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1. Introduction. The theorem of Euler (|[Eul80], cf. [Mor69, pp. 21-22],
[MS03]) referred to in the title of this paper is that a product of four terms
in arithmetic progression is never a square. Let n,d, k > 2 and y be positive
integers such that ged(n,d) = 1. We consider the equation

(1) nn+d)---(n+(k—1)d) =1y

in n,d,k and y. It has infinitely many solutions when k£ = 2 or 3. A well-
known conjecture states that (1) with & > 4 is not possible. We claim

THEOREM 1. Equation (1) with 4 < k <109 is not possible.

By Euler, Theorem 1 is valid when £ = 4. The case when k = 5 is due
to Oblath [Obl50]. Independently of the authors, Bennett, Bruin, Gyéry and
Hajdu [BBGHO6] proved that (1) with 6 < k < 11 does not hold. Theorem 1
has been confirmed by Erdés [Erd39] and Rigge [Rig39], independently of
each other, when d = 1.

Theorem 1 is derived from a more general result and we introduce some
notation for stating this. For an integer v > 1, we denote by P(v) the greatest
prime factor of v and we put P(1) = 1. Let b be a squarefree positive integer
such that P(b) < k. We consider a more general equation than (1), namely

(2) n(n+d)---(n+ (k—1)d) = by>.

We write

(3) n+id=a;x? for0<i<k

where a; are squarefree integers such that P(a;) < max(P(b),k — 1) and x;
are positive integers. Every solution to (2) yields a k-tuple (ag, a1, ...,ax_1).
We rewrite (2) as

(4) m(m—d)---(m—(k—1)d) =by?, m=n+(k—1)d.
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Equation (4) is called the mirror image of (2). The corresponding k-tuple
(ag—_1,ak—_2,...,ap) is called the mirror image of (ap,a1,...,a5_1).

Let P(b) < k. Erdés and Selfridge [ES75| proved that (2) with d = 1 never
holds under the assumption that the left-hand side of (2) is divisible by a
prime greater than or equal to k. The result does not hold unconditionally.
As mentioned above, equation (2) with & = 2,3 and b = 1 has infinitely
many solutions. This is also the case when k = 4 and b = 6; see Tijdeman
[T1j89]. On the other hand, equation (2) with £ = 4 and b # 6 does not hold.
We consider (2) with d > 1 and k > 5. We prove

THEOREM 2. Equation (2) with d > 1, P(b) < k and 5 < k < 100
implies that (ag,a1,...,ax_1) is among the following tuples or their mirror
1mages:
k=8: (2,3,1,56,7,2,1),(3,1,5,6,7,2,1,10);
k=9: (2,3,1,56,7,2,1,10);
k=14:(3,1,5,6,7,2,1,10,11,3,13, 14, 15, 1);
k=24:(5,6,7,2,1,10,11,3,13,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7).

Theorem 2 with & = 5 is due to Mukhopadhyay and Shorey [MS03].
Initially, Bennett, Bruin, Gyéry, Hajdu [BBGHO06] and Hirata-Kohno,
Shorey (unpublished), independently, proved Theorem 2 with & = 6 and
(ap,a1,...,as) #(1,2,3,1,5,6),(6,5,1,3,2,1). Next, Bennett, Bruin, Gyéry
and Hajdu [BBGHO6] removed the assumption on (ag,ar,...,as) in the
above result. Thus (2) with ¥ = 6 does not hold and we shall refer to it
as the case k = 6. Bennett, Bruin, Gy6ry and Hajdu [BBGHO6|, indepen-
dently of us, showed that (2) with 7 < k <11 and P(b) < 5 is not possible.
This is now a special case of Theorem 2.

Let P(b) = k. Then we have no new result on (2) with £k = 5. For k > 7,
we prove

THEOREM 3. Equation (2) with d > 1, P(b) = k and 7 < k < 100
implies that (ag,ai,...,ax_1) is among the following tuples or their mirror
1mages:

k=17:

(5)

(2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10);
£ (3,1,5,6,7,2,1,10,11,3, 13,14, 15),
(1,5,6,7,2,1,10,11,3,13, 14, 15, 1);
k=19:(1,56,7,2,1,10,11,3,13,14,15,1,17,2, 19,5, 21, 22);
. (5,6,7,2,1,10,11,3,13,14, 15, 1,17, 2, 19, 5,21, 22, 23,6, 1, 26, 3),
(6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1, 26,3, 7).
It has been conjectured that (2) with k£ > 5 never holds. Granville (un-
published) showed that k is bounded by an absolute constant whenever the

abe-conjecture holds; see Laishram [Lai04] for a proof. For the convenience of
the proofs, we consider Theorems 2 and 3 together. Therefore we formulate



An extension of a theorem of Euler 73

THEOREM 4. Let d > 1,P(b) < k and 5 < k < 100. Suppose that k # 5
if P(b) = k. Then (2) does not hold except for the (ag,a1,...,ax_1) among
(5), (6) and their mirror images.

It is clear that Theorem 4 implies Theorems 2 and 3. In fact the proof of
Theorem 4 provides a method for solving (2) for any given value of k£ unless
(ap, a1, ..,ag—1) is given by (5), (6) and their mirror images. This is a new
and useful feature of the paper. We have restricted k£ up to 100 for keeping
the computational load under control. It is an open problem to solve (2) for
an infinite sequence of values of k. A solution to this problem may be an
important contribution towards the conjecture stated just after Theorem 3.
Theorem 4 has been applied in [LS] to show that (2) with & > 6 implies that
d > 10'%. For more applications, see [LS].

Now we give a sketch of the proof of Theorem 4. Let the assumptions of
Theorem 4 be satisfied. Assume (2) such that (ag, a1, ..., ax_1) is not among
(5), (6) or their mirror images. As already stated, the cases k =5 and k = 6
have already been solved in [MS03]| and [BBGHO06|. Therefore we suppose
that & > 7. Further it suffices to assume that k is prime and we proceed
inductively on k. Let k be given. Then we choose a suitable pair (¢, g2) of
distinct primes < k such that

(@)~ ()

i q2

for small primes p. For example, when k = 29, we take (q1, ¢2) = (19,29) so
that the above relation holds with p = 2, 3,5, 7. We show that ¢; 1d and ¢21d
(see Lemma 8). Assume ¢ | d or g3 | d. Then we find two primes ()1 and Q2
such that Q1 |d or Q2 |d whenever k > 29 (see Lemma 7). Now we arrive at
a contradiction by a counting argument using (9) and Lemmas 1, 2. Hence
g11d and gatd but this is excluded by Lemma 6, the proof of which depends
on Lemma 5. In fact, we need to apply it repeatedly for k£ > 11.

In the case k = 6, Bennett, Bruin, Gy6ry and Hajdu [BBGHO6| solved
the cases (ag,a1,...,as5) € {(1,2,3,1,5,6),(6,5,1,3,2,1)} by using explicit
Chabauty techniques due to Bruin and Flynn [BF05]. These cases appear to
be similar to our exceptional cases (5) and (6) where we have, in fact, more
freedom in the sense that there are at least 7 curves where we may consider
applying the Chabauty method. Finally we remark that it suffices to solve
the cases k = 7 in (6) or its mirror images for Theorem 3 and the cases k = 8
in (5) or its mirror images for Theorem 2.

2. Notation and lemmas. We introduce some notation. Let
R={a;:0<i<k}

and, for a prime g, put
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(7)) §=S58(g)={acR:Pla)<q}, Si=05(q)={ack:Pla)>q}

Further we write

(8) T=T(q) ={i:a;€S}, Ti=Ti(q)={i:a; €S}
Then we see that

(9) |T|+ |Th| = k.

For a € R, let

v(a) =|{i:a; = a}|,
vola) = {i:a; = a, 21z}, wvela) =|{i:a; =a, 2|z;}|.
We observe that

(10) T =Y v(a).
a€eS
Let
. 3 if3|d
0 = min(3, ords(d)), = ’
( 2(d)) ¢ { 1 otherwise.
We have
LEMMA 1. Fora € R, let K, = k/a2379, K! = k/16a,
1 if k<a239,
[Ka] — [M} if k>a2%79, 3|d,
filk,a,0) =4 4 |
S ([S] - [ELY) i k5 a 304
i=1
and
1 if k< da,
K!]+1 if 4a < k < 32a,
2 , ;)
ZG&W - [[’CZ/HD if k> 32a,3|d,
. 1
fak,a) = ¢ 5!

(51 (=) 2 (5] - [=5))

if k> 32a, 31d.

Then we have

Vo(a) < fl(kaaaé)v Ve(a) < fz(k‘,a),
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and
1 if k<a,
v(a) < F(k,a,0) := ¢ fi(k,a,0d) if k> a and d even,
fi(k,a,0) + fa(k,a) if k> a and d odd.

Proof. Let I = {i : a; = a, z; odd}, Is = {i : a; = a, 2| z;} and
Is ={i:a; =a, 4| z;}. Further, for [ = 1,2, 3, let

I = {Z el 3*331}, Iy := {Z el;:3 | :L‘,L}

Let 7 := 7(I,m) be defined by 7/a = 237% . 371, 2379.9 32.3071,32.9,
16-307%,16-9 for (I,m) = (1,1),(1,2),(2,1),(2,2), (3,1), (3,2), respectively.
Since z? = 1 (mod8) for i € I, (7;/2)?> = 1 (mod8) for i € I, 16|z? for
i € Iy and 22 = 1 (mod3) for i € Iy, 9|a? for i € Ijp for | = 1,2,3, we
see from (i — j)d = a(x? — x?) that 7|7 — j for i,j € Ij,. Since ali —j
whenever a; = a;, we get v(a) = 1 for k < a. Thus we suppose that k > a.
We have v(a) = vo(a) + ve(a). It suffices to show v,(a) < fi(k,a,d) and
ve(a) < fa(k,a) since ve(a) = 0 for d even. We observe that v,(a) = |I;| and
Ve(a) = |Iz| + |I3|. Since a237° |i — j whenever i,5 € I, we get |I;| < 1 if
k < a237%. Thus we suppose k > a23~9 for proving |I1| < fi(k, a, ). Further
from 4a|i — j for i,j5 € Iy U I3, 32a|i — j for i,j € I and 16a|i — j for
i,j € I3, we get |I2| + |I3] < fa(k,a) for k < 32a. Hence we suppose that
k > 32a for showing |I2| + |I3] < fa(k,a).

Let (I,m) have 1 < 1 < 3,1 < m < 2. Let ip = minsey, i, N =
(n +iod)/a and D = 7d/a. Then we see that ax? with i € I}, come from
the squares in the set {N,N + D,...,N + ([(k —ip)/7] — 1)D}. Dividing
this set into consecutive intervals of length 4 and using Euler’s result, we see
that there are at most

[ - [

of them which can be squares. Hence |I},,,| < [k/7] — [[k/7]/4]. Now the
assertion follows from |[j] = S22 _ |Iy,| for I = 1,2,3 since |Ijg| = 0 for
3ld. m

We observe that there are (p—1)/2 distinct quadratic residues and
(p — 1)/2 distinct quadratic nonresidues modulo an odd prime p. The next
lemma follows easily from this fact.

LEMMA 2. Assume (2) holds. Let k be an odd prime. Suppose that k1d.
Let

T’:{i:<%>:1,0§i<k}, T”:{i:<%>:—1,0§i<k}.
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Then

k—1
T = |T"| = .
2

LEMMA 3. Assume that (2) with P(b) < k has no solution at k = ki with
k1 prime. Then (2) with P(b) < k has no solution at k with k1 < k < ko,
where ko is the smallest prime larger than k.

