.
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So, Heath-Brown’s estimate implies that the number of possible primitive
solutions is given by

≪ε

{
1 +

√
B

d

}
(Bd)ε.

The lemma follows.

Lemma 5. The number of integer solutions to the equation Y 2 = X3+Z3

with the restrictions 0 < |X| < B2, 0 < |Z| < B2 and Y > 0 is bounded by

O(B4/3+ε).

Proof. Suppose (X, Y, Z) is a solution of the equation Y 2 = X3 + Z3

satisfying the size restrictions. Let g = gcd(X, Z). Then g < B2. Suppose
g = dτ2, where d is square-free. Then τ6 | (X3 + Z3) = Y 2. But for primes
p | d, vp(g) is odd, say 2k + 1. Then p6k+3 |Y 2, and hence p6k+4 |Y 2. So we
conclude that d2τ3 |Y .

Defining x = X/g, z = Z/g, and y = Y/d2τ3, we see that (x, y, z)
satisfies the equation

dy2 = x3 + z3 with (x, z) = 1.

Now since d2τ3 |Y and Y < B3, we get d < (B/τ)3/2. Also, 0 < |x| <
B2/dτ2, 0 < |z| < B2/dτ2 and 0 < y < 2B3/d2τ3. As the form of the
equation does not depend on τ , we do the calculation writing B in place of
B/τ , and then replace τ back at the end and sum over the range 1 ≤ τ < B.
However, from the form of the estimate it will be clear that the sum over τ
only increases the bound by a constant, which will not concern us.

We factorize the right hand side of the above equation, and get

dy2 = (x + z)(x2 − xz + z2) with (x, z) = 1.

Let κ denote the largest common square-free factor of x+z and x2−xz+z2.
Then we conclude that

d1κy2
1 = x + z, d2κy2

2 = x2 − xz + z2,

where d1κ and d2κ are the square-free parts, d = d1d2 and y = κy1y2. Also,
since (x, z) = 1, it follows that κ is either 1 or 3. So, the problem is reduced
to counting the number of solutions of the pair of equations

d1y
2
1 = x + z, d2y

2
2 = x2 − xz + z2,

with the restriction 0 < |x| < B2/d, 0 < |z| < B2/d, and yi 6= 0. (The case
of κ = 3 is just similar.)

For d ≤ B4/3, we use the bound obtained in Lemma 3. The number
of solutions to the above pair of equations, for any given d, is bounded by
O((1 + B/d)Bε). Then adding the contribution of all the O(B4/3) possible
values for d, we deduce that the number of solutions is bounded above by
O(B4/3+ε).
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For d > B4/3, we fix x and z and observe that the trivial estimate
for the divisor function implies that the total number of d1, d2, y1 and y2

satisfying the above pair of equations is bounded by O(Bε). Then adding
up the contributions of all x and z, we conclude that number of solu-
tions to the equation Y 2 = X3 + Z3 with (X, Z) > B4/3 is bounded by
O((B2/B4/3)2Bε) = O(B4/3+ε).

Theorem B follows directly from the last lemma, by setting Z = Q(S, T ),
and observing that there are at most O(Bε) pairs (S, T ) for each fixed Z.
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