Proof. Let ki and ko be consecutive primes such that k; < k < ko.
Assume that (2) does not hold at (n,d, k1). Suppose

n(n+d)---(n+ (k—1)d) = by*.
Using (3), we see that

n(n+d)-- (n+ (ky — 1)d) = by
with P(b') < ky. This is not possible. =

Let g1, g2 be distinct primes and

= (2) ()

We write A(q1,q2) = A(qi,q2,k) :=={p € Ai(q1,q2) : p < k}.
LEMMA 4. We have

(59,61
(73,97
(79,89

{7,13,17,29,47,53,71,73,79,83,97}
{11,19, 23,31, 37, 41,43, 47,53,67, 71}
{13,17,19,23,31,47,53,71,83}

(q1,42) A1(q1, g2)
(5,11) {3,19,23,29,37,41,47,53,61,67,79,97}
(7,17) (11,13, 19, 23,29, 37, 47, 59, 71,79, 83, 89}
(11,13) {5,17,29,31,37,43,47,59,61,67,71,79,89,97}
(11,59)  {7,17,19,23,29, 31,37, 41,47, 67, 79,89, 97}
(11,61) {13,19,23,31,37,41,53,59,67,71,73,83,89}
(19,29) (11,13, 17, 43,47, 53,59, 61, 67, 71, 73}
(23,73) {13,19,29,31,37,47,59,61,67,79,89,97}
(23,97) {11,13,29, 41,43, 53,59, 61, 71, 79, 89}
(31,89) {7,11,17,19,41,53,59,73,79}
(37,83) {17,23,29,31,47,53,59,61,67,71,73}
(41,79) {11,13,19, 37, 43, 59, 61, 67, 89, 97}
(43,53) (7,23,29,31,37, 41,67, 79, 83,89}
(43,67)  {11,13,19,29,31,37,41,53,71,73,79,89,97}
(53,67) {7,11,13,19,23,43,71,73,83,97}

)

)

)
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DEFINITION. Let P be a set of primes and Z C [0, k) N Z. We say that
T is covered by P if, for every j € Z, there exists p € P such that p|aj;.
Further, for ¢ € 7, let
(11) i(P) = |{p € P : p divides a;}|.
For a prime p with ged(p,d) = 1, let i, be the smallest i > 0 such that
p|n+id. For T C [0, k)NZ and primes p1, p2 with ged(p1p2, d) = 1, we write
2

T’ =TI(p1,p2) =T\ | {ip, +psi: 0 < i < [k/p;1}.
j=1

LEMMA 5. Let Py be a set of primes. Let pi,p2 be primes such that
ged(pipe, d) = 1. Let (i1,12) = (ip,,ipy), Z C [0,k) NZ and I’ = Z(p1,p2) be
such that i(Py N A(p1,p2)) is even for each i € T'. Define

n-frer: (52)-(5))
n-{rer (L) 4 (E2))

Let P = A(p1,p2) \ Po. Let £ be the number of terms n + id with i € T’

divisible by primes in P. Then either
1| < €, Iy is covered by P, Ip={i €T :i(P) is even},

or
|Zo| < ¢, Iy is covered by P, 1y ={i € ' :i(P) is even}.
We observe that £ <3 p[k/p].

Proof. Let i € I'. Let Uy = {p : pla;}, U = {p € Up : p & A(p1,p2)},
U ={p €Uy :pePonN Alp1,p2)} and Us = {p € Uy : p € P}. Then we

deduce from a; =[], p that
ﬁ) -1 (£> I <£> I <£> — ()Pl I (ﬁ)
<P1 vells b1 pells b1 pells b1 = P2

since |Usz| = i(Po N A(p1,p2)) is even. Therefore

(12) L= {z eT (;‘—1> ” <;‘—2>} = {i € T :i(P) is odd}.

In particular, £ is covered by P and hence

(13) | < ¢
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We see that (;—J’) = (”+—Zd) = (ﬂ)(%) for i € 7’ and j = 1,2. Therefore

Pj Pj
L =T, or Iy according ;s (i) % J( d ) or (pil) = (p%), respectively. Now the

P1 P2
assertion of Lemma 5 follows from (12) and (13). =

REMARK. Let P consist of one prime p. We observe that p|n -+ id if and
only if p|i — i,. Then Z; or 7y is contained in one residue class modulo p
and pfa; for i in the other set.

COROLLARY 1. Let p1,po,i1,i2, Py, P,Z,Z',Z1,Z> and { be as in Lem-
ma 5. Assume that

1
(14) < 3 |Z’).
Then |Ii| # |Z2|. Let

1 if || < 2o,
(15) M:{ v R <

Zs otherwise,

Iy if |T Z
(16) B:{ 2 Zf | 1|<| 2|7

711 otherwise.

Then |[M| < £, M is covered by P and B = {i € T' : i(P) is even}.

Proof. We see from Lemma 5 that min(|Z;|, |Z2]) < ¢ and from (14) that
max(|Z1],|Zs|) > £|Z’| > ¢. Now the assertion follows from Lemma 5. u

We say that (M, B, P, ¢) has Property $ if |[M| < ¢, M is covered by P
and i(P) is even for i € B.

LEMMA 6. Let k be a prime with 7 < k < 97 and assume (2). For
k > 11, assume that Theorem 4 is valid for all primes k1 with 7 < k1 < k.
For 11 < k < 29, assume that ktd and kin +id for 0 < i < k — k' and
K < i < k where k' < k are consecutive primes. Let (q1,q2) = (5,7) if
k=17 (5,11) if k = 11; (11,13) if 13 < k < 23; (19,29) if 29 < k < 59;
(59,61) if k = 61; (43,67) if k = 67,71; (23,73) if k = 73,79; (37,83) if
k =83; (79,89) if k = 89; and (23,97) if k = 97. Then q1|d or g2 |d unless
(ag,a1,...,ax_1) is given by the following tuples or their mirror images.

k=7: (2,3,1,56,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10);

k=13:(3,1,5,6,7,2,1,10,11,3,13,14, 15), (1,5,6,7,2,1, 10,11, 3, 13,14, 15, 1);

k=19:(1,56,7,2,1,10,11,3,13,14,15,1,17,2, 19,5, 21, 22);

k=23:(56,72,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1, 26, 3),

(6,7,2,1,10,11,3,13,14,15,1,17,2,19, 5,21, 22, 23,6, 1, 26,3, 7).

We shall prove Lemma, 6 in Section 3.

LEMMA 7. Let k be a prime with 29 < k < 97 and Qg a prime dividing d.
Assume (2) with ktd and ktn+id for 0 <i <k —Fk and k' <i <k where

k' < k are consecutive primes. Then there are primes Q1 and Q2 given in
the following table such that either Q1 |d or Q2 |d:
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k Qo (Q1,Q2) k Qo (Q1,Q2)
20<k<59 19  (7,17) 73,79 23 (53,67)
31<k<59 29 (7,17) 79 73 (53, 67)

61 59 (11,61) 83 37 (23,73)

67,71 43 (53,67) 89 79 (23,73)
71 67  (43,53) 97 23 (73,97),(37,83)

The proofs of Lemmas 6 and 7 depend on the repeated application of
Lemma 5 and Corollary 1. We shall prove Lemma 7 in Section 4. Next we
shall apply Lemmas 1, 2 and 7 to prove the following result.

LEMMA 8. Let k be a prime with 7 < k < 97. Assume (2) with k{d.
Further for k > 29, assume that ktn+id for 0 <i<k—Fk and ¥ <i<k
where k' < k are consecutive primes. Let (q1,q2) be as in Lemma 6. Then
q1fd and g21d.

Section 5 contains a proof of Lemma 8. Assume that 3td and 5{d. We
define some more notation. For a subset J C [0, k) N Z, let

I§ =T9(J) == {i € J :i = i3 (mod3)},

5 =I5 (J) = {z €J: (
Iy =I; (J) = {z eJ: <Z_313> = —1}
(

IF =T(J) = {z eJ:

Iy =I5 (J) = {z eJ: <Z _5Z5> = —1}.

Assume that a; € {1,2,7,14} for i € T UZ; . Then either a; € {1,7} fori €
Iy, a; € {2,14} for i € Z; or a; € {2,14} for i € ), a; € {1,7} for i € I, .
We define (Z3,72) = (Z,,Z; ) in the former case and (Z3,72) = (Z; ,Z3) in
the latter. We observe that i’s have the same parity whenever a; € {2,14}.
Thus if #’s have the same parity in one of I;r or 7, but not in both, then
we see that (Z73,73) = (Z{,Z; ) or (Z; ,Z5) according as i’s have the same
parity in 7, or I;' , respectively. Further we write
Hh=T3NT, FH=I;NI,, FH=I;NL5, "h=I;nI;

and a, = {a; 14 € J,} for 1 < p < 4. Since (1) = (&) =1 and (2) = (%)
= —1, we see that

(17) (a1, 02,03,00) © ({1}, {7}, {14}, {2}) or ({7}, {1},{2},{14})

and
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where (a1, a2, a3,a4) C (S1,52,53,5,) denotes a, € S, 1 < pu < 4. We use
714 — i’ whenever a;,a; € {7,14} to exclude one of the above possibilities.

3. Proof of Lemma 6. Let k' < k be consecutive primes. We may sup-
pose that if (2) holds for some k > 29, then k{d and kfa; for 0 <i < k— K
and k' < i < k, otherwise the assertion follows from Theorem 4 with k re-
placed by k’. Subsections 3.1 to 3.10 will be devoted to the proof of Lemma 6.
We may assume that ¢; 1d and g21d, otherwise the assertion follows.

3.1. The case k = 7. Then 5{d. By taking the mirror images (4) of (2),
there is no loss of generality in assuming that 5| n +isd, 7| n + izd for some
pair (i5,77) with 0 < i5 < 5, 0 < 47 < 3. Further we may suppose i7 > 1,
otherwise the assertion follows from the case kK = 6. We apply Lemma 5 with
Po=0,p1 =5, p2 =71, (i1,i2) = (i5,i7), T = [0,k) NZ, P = A(5,7) = {2}
and ¢ < 1 = [k/2] to conclude that either

|Z1| < #1, Ty is covered by P, Ip = {i € I’ :i(P) is even},
or
|Z5| < ¢y, Iy is covered by P, Iy = {i € Z' : i(P) is even}.

Let (i5,i7) = (3,1). Then Z; = {0,2,6} and Zy = {4,5}. We see that Z;
is covered by P and hence i(P) is even for i € Z. Thus 2{a; for i € Zs.
Therefore a4, a5 € {1,3} and ag,az2,a6 € {2,6}. If ap = 6 or ag = 6, then
3tagas so that ay = a5 = 1. This is not possible by modulo 3. Thus ay = ag
= 2. Since (%) (%2) = ((_ME)M) = —1, we get as = 6. Hence a4 = 1. Fur-
ther a5 = 3 since (%)(%) = (%) = —1. Also 5| a3 and 7] ay, other-
wise the assertion follows from the results of [MS03] for £ = 5 and [BBGHO06]

for kK = 6, respectively, stated in Section 1. In fact, ay = 7, a3 = 5
by ged(ayas,6) = 1. Thus (ag, a1, as, a3, aq,as,a6) = (2,7,6,5,1,3,2). The
proofs for the other cases of (i5,i7) are similar. We get (ag,...,a5) =

(1,5,6,7,2,1,10) when (is, i7) = (1,3), (a, . .., ag) = (1,2,7,6,5,1,3) when
(i5,47) = (4,2) and all the other pairs are excluded. Hence Lemma 6 with
k =T follows.

3.2. The case k = 11. Then 51d. By taking the mirror images (4) of (2),
there is no loss of generality in assuming that 5| n+isd, 11 |n-+i11d for some
pair (i5,i11) with 0 <i5 < 5, 4 <417 < 5. We apply Lemma 5 with Py = 0),
p1 =5, po = 11, (il,ig) = (i5,i11), I = [O,k) NZ, P = A(5,11) = {3} and
¢ < {1 = [k/3] to derive that either

|Z1| < ¢y, Ty is covered by P, Iy = {i € ' : i(P) is even},
or

|Zo| < ¢y, Iy is covered by P, I ={i €I :i(P) is even}.
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We compute Z1,Z> and we restrict attention to those pairs (is5,411) for which
min(|Z;|,|Z2|]) < ¢; and either Z; or Zy is covered by P. We find that
(i5,411) = (0,4),(1,5). Let (i5,411) = (0,4). Then Z; = {3,9} is covered
by P, i3 = 0 and i(P) is even for i € Zy = {1,2,6,7,8}. Thus 3{a; for i € T.
Further, p € {2,7} whenever p|a; with i € Zy. Therefore a; € {1,2,7,14}
for i € 7. By taking J = 7, we have 7o = Ig UI:,;|r UZ; and Zo = I;' UZs
with

9 =16}, Iy ={L7}, Iy={28}, IS ={16}, I;=1{2,7,8}.
Let (Z3,7%) = (Z4,Z; ). Then
jl = {1}7 j2 = {7}7 j3 = ®7 &74 = {278}

The possibility (ai,ag,a3,a4) € ({7}, {1}, {2},{14}) is excluded since 7|
i — i’ whenever a;,ay € {7,14}. Therefore a1 = 1, a7 = 7, as = ag = 2.
Further, ag = 1 since 6 € Igr and a; = 1, ay = 7. This is not possible
since 1 = (%)(%) = (%) = —1. Let (Z3,72) = (Z;,Z;). Then we
argue as above to conclude that as = ag = 1, a; = 2, ay = 14, which is not
possible since n + 2d and n + 8d cannot both be odd squares. The other case

(i5,411) = (1,5) is excluded similarly.

3.3. The cases 13 < k < 23. Then 11td and 131d. There is no loss of
generality in assuming that 11|n 4+ ¢11d, 13 |n + i13d for some pair (i11,413)
with 0 < 417 < 11, 0 < 9153 < (k‘— 1)/2 and further i13 > 2 if £ = 13.
We have applied Lemma 5 once in each of cases k = 7 and k = 11 but we
apply it twice for every case 13 < k < 23 in this subsection. Let Py = (),
pP1 = 11, D2 = 13, (il,ig) = (illa i13), 7= [O,k) N Z, P = Pl = A(11,13)
and ¢ < ¢y where ¢{; =3 if k =13, and ¢; = [k/5] + [k/17] if kK > 13. Then
6y < 3|T'| since |T'| > k — [k/11] — [k/13]. By Corollary 1, we derive that
7' is partitioned into M =: M; and B =: B; such that (M, By, P1, 1) has
Property $). Now we restrict to all such pairs (i11,413) satisfying | M| < ¢4
and M is covered by P;. We check that | M| > 2. Therefore 51d since M;
is covered by P;. Thus there exists i5 with 0 < i5 < 5 such that 5| n + isd.

Now we apply Lemma 5 with p; = 5, po = 11 and partition Bi(5,11)
into two subsets. Let Py = A(11,13) U {11, 13}, (i1,12) = (i5,411), Z = B,
P =Py := A(5,11) C {3,19,23} and ¢ < ¢y where ¢5 = 5,6,8,11 if k =
13,17,19, 23, respectively. Hence B is partitioned into Z; and Z» satisfying
either

|Z1] < ly, Iy is covered by Py, o = {i € Z' : i(Ps) is even},
or
|Zo| < ls, Ty is covered by Po, Iy = {i € I’ : i(P2) is even}.

We compute 77,75 and we restrict attention to those pairs (711, 413) for which
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min(|Z4|,|Z2]) < ¢2 and either Z; or Zy is covered by P,. We find that
(Z117213) (4 2)7(5 ) if k= 13; (070)7( ) ) if k=17, ( ) )7( ) )’(775)7
(7,9),(8,6),(9,7),(10,8) if £k = 19; and (0,0),(0,9),(1,10),(2,11), (4,0),
(5,1),( 7),(6,2),(6,8),(7,9),(8,10),(9,11) if k = 23.

Let (i11,413) be such a pair. We write M for the one of Z; or Zy which is
covered by P and B for the other. For i € B, we see that pta; whenever
p € Py since 17| a; implies 5| a;. Therefore

(18) i(Py) is even for i € B and pfa; for i € B whenever p € Py,

since B C Bj. Further we check that |[M| > 1 if k # 23 and > 3 if k = 23,
implying 31d.

By taking J = B, we get B = I} UIéIr UZ; and B = I; UZ; . Then
p € {2,7} whenever p|a; with i € Z; UZ; by (18). By computing 7,7, Z;,
we find that ¢’s have the same parity in exactly one of I; ,Z5 . Therefore we
deduce from (17) that

(a1, 02, 03,a4) © ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14}).

Let £ =13 and (i11,413) = (4,2). Then we have M; = {0, 5,10}, i5 = 0,
M = {3,9,12} and B = {1,6,7,8,11} since the latter set is not covered by
P, = {3}. Further i3 = 0, I = {6}, Z} = Z; = {8,11}, 72 = Z; = {1,7},
Tr = {L6,11}, T; = {7.8}, 7i = {11}, % = {8}, Js = {1}, 71 = {7}.
Hence a1y =1, a8 =7, a1 =14, a7 =2o0ra;1 =7,a8 =1, a1 = 2, ay = 14.
The second possibility is excluded since aj; = 7, ay = 14 is not possible.
Further, from (18) we get ag = 1 since 2{ag and 7{ag. Since 13 |n + 2d and
Tln+d, we get (52) — (%80) — (3) and —(571) — (38) = (2). We
observe that 13|n +2d, 11|n+4d, 7|n+d, 5|n, 3|n, 2|n +d, 5|a; for
i € M and 3|a; for i € M;. Now we see that ag € {5,15} and ag = 5 is
excluded since (%) % —(_71) Thus ag = 15. Next a1 = 14, as = 13 and
ag = 3. Also ag € {1,11} and a4 # 1 since (‘f—g) = (%) = —1. Similarly
we derive that a5 = 10, ag = 1, a7 =2, a8 = 7, a9 = 6, a;0 = 5, a11 = 1
and aj2 = 3. Thus (ag,a1,...,a12) = (15,14,...,6,5,1,3). The other case
(i11,713) = (5, 3) is similar and we get (ag,a1,...,a12) = (1,15,14,...,5,1).

Let k = 17 and (i11,413) = (0,0). Then we have M; = {5,10,15} and
i5 = 0. We see from the assumption of Lemma 6 with £k = 17, ¥’ = 13
that 4 < i17 < 13. Hence, from i17 € U,_5 11 13{ip +pj : 0 < j < [k/pl},
we get i17 € {5,10,11}. Further M = {3,6,12}, B = {1,2,4,7,8,9, 14, 16},
is = 0, I9 = {9}, I3 = {1,4,7,16}, 72 = {2,8,14}, T, = {1,4,9,14,16},
T; = {2,7.8}, 71 = {1,4,16}, Jo = {7}, Js = {14} and J4 = {2,8}.
Therefore a1 = a4 = a1 =1, a7 =7, a4 = 14, as = ag = 2. Thus ag = 1
by (18) and 2tag, 7tag. Now we see by the Legendre symbol mod 17 that
a1 = a4 = ag = a1 = 1 is not possible. The case (i11,%13) = (5, 3) is excluded
similarly.
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Let £k = 19 and (i11,413) = (0,0). Then we have M; = {5,10,15,17},
is = 0, i17 = 0, M = {3,6,12}, B = {1,2,4,7,8,9, 14,16, 18} and i3 = 0.
We see from i19 € U,_3511131786p +pj : 0 < j < [k/p]} and 2 <
it9 < 17 that i19 € {3,5,6,9,10,11,12,13,15}. Further, Z§ = {9,18},
7} = {1,4,7,16}, 72 = {2,8,14}, I = {1,4,9,14,16}, Z; = {2,7,8,18},
J1 ={1,4,16}, Jo = {7}, J3 = {14} and J; = {2,8}. Therefore a; = a4 =
a1 = 1, which is not possible by mod 19. The case (i11,413) = (7,5) is ex-
cluded similarly. Let (i11,413) = (0,9). Then M; = {2,5,7,12,17}, i5 = 2,
itr =5, M = {1,3,10,16}, B = {4,6,8,13,14,15,18}, i3 = 1 and i19 = 3.
We now consider (n + 6d)(n + 7d)---(n + 18d) = b’y’2. Then P(b') < 13.
By the case k = 13, we get (ag, a7, ...,a18) = (1,15,14,...,6,5,1) since 5 | a7
and 3| ayg. From 19 |n+ 3d, we get ({5) = (48¢) = ( 5 ) which together
with 13|n+9d, 11 |n, 7|n+d, 2|n, 5|az, 17| as, 3| a; implies a¢ € {2, 22},
a1 € {3,21}, a2 =5, a3 =19, a4 = 2 and a5 = 17. Now from ({) = (%2) =
(452), we get ag = 22, ay = 21. Thus (ag,a1,...,a18) = (22,21,...,6,5,1).
The case (i11,713) = (7,9) is similar and we get (ag, a1, ... ,alg) = (1,5,6,
.,21,22). For the pair (i11,713) = (10, 8), we similarly get (ag, a1, ..., as)
= (21,5,...,6,5,1,3). This is excluded by considering (n + 3d)(n + 6d)
--(n + 18d) and k = 6. For the pairs (i11,413) = (8,6),(9,7), we get
119 = 0, 1, respectively, which is not possible since ¢19 > 2 by the assumption
of the lemma.

Let k = 23 and (i11,713) = (0,0). Then M; = {5,10,15,17,20}, i5 = 0,
irp = 0, M = {3,6,12,19,21}, B = {1,2,4,7,8,9,14,16,18}, i3 = 0 and
i19 = 0 since 23fa19. We have i93 € {5,6,9,10,11,12,13,15,17,18} since
4 < i93 < 19. Here we observe that 231a19 and 4 < is3 < 19 in view of
our assumption that kta; for 0 < i < k — k' and k' < i < k with k = 23,
k' = 19. Further, 7§ = {9,18}, 71 = {1,4,7,16}, 73 = {2,8,14}, Z;" =
{1,4,9,14,16}, T; = {2,7,8,18}, 7y = {1,4,16}, 7 = {7}, Js = {14} and
Js = {2,8}. Therefore a1 = ag = a16 = 1, a7 = 7, a14 = 14, ag = ag = 2.
This is not possible since (‘21—:1))) = (g—é) = (“2%?) = (‘21—%) = (23) = 1. The cases
(i11,713) = (0,9), (1,10), (2,11), (4,0), (7,9), (8,10), (9, 11) are excluded sim-
ilarly. Let (ill,ilg) = (5, 1). Then ./Vll = {7, 10, 12, 17, 22}, i5 = 2, i17 = 10,
M ={0,3,4,6,8,15,21}, B = {9,11,13,18,19,20} and i3 = 0. This implies
either 23 | a4, 19| as or 23| as, 19| ay. Further, I = {9,18}, 71 = {11, 20},
73 = {13,19}, I." = {11,13,18}, I, = {9,19,20}, Jr = {11}, Jo = {20},
Js = {13} and J; = {19}. Therefore a;; = 1, ago = 7, a1z = 14, aj9 = 2.
Further, from (18) we get ag € {1,2}, aijg = 1 since T{agais, 21 a1s. However,

=2as9 € Z;, 18 € I.. Since (a“) = (“ﬁ) = 1, we see that 23| ay,

19|a8 By using (%) (alall) ((z zp)(ll zp))’ we get (az) _ (7, 4)

23 23
(&) =~ (i), (% <;> and (%) = (552). Now from 23] as, 19 as.
17|a10, 13|n+d 1

+ 5d, 7]n+6d 5]n+2d 3|n, 2| n+d, M; being

s
._[\/
3 ||



84 N. Hirata-Kohno et al.

covered by {5,17}, and M by {3,19,23}, we derive that (ag,a1,...,a) =
(3,26,...,6,5). The cases (i11,%13) = (5,7),(6,2), (6,8) are similar and we
get (ap,ai,...,a0) = (6,7,...,3,7),(7,3,...,7,6),(5,6,7,...,3), respec-
tively.

3.4. Introductory remarks on the cases k > 29. Assume ¢ 1d and g21d.
Then, by taking the mirror image (4) of (2), there is no loss of generality
in assuming that q1 |n + iq,d, g2 |n + ig,d for some pair (iq,,%q,) With 0 <
igp < q1, 0 < dg, < (k—1)/2 and further iy, > k — k' if ¢ = k. For
k = 61, by taking (n + 8d)---(n + 60d) and k = 53, we may assume that
max (isg,i61) > 8 if isg > 2. Let Po = 0, p1 = q1, p2 = qo, (i1,%2) = (igy,igy),
I=[0,k)NZ,P="P1:=Aqi,q2) and £ < ¢y =3 p [k/p]. We check that
0 < 3|T'| since |T'| > k—[k/q1] — [k/q2]. By Corollary 1, we get M =: M;
and B =: By with (M1, By, P1, ¢1) having Property $. We now restrict to all
such pairs (iq,,1q,) for which [M;| < ¢; and M, is covered by P;. We find
that there is no such pair (i4,,4g,) when k = 97.

3.5. The cases 29 < k < 59. As stated in Lemma 6, we have q; = 19,
g2 = 29 and P; = A(19,29) C {11,13,17,43,47,53,59}. Then the pairs
(ig1,1q,) are given by

kE=29:(0,9),(1,10),(2,11),(3,12),(4,13),(15,5),(16,6), (17,7), (18, 8);
1,10), (2,11), (3,12), (4,13), (11, 1),

k=31:(0,0),(0,9), (1,10
(12,2),(13,3), (14,4), (15,5), (16,6), (17, 7), (18, 8);
k =37:(0,0),(0,9),(1,10), (2,11), (3,12), (4, 13),(17,7),(18,8);
k=41:(0,0),(2,11),(3,12), (4,13);
k=43:(0,0),(1,1),(3,12), (4,13), (5,14), (6, 15), (7, 16), (8,17);
k=47 (0,0), (1,1),(7,16), (8,17), (9, 18), (10, 19), (11, 20),
(12,21), (13,22), (13,23), (14, 23);
k=53:(0,0),(1,0), (1,1), (13,22), (13,23), (14, 23), (14, 24),
(15,24), (15,25), (16, 25), (16, 26), (17, 26);
k=59:(0,0),(0,28),(1,0), (1,1),(2,1),(3,2), (17,27), (18, 28).

Let k = 31 and (i19,729) = (0,9). We see that P; = {11,13,17}, M; =
{4,5,12,16,21,25,27} and By = {1,2,3,6,7,8,10,11,13,14, 15,17, 18, 20,
22,23,24,26,28,29,30}. Since M, is covered by P;, we find that 11 di-
vides as, a1, as7; 13 divides ajo, ass; and 17 divides aq4, ao;. Hence 11 = 5,
i13 = 12, i17 = 4. We see that ged(11-13-17,a;) = 1 for i € B1. Now we take
Po="P1U {19,29}, p1 =11, po = 13, (il,iz) = (ill,ilg) = (5, 12), I = B,
P =Py = A11,13)\ Po = {5,31} and £ < by = > p [k/p| = 8. Thus
|Z'| = |B1]| = 21 > 2¢5. Then the conditions of Corollary 1 are satisfied and
we have M =: My, B =: By such that (Mg, By, P2, {2) has Property $. We
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get My ={1,3,7,8,18,23,28}. This is not possible since My is not covered
by P,. Further, the following pairs (19, i29) are excluded similarly:

k=29:(0,9),(1,10), (2,11),(3,12), (4,13), (15,5), (16,6), (17, 7), (18,8);
k=31:(1,10),(2,11),(3,12), (4,13), (18,8).

Thus k£ > 29.

Let & = 59 and (i19,729) = (0,0). Then we see that P; = {11,13,17,
43,47,53,50}, M; = {11,13,17,22,26,33,34, 39, 43,44, 47, 51,52, 53, 55},
B = {1,2,3,4,5,6,7.8,9,10,12, 14,15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 30,
31,32, 35,36, 37,40, 41,42, 45, 46, 48,49, 50, 54, 56}, i11 = i13 = i17 = 0,
{43,47,53} is covered by {43,47,53,59} =: Pi. Let p|a; for i € B; and
p € P1. Then we show that i € {4,6,10}. Let 59 | ag3. Then {47,53} is cov-
ered by {43,47,53}. Let 43| aq7. If 43| a; with i € By, then i = 4 and 43p | a4
with p € {47,53} since i(P1) is even. This implies either 53 | as3, 43-47 | a4 or
47 | as3,43 - 53 | ay. Similarly we get ¢ € {4,6,10} by considering all the cases
59| aqs, 59 | a47 and 59t agzaqrass. We observe that 591 as3 since 6 < i59 < 53.
Hence we conclude that pta; for i € By \ {4,6,10} and p € P;. Further we
observe that

(19) iso € My U {19,29,38} U {6,10}.

Now we take Py = Py U {19,29}, p1 = 11, po = 13, (i1,i2) = (0,0),
T = B\ {4,6,10}, P = Py := A(11,13)\ Py = {5,31,37} and ¢ < {5 =
> pep, | k/p] = 16. Thus |Z'| = [Bi| — 2 > 2{5. Then the conditions of Corol-
lary 1 are satisfied and we have M =: My, B =: By with (May, By, Pa, l2)
having Property $. We get My = {5,15,20, 30,31, 35,37,40,45}, By =
(1,2,3,7, 8,09, 12, 14, 16, 18, 21, 23, 24, 25, 27, 28, 32, 36, 41, 42, 46, 48,
49, 50, 54, 56}, i5 = 0, and 31| ag1, 37| agy or 31 |asz, 37|as1. Now we take
Po = P1U732U{19,29}, pP1 = 5, P2 = 11, (il,ig) = (0,0), I= BQ, P = 733 =
A(5,11) \ Py = {3,23,41} and £ < l3 = >  p [k/p]. Then by Lemma 5,
we see that M = {3,6,12,21,23,24,27,41,42,46,48,54} is covered by P
and i(P3) is even for i € B = {1,2,7,8,9, 14, 16, 18, 28, 32, 36, 49, 56}. Thus
i3 = i93 = 141 = 0 and p € {2, 7} whenever p|a; with i € B. Putting J = B,
we have B :I§ UI% U132 and B :I5+ UZ; with

79 ={9,18,36}, Ti={1,7,16,28,49}, T3 =1{2,8,14,32,56}
and
75 ={1,9,14,16,36,49,56}, Iy ={2,7,8,18,28,32},
so that
T ={1,16,49}, Jo={7,28}, Jz={14,56}, Ji={2,8,32}.

Hence (al,ag,ag,a4) - ({1},{7},{14},{2}) by (17) Thus a1 = A1 = Q49
=1, a7 = ass = 7, alqg = as¢ = 14, as = ag = aze = 2. Further, we get
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a9 = azg = 1 and a18 = 2 since 9,36 € I5+ and 18 € Z; . Since

(20) <;—é> =1 fora; € {1,T7},
we see that (g5) = 1 for i € {1,7,9,16,28,36,49}, which is not possible
by (19).

Let k = 41 and (i19,4i29) = (2,11). Then we see that P; = {11,13,17},
My = {1,6,7,14,18,23,27,29}, By = {0,3,4,5,8,9, 10,12, 13,15, 16, 17, 19,
20,22, 24,25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38,39}, i1 = 7, i13 = 1,
i17 = 6. Further ged(a;, 11 - 13 -17) = 1 for i € By. Now we take Py =
Py U {19,29}, p1 = 11, po = 13, (i1,i2) := (7,1), T = By, P = Py :=
A(11,13)\ Py = {5,31,37} and £ < €p = 3, .p, [k/p] = 13. Then |T'| =
|B1| > 2{5. Thus the conditions of Corollary 1 are satisfied and we get M =:
My and B =: By such that (Ma, Ba, P2, £2) has Property $). We have My =
{0,3,5,9,10,20,25,30,35), By = {4,8,12,13, 15, 16, 17, 19, 22, 24, 26, 28, 31,
32,33, 34, 36,37,38,39}, i5 = 0. Further 31-37 | asag, 311ags. We take Py =
P U Py U{19,29}, p1 = 5, po = 11, (i1,i2) :== (0,7), T = By, P =
Ps = A(5,11) \ Py = {3,23,41}, £ < > p.[k/p| and apply Lemma 5
to see that M = {13,16,17,19,28,34,37} is covered by Ps, i3 = 1, i(P3) is
even for i € B = {4,8,12,22,24, 26,31, 32, 33, 36, 38,39}. Further, iy3 = 17,
i1 € {2,11,21} UM UM UM U{4,22,31} or vice versa. Here we observe
that i4; exists since 41{d. Thus 23 - 41| [ a; where i runs through the set
{2,11,21}UM; UM, U{4, 22, 31}. Therefore a; € {1,2,7,14} for i € TLUZ2,
where B=IYUZ1UT3 B =1 UZ; with

79 ={4,22,31}, Ti={12,24,33,36,39}, 73 = {8,26,32,38}
and
T+ ={4,24,26,31,36,39}, ZI. = {8,12,22,32,33,38}
by taking J = B. We get
J1=1{24,36,39}, Jo={12,33}, J3={26}, Ji={8,32,38},

and agqy = age = azg = l,a12 = a3z = 7,a26 = 14,a8 = azz = azzs = 2
by (17). Since

(21) <%> =1 fora; € {12},

we see that (Z—i) =1 for i € {8,24,32,36,38,39}, which is not valid by the
possibilities for i47.

All other cases are excluded similarly. Analogously to (20) and (21), we
use () =1 for
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{1,7} if k=37,53,59,
a; € ¢ {1,2} if k=31,41,47,
{1,14} if k=43
to exclude the remaining possibilities.

3.6. The case k = 61. We have ¢1 = 59, ¢o = 61 and P; = {7,13,17,29,
47,53}. Then the pairs (iq,,%q,) are given by (8,6),(9,7),(10,8),(11,9), i.e.
(i42,7) with 6 <7 <9.

Let (i59,461) = (8,6). Then P; = {7,13,17,29,47,53}, M; = {2,4,9,11,
14,15, 16, 20, 25, 28, 32, 33, 38, 39, 41, 46, 50, 53, 54,60}, B, = {0,1,3,5,7, 10,
12,13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 40, 42, 43,
44,45,47,48,49,51,52,55,56,57,58,59}, iy = 4, 413 = 2, i17 = 16, ig9 = 9
and a4, agp are divisible by 47,53. Further, ged(p,a;) = 1 for i € B; and
p € P1. Let Py =P U {59,61}, p1 =17, po =17, (’il,ig) = (4, 16), T = B,
P =Py :=A7,17)\ Py = {11,19,23,37} and ¢ < ly = Epepz [k/p| = 15.
Then 205 < |Z'| = |By| — 1. By Corollary 1, we get M =: My, B =: By
such that (Mg, By, P2, l2) has Property $). We find that My = {1,10, 12,
21, 23, 29, 30, 34, 44, 45, 48, 56}, B, = {0, 3, 5, 7, 13, 17, 19, 22, 24, 26, 27,
31, 35, 36, 37, 40, 42, 43, 47, 49, 51, 52, 55, 57, 58, 59}, i11 = 1, i19 = 10,
iog = 21, i3y = 30. Now we take Py = P; U Py U {59,61}, p1 = 11,
D2 = 59, (il,iQ) = (1,8), I = BQ, P = 733 = A(11,59) \ 730 = {31,41}
and £ < 03 =3 p [k/p] = 4. Then 2{3 < |Z'| = [Bs|. By Corollary 1, we
get M =: M3 and B =: B3 such that (M3, Bs, Ps, {3) has Property . We
get M3 = {0,5,26,36}, which cannot be covered by Ps. This is a contradic-
tion. The remaining cases are excluded similarly.

3.7. The cases k = 67,71. We have q; = 43, g0 = 67 and P; C {11,13,
19,29,31,37,41,53,71}. Then the pairs (iq,,%q,) are given by

k=67:(i,i), 6 <i< 33
k=T71:(i,i),0<i<35, 424,25 and (24,0),(25,1), (26,2), (27, 3).

Let k = 71 and (i43, i67) = (27,3). We see that P, = {11, 13,19, 29, 31, 37,
41,53,71}, My = {4,5,8,12,13,15,17, 18, 26, 29, 31, 32, 33,37, 39, 41,44, 48,
51,57,59}, B; = {0,1,2,6,7,9,10,11, 14, 16,19, 20, 21, 22, 23, 24, 25, 28, 30,
34, 35, 36, 38, 40, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63,
64, 65,66,67,68,69}, i11 = 4, i13 = 5, i19 = 13. Therefore {8,12,17,29, 33,
39,41} is covered by {29, 31,37,41,53,71} implying either iog = 12 or igg €
{17,29,33}, i31 = 8. Let i € By and p|a; with p € P;. Then thereisa g € P,
such that pq | a; since i(Py) is even. Next we consider the case i3; = 8. Then
{12,17,29, 33,41} =: M is covered by {29,37,41,53,71} and ig9 # 12. For
29 € M, we may suppose that either 29 | agg, 41 | a17, 29-41 | ass or 29| ago,
41| a41, 29 - 41 | ap. Thus 0 or 58 in B; correspond to 29. We argue as above
that for any other element of M, there is no corresponding element in Bj.
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For the first case, we derive similarly that 31]|ass, 37|asg, 31 - 37| az or
37| a7, 37 - 71| asg or 37| agg, 3771 |ags or 41| ay7, 37 71| ass. Therefore

29-31-37-41-53-71| [[(n+id) forie MyU{3,27,70} UB,
where B} = {2,54, 58,63} if ia9 = 12 and {0, 58} otherwise. Further,
(22) i1 €E My U{27}UB) and 7 # 32.

For each possibility ig9 € {0,4,12,17}, we now take Py = P; U {43,67},
pP1 = 19, P2 = 29, (’il,iQ) = (13,i29), I= 31\3/1, P = PQ = A(19, 29)\P0 =
{17,47,59,61} and £ = £, = Y, p [k/p] = 11. Then |T'| = |By| — 4 > 205.
Thus the conditions of Corollary 1 are satisfied and we get M =: My and
B =: By with (May, Ba, Pa, £2) having Property $). We check that |[Ma| < /5
only at i99 = 12, in which case we get My = {9, 11, 19, 23, 36,53}, B, = {0, 1,
6,7, 10, 14, 16, 20, 21, 22, 24, 25, 28, 30, 34, 35, 38, 40, 42, 43, 45, 46, 47, 49,
50,52, 55,56, 60, 61, 62, 63, 64, 65, 67, 68,69}, i17 = 2and {9, 11, 23} is covered
by {47,59,61}. Thus 47-59-61 | agayyass. Further, pta; fori € By and p € Po.
We now take Py = P1 UP2U{43,67}, p1 = 11, po = 13, (i1,12) := (4,5), 7 =
By, P = Ps := A(11,13)\Py = {5} and £ = 5 = [k/5] = 15. Then|T’| = |B|
> 2/3. By Corollary 1, we get M =: M3 and B =: Bs such that (Ms,
B3, Ps, 3) has Property $. We calculate M3 = {0, 10, 25, 30, 35, 40, 50, 55,
60, 65}, By = {1, 6, 7, 14, 16, 20, 21, 22, 24, 28, 34, 38, 42, 43, 45, 46, 47, 49,
52, 54, 56, 58, 61, 62, 63, 64, 66, 67, 68, 69}, i5 = 0 and further 51 agpays.
Lastly, we take Py = P;UP2UP3U{43,67}, p1 = 5, p2 = 11, (i1,12) := (0,4),
I = 33, P = 734 = A(5,11) \’Po = {3,23} and ¢ = £4 = Zp€P4 “{/p—‘ By
Lemma 5, we see that M = {16, 22, 24, 28, 43, 46, 47, 49, 64, 67} is covered by
Pu, iz = ing = 1, B = {1,6,7,14,21, 34, 38, 42, 52, 56, 61, 62, 63, 68, 69} and
hence 3tarassaseas1 and possibly 3 - 23 | ay. Therefore a; € {1,2,7,14} for
i € B\{1}. By taking J = B\ {1}, we have B\ {1} = ZYUZ1 UZ; = I UT,
with

79 = {7,34,52,61}, Ti ={6,21,42,63,69}, 7T, ={14,38,56,62,68}
and
7+ = {6,14,21,34,56,61,69}, Z; = {7,38,42,52,62,63,68}.
Therefore
J1=16,21,69}, Jo={42,63}, J3={14,56}, T, = {38,62,68},

and hence ag — a21 — A9 — 1, aq2 = a3 — 7, a4 = a6 — 14, ass —
ago = agg = 2 by (17). Further, we get asq = agy = 1 and as2 = 2 by taking
residue classes modulo 5. Since (%) = (%) = 1, we see that (%) =1 for
i €{6,21,34,38,52,61,62,68,69}, which is not valid by the possibilities for

i71 given by (22).
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Let k = 67 and (i43,167) = (9,9). We see that P; = {11, 13,19, 29, 31, 37,
41,53}, My = {20,22,28,31,35,38, 40,42, 46,47, 48,50, 53, 61, 62, 64, 66},
B, = {0,1,2,3,4,5,6,7,8,10, 11,12, 13, 14,15, 16, 17, 18, 19, 21, 23, 24, 25, 26,
27,29, 30, 32, 33, 34, 36, 37, 39, 41, 43, 44, 45, 49, 51, 54, 55, 56, 57, 58, 59, 60,
63,65}, i11 = i13 = i19 = 9 and {38, 40, 46,50, 62} is covered by {29, 31,37,
41,53}. Further, pta; for i € By and p € P; except possibly when 29 | asg,
41 | ag2, 29 - 41| az1. Now we take Py = P1 U {43,67}, p1 = 11, py = 13,
(i1,42) == (9,9), T = By \ {21} and P = P, := A(11,13) \ P, = {5, 17,47,
59,61}. If 51d, we observe that there is at least one multiple of 5 among
n+ (i1 +11i)d, 0 <i <5, and £ < 3 p [k/p] — 1 = 23. Thus we always
have ¢ < 23 = {5. Then |Z’| = |B1| — 1 > 2¢5 since |By| = 48. Thus the con-
ditions of Corollary 1 are satisfied and we get M =: My, B =: Bs such that
(Ma, Ba, Pa, l2) has Property $). We have Mo = {0,1,2,3,5,6,7,8,14,19,
24,26,29,39,43,44,49,54,56,60}, which cannot be covered by Ps. This is
a contradiction. The cases k = 67, (i43, ig7) = (i,7) with 9 < i < 28, and
k =71, (i3, i67) = (i,i) with 13 < ¢ < 28, 7 # 24,25, are excluded in
the same way as in this paragraph. The remaining cases are excluded in the
same way as k = 71, (i43, i67) = (27,3) given in the preceding paragraph.

3.8. The cases k = 73,79. We have ¢q; =23, ¢o="73 and P; C{13, 19, 29,
31,37,47,59,61,67,79}. Then the pairs (iq,,%4,) are given by

k=173:(6,2),(7,3),(8,4),(9,5);

k=19:(0,0),(1,1),(2,2),(7,3),(8,4),(9,5),(10,6),(11,7), (12, 8),

(13,9), (14,10), (15, 11), (16, 12), (17, 13), (18, 14), (19, 15).
These pairs are of the form (i + 4, 7) except for (0,0), (1,1),(2,2) in the case
kE=179.

Let k =79 and (i93,i73) = (8,4). We see that Py = {13, 19,29, 31, 37,47,
59,61,67,79}, My = {1, 3, 10, 12, 15, 16, 18, 19, 20, 25, 30, 38, 39, 40, 46, 48,
51, 58, 64, 78}, By = {0, 2, 5, 6, 7, 9, 11, 13, 14, 17, 21, 22, 23, 24, 26, 27,
98, 29, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 50, 52, 53, 55, 56,
57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, T6}, i13 = 12,
ig = 1 and {3,10,15, 16,18, 19, 30,40, 46, 48, 78} is covered by {29,31,37,
47,59,61,67,79}. Thus

29-31-37-47-59-61-67-79| [[(n +id)

for i € {3,10,15, 16, 18, 19, 30, 40, 46, 48, 78}.
Further, we have
(23) i79 € {10, 15,16, 18,19, 30, 40, 46, 48}

and either igg = 19 or igg S {1,10, 16, 18}, i31 = 15, i37 = 3, i59 = 19.
Also, for p € Py, we have pta; for i € By since i(Py) is even for i € By.



90 N. Hirata-Kohno et al.

For each possibility i29 € {1, 10, 16, 18,19}, we now take Py = P; U{23, 73},
P1 = 19, p2 = 29, (il,iz) = (l,igg), I = Bl, P = PQ = A(19,29) \ P(]
= {11,17,43,53,71} and £ = by = > p [k/p] = 19. Then |T'| > |By| — 2
> 205. Thus the conditions of Corollary 1 are satisfied and we have M =:
Mo, B =: By such that (May, By, P2, ¢2) has Property $), implying iq9 = 19,
in which case we get My = {0,6,9,11,22, 24, 26, 33, 34,43, 44, 55,60, 66},
By = {2,5,7,13, 14, 17, 21, 23, 27, 28, 29, 32, 35, 36, 37, 41, 42, 45, 47, 49, 50,
52, 53, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i11 = 0,
i17 = 9 and {6, 24,34} is covered by {43,53,71}. Thus 43 - 53 - 71 | agaz4saza.
Further, pta; for i € By and p € Pa. We now take Py = P; U Py U {23, 73},
p1 =11, ps = 13, (i1, i2) := (0,12), T = By, P = Py := A(11,13) \ Py = {5}
and ¢ = (3 = [k/5] = 16. Then |Z’| = |Ba| > 2¢3. By Corollary 1, we get
M =: M3 and B =: B3 with (M3, Bs, Ps,¢3) having Property $). We cal-
culate Mg ={7,17,32,37,42,47,57,62,67,72}, B3 = {2,5,13,14, 21, 23, 27,
98, 29, 35, 36, 41, 45, 49, 50, 52, 53, 56, 59, 61, 63, 65, 68, 69, 70, 71, 73, T4,
75,76}, i5 = 2 and 5ta; for i € Bs. Lastly, we take Py = P; U P U
P3 U{23,73}, p1 = 5, p2 = 11, (i1,i2) == (2,0), T = B3, P = Py :=
A(5,11) \ Py = {3,41} and £ = &y = >_ p, [k/p]. By Lemma 5, we see
that M = {23,29,35,36,50,53,56,65,71, 74} is covered by Py, i = 2,
iy = 36, B = {5,13,14, 21,28, 41,45, 49, 59, 61, 63, 68, 69, 70, 73, 75, 76} and
hence a; € {1,2,7,14} for i € B. By taking J = B, we have B = I U T4
UZ3 =7 UZ; with

79 = {5,14,41,59,68}, I3 = {13,28,49,61,70,73,76},
72 = {21,45,63,69, 75}
and
7+ = {13,21,28,41,61,63,68,73,76}, ZI. = {5,14,45,49,59,69,70,75}.
Thus
J1=1{13,28,61,73,76}, Jo={49,70}, J3={21,63}, Jy = {45,69,75},
and hence a13 = ass = ag1 = ar3 = arg = 1, agg = azo = 7, az1 = ag3 = 14,
as5 = agg = ars = 2 by (17). Further, we get aq1 = ags = 1 and a5 = azg = 2
by residues modulo 5. Since (%) = (%) = 1, we see that (%) =1 fori e
{5,13,28,41,45,59,61, 68,69, 75,76}, which is not valid by the possibilities
for i79 given by (23). The other cases are excluded similarly.
3.9. The case k = 83. We have q; = 37, g2 = 83 and P; = {17, 23,29, 31,

47,53,59,61,67,71,73}. Then the pairs (iq,iq,) are given by

(13,4),(14,5), (15,6),(16,7), (17,8), (18,9), (19, 10),

(20,11), (21,12), (22, 13), (23,14), (24, 15), (25, 16), (26, 17).

These pairs are of the form (i +9,7) with 4 < < 17.
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Let (ig7,is3) = (13,4). We see that P, = {17,23, 29, 31, 47, 53, 59, 61, 67
71,73}, My = {0, 2, 14, 16, 18, 19, 20, 25, 26, 28, 29, 34, 36, 40, 41, 53, 56
58, 64, 70}, By = {1,3,5,6,7,8,9, 10, 11, 12, 15, 17, 21, 22, 23, 24, 27, 30, 31,
32, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 59, 60,
61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82},
i17 = 2, ing = 18, isg = 0, i3 = 25 and {14, 16, 20,26, 28,34, 40} is covered
by {47,53,59,61,67,71,73}. Further, pta; for i € By and p € P;. For each
possibility i73 € {14, 16, 20, 26, 28, 34,40}, we take Py = P; U {37,83}, p1 =
23, P2 = 73, (il,ig) = (18,i73), I = Bl, P = PQ = A(23,73)\P0 =
{13,19,79} and £ = by = 3~ p [k/p] = 14. Then |I'| = |By| > 2(3. Thus
the conditions of Corollary 1 are satisfied and we get M =: My, B =: By such
that (Mag, Ba, P2, £2) has Property ), which is possible only if i73 = 14. Then
My = {8,9,11,22, 30, 35,48,49,61, 68, 74}. Therefore i;3 =9, 119 = 11 and
i7g = 8. This is not possible by applying the case k = 73 to (n+9d)--- (n+
81d). Similarly, for (ig7,is3) = (14,5), we get ir3 = 15, iy9 = 9 and this is
excluded by applying the case k = 73 to (n + 10d) - - - (n + 82d). For all the
remaining cases, we continue similarly to find that Ms is not covered by Po
for the possible choices of i73, and hence they are excluded.

3.10. The case k = 89. We have ¢1 =79, ¢o = 89 and P; = {13,17,19,
23,31,47,53,71,83}. Then the pairs (i4,,i4,) are given by

(16,6), (17,7), (18,8), (19,9), (20, 10), (21, 11).

These pairs are of the form (7 4+ 10,7) with 6 <7 < 11.

Let (irg,ig9) = (16, 6). We see that P; = {13,17,19,23, 31,47, 53, 71,83}
M = {0,1,2,3,4, 10, 12, 17, 19, 24, 26, 27, 30, 33, 38, 42, 43, 44, 48, 49, 56,
57,61, 64, 69, 72, 76, 78, 82}, By = {5, 7,8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23,
25, 28, 29, 31, 32, 34. 35, 36, 37, 39, 40, 41, 45, 46, 47, 50, 51, 52, 53, 54, 55
58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 73, T4, 75, 77, 79, 80, 81, 83, 84, 85
86, 87, 88}, i13 = 4, i17 = 10, i19 = 0, do3 = 3, i31 = 2, igr = 1 and
{12, 24,42} is covered by {53,71,83}. Further, pfa; for i € By and p € P;.
Now we take Py = P1 U {79,89}, p1 = 31, p2 = 89, (i1,i2) := (2,6), Z = By
and P = Py := A(31,89) \ Pp = {7,11,41,59,73}. If 7td, we observe that
there is at least one multiple of 7 among n + (i13 + 13¢)d, 0 < i < 6,
and £ < by =3 p [k/p] —1 = 28. Thus in all cases, we have { < {5 and
|Z'| = |B1| > 2¢5. Therefore the conditions of Corollary 1 are satisfied and we
get M =: My and B =: By with (May, By, P2, £2) having Property $). We find
Mo = {7, 11, 13, 22, 25, 29, 32, 36, 39, 40, 51, 53, 54, 60, 62, 67, 73, 74, 81,
84, 88}, By = {5, 8, 9, 14, 15, 18, 20, 21, 23, 28, 31, 34, 35, 37, 41, 45, 46, 47
50, 52, 55, 58, 59, 63, 65, 66, 68, 70, 71, 75, 77, 79, 80, 83, 85, 86, 87}, ir = 4,
i11 = 7,141 = 13 and {22, 36} is covered by {59, 73}. Further, for p € Pa, pfa;
for i € By\{18}. We take Py = P1UP,U{79,89}, p1 = 41, p2 = 79, (i1,12) :=
(13,16), T = By \ {18}, P = P3 := A(41,79) \ Py = {37,43,61,67} and ¢ =
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by =3 ep,Ik/p] =10. Then [Z'| = |Z| = |Bz|—1 > 2{3. Thus the conditions
of Corollary 1 are satisfied and we have M =: M3, B =: Bs such that
(M3, B3, Ps, £3) has Property $). We get M3 = {9,21,28,34,52,58}, B3 =
{5, 8, 14, 15, 20, 23, 31, 35, 37, 41, 45, 46, 47, 50, 55, 59, 63, 65, 66, 68, 70, 71,
75, 77, 79, 80, 83, 85, 86, 87}, igr = 21,is3 = 9 and {28, 34} is covered by
{61,67}. Therefore p € {2,3,5,29} whenever p|a; for i € Bs. Now we take
Po=P1UPyUP3U{79,89}, p1 =7, p2 = 17, (i1,42) := (4,10), Z = Bs,
P =Py :=A(7,17)\Po = {29} and ¢ = {4 = [k/29] = 4. Then |Z’| = |Bs|—1
since 46 € Bz and |Bs| —1 > 2/3. By Corollary 1, we get M =: My and B =:
By with (My, By, Py, £4) having Property $. We find My = {8,37,66}, By =
(5,14, 15, 20, 23, 31, 35, 41, 45, 47, 50, 55, 59, 63, 65, 68, 70, 71, 75, 77, 79, 80,
83, 85, 86, 87}, 129 = 8 and P(a;) < 5 for i € By. Now we get a contradiction
by taking k = 6 and (n+47d)(n+55d)(n+63d)(n+71d)(n+79d)(n+87d) =
'y, Similarly the pair (i7g,ig9) = (17,7) is excluded by applying k = 6 to
(n+48d)(n+56d)(n+64d)(n+72d)(n+80d)(n+88d). For all the remaining
cases, we continue similarly to find that Mg is not covered by P3, and hence
they are excluded. =

4. Proof of Lemma 7. Assume that Q;td and Q21d. Then, by taking
the mirror image (4) of (2), there is no loss of generality in assuming that
0 <ig, < Q1,0 <ig, <min(Q2 —1,(k—1)/2). Further, ig, > k — k" if
Q2 = k. Let Po = {Qo}, p1 = Q1, p2 = Q2, (i1,12) := (iQ,,1q,), T = [0,k)NZ
and P = P; := A(Q1,Q2) \ Po. Then |Z'| > k — [k/Q1] — [k/Q2] and
€ <ty where {1 =3 p [k/p]. In fact we can take {1 =3 p [k/p] —1if
(k, Qo) = (79,23) or (k,Qo) = (59,29) with i7 < 2 by considering multiples
of 13,11 or 19, 7,11, respectively.

Let (k,Qo) # (79,73). Then ¢1 < 3|Z’|. We observe that i(Py) = 0 for
i € T’ since Qg | d, and by Corollary 1, we get M =: M1, B =: B; such that
(M, By, P1,41) has Property $). We now restrict to all such pairs (ig,,ig,)
with |[M;| < ¢; and M covered by P;. These pairs are given by

k Qo (Q1,Q2) (1Q157Q2)

29 19 (7,17)  (0,0),(0,11)
37 190r29 (7,17)  (0,0),(1,2)
A7 29 (7,17)  (0,0),(4,12)
59 29 (7,17)  (1,1),(1,6)
71 43 (53,67) (0,0)

89 79 (23,73)  (0,0), (19, 15)

Let (k,Qo) = (79,73) and (Q1,Q2) = (53,67). We apply Lemma 5 to
derive that either |Z;| < ¢1, Z; is covered by Py, i(Py) is even for i € Zy, or
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|Zo| < ¢4, Is is covered by P1, i(P1) is even for i € Z;. We compute 7, Zo
and we find that both Z; and Z, are not covered by P; for each pair (is3,i67)
with 0 <153 < 53, 0 < ig7y < (k: - 1)/2.

Let (k,Qo) = (37,29), (Q1,Q2) = (7,17) and (i7,i17) = (1,2). Then
Py = {11,13,19,23,37}. We find that M; = {3,7,10,13,14,17,23,25},
By ={0,4,5,6,9, 11, 12, 16, 18, 20, 21, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35},
i11 = 3, 413 = 10 and {7,13,17} is covered by {19, 23,37}. Further, pfa; for
p € P1, i € Bi. Now we take Py = P U {7,17,29}, p1 = 11, pa = 13,
(i1,32) == (3,10), T = By, P = Py := A(11,13) \ Py = {5,31} and
=1y =3 cp,[k/p] = 10. Thus [Z'| = |Z| = [Bi| = 21 > 2{5. Then the
conditions of Corollary 1 are satisfied and we have M =: My, B =: By such
that (Mg, B2, P2, l2) has Property . We get Mo = {5,6,16,21,26,31},
By = {0,4,9,11,12,18,20,24,27,28,30,32,33,34,35}, i5 = 1, 31|as and
5taq1. Also, P(a;) < 3fori € By and P(as;) = 5. Thus P(aspas; ---ass) <5
and this is excluded by the case £ = 6. The other cases for k = 29, 37,47 are
excluded similarly. Each possibility is excluded by the case k = 6 after show-
ing P(ajaz---ag) < 5 when (k,Qo) € {(29,19),(37,19), (37,29), (47,29)},
(i7,i17) = (0,0); P(a22a23 . -a27) < 5 when (k,Qo) = (29, 19), (i7,il7) =
(0, 11); P(a30a31 B -a35) <5 when (k‘,Qo) = (37, 19), (i7,i17) = (1,2); and
P(a40a41 ce a45) <5 when (k‘, Qo) = (47, 29), (i7, ’i17) = (4, 12).

Let (k,Qo) = (59,29), (Q1,Q2) = (7,17) and (i7,i17) = (1,1). Then
Py = {11,13,19, 23, 37,47,59}. We find that M; = {0, 12, 14, 20, 23,24, 27,
30, 34, 38, 39, 40, 45, 47, 48, 53, 56,58}, B = {2,3,4,5,6,7,9,10,11,13, 16,
17,19,21,25, 26, 28, 31, 32, 33, 37, 41, 42, 44, 46, 49, 51, 54, 55}, i11 = i13 = i19
= i93 = 1 and {30, 38, 48} is covered by {37,47,59}. Further, pta; for p € Py,
1€ Bl. Now we take P() = PlU{'?, 17, 29}, pP1 = 11, P2 = 137 (il,ig) = (1, 1),
T =B, P =Py := AL, 13)\Py = {5,31,43} and € = £, = 3, [k/p]. By
Lemma 5, we get M = {6, 11,16, 21, 31, 32,41, 44, 46}, is = 1, 31-43 | azzaua,
and i(P2) is even for i € B = {2,3,4,5,7,9,10,13,17,19, 25, 26, 28, 33, 37,
42,49,51,54,55}. Further, for p € Py, pta; for i € B. Finally we apply
Lemma 5 with Py = P U Py U {7,17,29}, p1 = 5, po = 11, (i1,is) =
(1,1), Z = B and P = P3 := A(5,11) \ Py = {3,41,53}. We get M; =
{4,7,13,25,28,42,49, 54,55}, which is covered by Ps, i3 = 1, {42, 54} is cov-
ered by {41,53} and i(P3) is even for ¢ € By = {2,3,5,9,10,17,19,33,37}.
Hence P(a;) < 2 for i € By. Since (55) = (35) and (22—9) # 1, we see that
a; = 1 for ¢« € By. By taking J = Bj, we derive that either I;' = or
7, =0, which is a contradiction. The other case (i7,417) = (1, 6) is excluded
similarly.

Let (k,QD) = (71,43), (Ql,Qg) = (53,67), (i53,i67) = (0,0). Then P; =
{7,11,13,19,23,71}. We get M; = {7,11,13, 14,19, 21, 22, 23, 26, 28, 33, 35,
38,39,42, 43,44, 46, 52,55, 56, 57,63, 65, 66,69, 70}, By = {1,2,3,4,5,6,8,9,
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10, 12, 15, 16, 17, 18, 20, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 40, 41, 45, 47, 48,
49, 50, 51, 54, 58, 59, 60, 61, 62, 64, 68}, ir = i11 = 13 = i19 = i3 = 0,
i71 = 43. Further, for p € Py, pfa; for i € By. Now we take Py = P; U
{43,53,67}, p1 = 11, po = 13, (i1,i2) := (0,0), Z = By, P = Py :=
A(11,13) \ Py = {5,17,29,31,37,47,59,61} and £ = £, = 3, . [k/p]. By
Lemma 5, we see that M = {5,10, 15,17, 20, 29, 30, 31, 34, 37,40, 45,47, 51,
58,59,60,61,62,68} is covered by P2 and i(Ps) is even for i € B = {1,2, 3,
4,6,8,9,12, 16,18, 24, 25, 27, 32, 36, 41, 48, 49, 50, 54, 64}. We get i5 = i17 =
ing = iz = 0, and {37,47,59,61} is covered by {37,47,59,61}. Thus
37 - 47 - 59 - 61‘@37&470,59&61. Further, p{ai for © € B and p € Py. We
take Py = P1 U P2 U{43,53,67}, p1 =5, p2 = 11, (i1,42) := (0,0), Z = Bo,
P ="Ps:=A(5,11)\Po = {3,41} and £ = {3 = }_ p [k/p]. By Lemma 5,
we see that M; = {3,6,12,24,27,41,48,54} is covered by Ps and i(Ps) is
even for i € By = {1,2,4,8,9,16,18, 32, 36,49, 64}. Thus i3 = 0, implying
iq1 = 0 and p = 2 whenever p|a; for i € B;. By taking J = By, we have
By =TI} UZ; with

T3 =1{1,4,9,16,36,49,64}, I = {2,8,18,32}.

Thus a; = 1 for i € I5+ and a; = 2 for ¢ € Z; since a; € {1,2} for i € By.
This is a contradiction since 43| d, (4) = (f5) and (%) # (%)

Let k = 89, QQ = 79, (Ql, QQ) = (23, 73), (i23,i73) = (19, 15). Then Pl =
(13,19, 29,31, 37, 47,59, 61, 67, 79, 89}. We find that M; = {1,9,10,12, 14,
21, 23, 26, 27, 29, 30, 31, 36, 41, 49, 50, 51, 57, 59, 62, 69, 75}, By = {0,2, 3, 4,
5,6,7,8, 11,13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 35, 37, 38, 39, 40, 43,
44,45, 46, 47,48, 52, 53, 54, 55, 56, 58, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73,
74,76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i13 = 10, i19 = 12, i99 = 1,
i1 = 26, i3y = 14 and {9,21,27,29,41} is covered by {47,59,61,67,89}.
Thus igg € {9,21,27,29,41}. Further, for p € P1, pta; for ¢ € By. Now
we take Py = P; U {23,73,79}, p1 = 19, p2 = 29, (i1,i2) = (12,1),
T =B, P ="P = A19,29)\ Py = {11,17,43,53,71} and ¢ = £, =
> pep, | k/p] = 22. Thus |T'| = |I| = [Bi] > 2{5. By Corollary 1, we have
M =: My, B =: By such that (Ma, Ba, P2, £2) has Property $). We get My =
10,2,3,11,17, 20, 22, 33, 35, 37, 44, 45, 54,55, 66,71, 77}, Bs = {4,5,6,7,8,
13, 16, 18, 24, 25, 28, 32, 34, 38, 39, 40, 43, 46, 47, 48, 52, 53, 56, 58, 60, 61, 63,
64, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i11 = 0,
i17 = 3, 143 = 2 and {17,35} is covered by {53, 71}. Further, pfa; for i € By
and p € Py. We take Py = P1UP2U{23,73,79}, p1 = 11, po = 13, (i1,1i2) :=
(0, 10), 7= BQ, P = 733 = A(ll, 13) \ ’P() = {5} and / = €3 = zpepz Uf/p—|
= 18. Thus |Z'| = |Z| = |B2| > 2¢3. Then the conditions of Corollary 1 are
satisfied and we have M =: M3, B =: B3 with (M3, Bs, Ps, ¢3) having Prop-
erty $. We get M3 = {8, 18,28, 43,48, 53, 58,68,73,78,83}, B3 = {4, 5, 6, 7,
13, 16, 24, 25, 32, 34, 38, 39, 40, 46, 47, 52, 56, 60, 61, 63, 64, 67, 70, 72, 74, 76,
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79, 80, 81, 82, 84, 85, 86, 87}, i5 = 3. Lastly, we take Py = P, UPs U P U
{235 73, 79}7 p1 =5, p2 = 11, (i17i2) = (370)7 I=DB;3,P="Py:= A(5’ 11) \
Po = {3,41} and £ = €y = 3 p [k/p]. By Lemma 5, we see that M =
{4,6,34,40,46,47,61,64,67,76,82,85} is covered by P, and i(P,) is even
for i € B = {5,7,16,24, 25,32, 39,52, 56, 60, 70, 72, 74, 79, 80, 81, 84, 86, 87}.
Thus i3 = 1, 441 = 6 and p € {2,7,83} whenever p|a; for i € B. Since 79 | d,
we see that a; € {1,2,83,2-83} or a; € {7,14,7-83,14 - 83} for i € B. The
latter possibility is excluded since 717 —1 for all 4,7’ € B. By taking J = B,
we have B = Ig“ UZ; with

T+ ={7,24,32,39,52,72,74,79, 84,87},

I; = {5,16,25,56,60, 70,80, 81, 86}

Then we observe that either a; € {1,283} for i € Z) and a; € {2,83} for
1 € Iy or vice versa. This is not possible by parity argument. The other case
(i23,173) = (0,0) is excluded similarly. =

5. Proof of Lemma 8. Let 7 < k < 97 be primes. Suppose that the
assumptions of Lemma 8 are satisfied. Assume that ¢; | d or ¢2 | d and we shall
arrive at a contradiction. We divide the proof into Subsections 5.1 and 5.2.

5.1. The cases 7 < k < 23. We take ¢ = 5 in (7) and (8). We may
suppose that 5|d if k = 7,11 and 11|d if k = 13. Let 5|d. Then

(24) SC{1,6} or SC{23}

according as (%) = 1 or —1, respectively. Thus (24) holds if £ = 7,11. Let
11|d. Then

(25) S C{1,3,5,15} or S C{2,6,10,30}

according as (%) = 1 or —1, respectively. Let 13| d. Then

(26) S C{1,3,10,30} or S C{2,5,6,15}

according as (75) = 1 or —1, respectively. Thus either (25) or (26) holds if
13 <k <23.

By observing that a;’s divisible by a prime p can occur in at most [k/p]
terms, we have

Zp>5 [k/p] if k=711,
(27) Ty <t) =< > ,sslk/p] =2 if 13 <k <23,
Zp>5 [k/p] —3 if k=23,
where the sum is taken over all p < k. For the last sum, we observe that 7

and 11 together divide at most six a;’s when k& = 23. We divide the proof
into four cases.
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CAsE I. Let 24d and 3{d. From (24)—(26), (10) and Lemma 1, we get
max(fl(k:, 150) + fl(k7670)’f1(k7270) + fl(ka?)ao)) + |Vk/4-|
if k=7,11,
fl(k?, 170) + fl(k’?”o) + fl(k7570) + fl(k7 15’0) + “6/41
if k> 11,

’T‘ S tl =

since f1(k,a,d) is a nonincreasing function of a and ), pve(a) < [k/4].
We check that k = |T'| + |T1| < t1 + t} < k, a contradiction.

Thus we have either 2|d or 3|d. Let k = 7,11. If 2|d, then S C {1}
or S C {3}. If 3|d, we have S C {1} or S C {2}. By Lemma 2, we get
IT| < (k—1)/2. We check that k = |T| + |T1| < (k—1)/2+t] < k by (27).
This is a contradiction. From now on, we may also suppose that 13 < k < 23.

CaAsE II. Let 2|d and 31d. Then S C {1,3,5,15}if 11|d and S C {1,3}
or S C {5,15} if 13| d. Let 2|| d. From (10) and Lemma 1 with § = 1, we get

IT| < F(k,1,1) + F(k,3,1) + F(k,5,1) + F(k,15,1) =: t,.
Let 4| d. From a; = n (mod4), we see that S C {1,5} or S C {3,15} if 11|,
and either S =0 or S = {1},{3},{5} or {15} if 13|d. Therefore
‘T’ S F<k7172) + F(k7572) = t3
by Lemma 1 with § = 2. Let 8|d. Then a; = n (mod8) and Lemma 1 with
6 = 3 imply
IT| < F(k,1,3) =: t4.
Thus |T'| <max(t2,t3,ts). This with (27) contradicts (9).

Casg III. Let 2{d and 3|d. From a; = n (mod3), we see that either
S=0orS={1},{2},{5} or {10} if 11|d, and S C {1,10} or S C {2,5} if
13|d. By (10) and Lemma 1, we get

T| < F(k,1,0) + F(J,5,0),
which together with (27) contradicts (9).

CAsE IV. Let 2|d and 3|d. Then S C {1}, {5}. By Lemma 2, we get
IT| < (k—1)/2. We check that k = |T|+ |Th| < (k—1)/2+t] < k, a
contradiction.

5.2. The cases k > 29. Let 29 < k < 59 and 19|d. Then by Lemma 7
with Qo = 19, we get 7| d or 17 | d. Thus we get a prime pair (Q, Q') = (7,19)
or (@Q,Q") = (17,19) such that QQ'|d. Similarly we get (Q, Q") = (7,29) or
(Q,Q") = (17,29) with QQ'|d when 31 < k < 59 and 29 |d. Let k = 71.
Then we have either 43| d, 67 |d or 43| d, 67{d or 431d, 67| d. We get a prime
pair (Q, Q') = (43,67) with QQ' | d if 43| d, 67 |d. If 43 | d, 671d, we deduce
from Lemma 7 with Qo = 43 that 53 |d and we take (@, Q') = (43, 53) such
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that QQ’|d. If 43td, 67|d, we find from Lemma 7 with Q¢ = 67 that 53 |d
and we take (@, Q") = (53,67) such that QQ' | d. Similar prime pairs (Q, Q")
with QQ' | d for each 61 < k < 97 are given in the table below. For ¢ < 17,
we see that

5 S gl k/p] =2 if 29 <k <61,
(28) < > H <thi={ Yo lk/pl —4 i 61 <k <97,

p7€6>27qQ/ Zp>q [k/]fl -7 ifk= 97,

where the sum is taken over primes < k.

k (@,Q" S C S’ with S’ given by one of

20< k<59 (7,19),(7,29) (1,30}, {2, 15}, {3, 10}, {5, 6}

29 <k <59 (17,19),(17,29) {1,30,35,42},{2,15,21,70},{3,10,14,105}, {5,6,7,210}
61 (11,59) {1,3,5, 15}, {2,6,10,30}, {7, 21, 35, 105}, {14, 42, 70, 210}

67,71 (43,53) {1,6,10,15},{2,3,5,30}, {7, 42, 70, 105}, {14, 21, 35,210}

71 (43,67) See (29)
71 (53,67)  {1,6,10,15},{2,3,5,30}, {7, 42, 70,105}, {14, 21, 35,210}
73 (23,53)  {1,6,70,105},{2,3, 35,210}, {5, 14, 21,30}, {7, 10, 15, 42}

73 (23,67) {1,6,35,210},{2,3, 70,105}, {5, 7, 30,42}, {10, 14,15, 21}
79 (23,53), (53,73) {1,6,70,105},{2,3,35,210}, {5, 14, 21,30}, {7, 10, 15, 42}
79 (23,67), (67,73) {1,6,35,210},{2,3,70,105},{5,7, 30,42}, {10, 14, 15,21}
83 (23,37), (37,73) {1,3,70,210},{2,6,35,105}, {5, 14, 15,42}, {7, 10,21, 30}
89 (23,79), (73,79) {1,2,105,210},{3,6,35,70}, {5, 10, 21,42}, {7, 14, 15, 30}
97 (23,37),(23,83) {1,3,70,210},{2,6,35,105}, {5, 14, 15,42}, {7, 10,21, 30}

CASE 1. Let 2td and 31d. In (7) and (8) we take ¢ = 11 if k = 71,
(Q,Q") = (43,67) and g = 7 otherwise. From (%) = (%) and (&) = (&),
we get S C S = {s : s squarefree, P(s) < g, (%) (%), (5 = (&)}

By considering ((%), (%)) = (1,1), (1,-1), (-1,1) and (—1,—-1), we get
four possibilities for S’. For each value of k, the above table shows (Q, Q")
and S’. For k =71, (Q, Q') = (43,67), we get S C S" with S’ given by one of
20) {1,6,10,14, 15,21, 35,210}, {2, 3, 5,7, 30,42, 70, 105},
{11,66,110, 154, 165, 231, 385, 2310}, {22, 33, 55, 77, 330, 462, 770, 1155}.
From the possibilities for S C S’ given by the table, (10) and Lemma 1,
we get
|T| < t5 := max Z F(k,s,0),
ses’

where the maximum is taken over all the four choices of S’. This with (28)
gives |T| + |T1| < t5 + t}, < k, contradicting (9).
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CAsE II. Let 2|d and 3td. We take g =7 for 2|/ d, 4|/ d and ¢ = 11 for
81d.

Let 2||d. Then S C {1,3,5,7,15,21,35,105} =: S2. From (10) and
Lemma 1 with § = 1, we get

IT| <> F(k,s,1) =

SES2

Let 4 || d. Then we see that either S C{1,5,21,105}=:S4; or SC{3,7,15,35}
=: Sg2. From (10) and Lemma 1 with § = 2, we get

|T|<maxz (k,s,2) =:t7.
7 36542
Hence, if 8td, then |T'| < max(tg,t7). This with (28) implies |T'| 4 |T1| <
max(tg, t7) + th < k, contradicting (9).

Let 8 |d. Then we see from a; = n (mod8) that S C {1,33,105,385} =:
Sg1 or S C {3,11,35,1155} =: Sgg or S C {5,21,77,165} =: Sg3 or S C
{7,15,55,231} =: Sgs. Then

|T| < max F(k,s,3) =:tg

1<i<4
SESgi

by Lemma 1 with 6 = 3. This with (28) implies |T| + |T1| < ts + ¢, < k,

a contradiction.

CASE II1. Let 21d and 3|d. We take ¢ = 11. Then by modulo 3, we get
either S C {1,7,10,22,55,70,154,385} =: S31 or S C {2,5,11,14,35,77,
110,770} =: S32. By (10) and Lemma 1, we get

|T| < max Z (k,s,0)

8653,
This together with (28) contradicts (9).

CAsE IV. Let 2|d and 3|d. Let 2||d. We take ¢ = 7. Then we see
that either S C {1,7} or S C {5,35}. By (10) and Lemma 1, we get |T| <
F(k,1,1) + F(k,7,1), which together with (28) contradicts (9).

Let 4 || d. We take ¢ = 13. From a; = n (mod 12), we see that

SC S e&:={{1,13,385, 5005}, {5,65,77,1001},
(7,55,91, 715}, {11, 35, 143, 455} 1.
Then

|T| < max F(k,s,2),
5'e6
seS’

which together with (28) contradicts (9).
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Let 8|d. We take ¢ = 17. From a; = n (mod24), we see that S C S’ =
{1,385,1105,17017} or S C S” € &1 where G is the union of sets

{5,77,221,85085}, {7, 55,2431, 7735},
{11,35,1547, 12155}, {13, 85, 1309, 5005}, {17, 65, 1001, 6545},
{91,187,595, 715}, {119, 143, 455,935}

Let S C 8" € &;. Then

Let S C 5. By Lemma 2, we get v(1) < (k—1)/2. This together with
V(1105) + v(17017) < 1 by 13 - 17 ged(1105,17017) and v(385) < 1 by
Lemma 1 gives |T| < (k — 1)/2+ 2. Therefore |T'| < max(t10, (k —1)/2+2),
which with (28) contradicts (9). m

6. Proof of Theorem 4. Let k = 7. By the case k = 6, we may assume
that 7td. Now the assertion follows from Lemmas 8 and 6. Let k£ = 8.
Then by applying the case k = 7 twice to n(n +d)--- (n + 6d) = v'y’? and
(n+d)-(n+7d) =b"y"?, we get

(agy...,a¢), (a1,...,ar)
€ {(2, 3,1,5,6,7, 2), (3, 1,5,6,7,2, 1), (1,5,6,7,2,1,10),

(2,7,6,5,1,3,2),(1,2,7,6,5,1,3),(10,1,2,7,6,5,1)}.

This gives (ag,...,a7) = (2,3,1,5,6,7,2,1),(3,1,5,6,7,2,1,10) or their
mirror images and the assertion follows. Let £ = 9. By applying the case
k = 8 twice to n(n +d)---(n + 7d) = t'y?> and (n +d)---(n + 8d) =
b'y"?, we get the result. Let k& = 10. By applying &k = 9 twice, we get
(ag, a1, ...,as), (a1, as, ..., as,a9) € {(2,3,...,1,10),(10,1,...,3,2)}, which
is not possible.

Let k > 11 and k' < k be consecutive primes. We suppose that Theorem 4
is valid with k replaced by k. Let k|d. Then (%) = (%) for all 0 < i < k.
By applying the case k = k' to n(n +d)---(n + (k' — 1)d) = ¥y with
PV) <K, weget k' <23and 1,2,3,5 € {ag,a1,...,ar_1} in view of (5)
and (6). Therefore (%) = (%) = (%) = 1, which is not possible.

Thus we may assume that ktd and k| n + id for some 0 <i < (k—1)/2
by considering the mirror image (4) of (2) whenever Theorem 4 holds at %'.
We shall use this assertion without reference in the proof of Theorem 4.

Let k = 11. By Lemmas 8 and 6, we see that 11 |n + id for 0 <14 < 3. If
11 | n, the assertion follows by the case k = 10. Let 11 |n 4 d. We consider
(n+2d)---(n+10d) = b'y”? with P(t) < 7 and the case k = 9 to get
(ag,as,...,a10) € {(2,3,1,5,6,7,2,1,10),(10,1,2,7,6,5,1,3,2)}. The first
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possibility is excluded since 1 = (%) = (afﬁ”) = (%) = —1. For the sec-
ond possibility, we observe P(ag) < 5 since ged(ap,7 - 11) = 1 and this is
excluded by the case k = 6 applied to n(n + 2d)(n + 4d)(n + 6d)(n + 8d) -
(n+10d). Let 11| n + 2d. Then by the case k = 8, we have (a3, au, ..., a10)
€ {(2,3,1,5,6,7,2,1), (3,1,5,6,7,2,1,10), (1,2,7,6,5,1, 3,2), (10,1,2,7,6,
5,1,3)}. The first three possibilities are excluded by considering the values
of the Legendre symbol mod 11 at as, ag, at as, aq and at as, as, respectively.
If the last possibility holds, then ay = 1 since ged(ap,2-3-5-7-11) = 1,
and this is not possible since 1 = (%) = ((_121)2) = —1. Let 11 |n+3d. We
consider (n+4d) - - - (n+10d) = b'y"? with P(¢') < 7 and the case k = 7 to in-
fer that (a4,...,a10)€{(2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10),
(2,7,6,5,1,3,2),(1,2,7,6,5,1,3), (10,1,2,7,6,5,1)}, which is not possible
as above. This completes the proof for K = 11. The assertion for k = 12
follows from that of £ = 11.

Let k£ = 13. Then the assertion follows from Lemmas 8, 6 and the case
k =11. Let k = 14. By applying the case k = 13 to n(n+d)--- (n+ 12d) =
Vy'? and (n+d)--- (n+13) = b"y"?, we get the assertion. Let k = 15. Then
applying the case k = 14 both to n(n+d) - - - (n+13d) and (n+d) - - - (n+14d)
gives the result. For k = 16 the assertion follows from the case k = 15.

Let k = 17. Then 17 |n + 2d or 17| n + 3d by Lemmas 8, 6 and the case
k = 15. Let 17|n + 2d. Then by applying the case k = 14 to (n + 3d) - --
(n+16d) = 'y with P(V') < 13, we get (a3, a4, ..,a16) € {(3,1,...,15,1),
(1,15,...,1,3)}. The first possibility is excluded by considering the Legendre
symbol mod 17 at as, as. For the second, we observe that ged(aq,7 - 11 -
13- 17) = 1, which is not possible by the case k = 6 applied to (n + d) -
(n+4d)(n+7d)(n+10d)(n + 13d)(n + 16d). Let 17 |n+ 3d. By considering
(n +4d)---(n + 16d) = b'y? with P(b') < 13, it follows from the case k
=13 that (a4, ...,a16) € {(3,1,...,14,15),(1,5,...,15,1), (15,14, ..., 1,3),
(1,15,...,5,1)}. The first three possibilities are excluded by considering the
Legendre symbol mod 17 at ay4, as. If the last possibility holds, we observe
that a1 = 1 since gcd(al,]_[p<17p) =1 and then 1 = (%) = (%) =
—1, a contradiction. The assertion for £ = 18 follows from that for k = 17.

Let k£ = 19. Then the assertion follows from Lemmas 8, 6 and the case
k = 17. By applying the case k = 19 twice to n(n + d)---(n + 18d) and
(n+d)---(n+18d)(n + 19d), the assertion for & = 20 follows and this also
implies the cases k = 21, 22.

Let k = 23. We see from Lemmas 8, 6 and the case k = 20 that 23 divides
n + 3d. We consider the case k = 19 and (n + 4d) - - - (n + 22d) = b'y’? with
P(b') <19 to get (ag,as,...,a2)=(1,5,...,21,22) or (22,21,...,5,1). By
considering the values of the Legendre symbol mod 23 at a4 and as, we may
assume the second possibility. Now P(az) < 11 and this is not possible by
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the case k = 11 applied to (n + 2d)(n + 4d) - -- (n + 22d). Let k = 24. We
get (ag,a1,...,a23) = (5,6,...,3,7) or (7,3,...,6,5) by applying the case
k =23 both to n(n+d) - -- (n+22d) and (n+d)--- (n + 23d). Further, the
assertion for 25 < k < 28 follows from k = 24.

Let k£ > 29. First we consider k£ = 29. We see from Lemmas 8, 6 and the
case k = 25 that 29|n + 4d or 29|n + 5d. Let 29 |n + 4d. Then applying
the case k = 24 to (n + 5d)(n+ 6d) - - - (n + 28d), we get (as, ag, ..., as) =
(5,6,...,3,7) or (7,3,...,6,5). By observing 1 = () = (%%) = (42) =
—1, we may assume the second possibility. Then a; = 1, implying 1 =
(%) = (%) = —1, a contradiction. Let 29 |n + 5d. Now by considering
k=23 and (n+6d)...(n+28d), we get (ag,ar,...,as) € {(5,6,...,26,3),
(6,7,...,3,7),(3,26,...,6,5),(7,3,...,7,6)}. Then we may restrict to the
last possibility by considering the Legendre symbol mod 29 at the first two
entries in the remaining possibilities. It follows that as = 1, implying 1 =
(%) = (%) = —1, a contradiction. This completes the proof for £ = 29.
We now proceed by induction. By Lemmas 8 and 6, the assertion follows for

all primes k. Now Lemma 3 completes the proof of Theorem 4. m

7. Proof of Theorem 1. Observe that for all tuples in (5) and (6), the
product of the a;’s is not a square. Hence, by Theorem 4, we may assume
that 101 < k£ < 109. Assume (1). Then ordp(apai - - - ax—1) is even for each
prime p. Let 101 < k < 105. Then P(ag4as - - - aj00) < 97. Now the assertion
follows from Theorem 4 by considering (n + 4d)---(n + 100d) and k =
97. Let k = 106,107. Then P(a4as---ajp2) < 101. We may suppose that
P(agas) = 101 or P(ajoia102) = 101, otherwise the assertion follows by the
case k = 99 in Theorem 4. Let P(a4as) = 101. Then P(ag---aio2) < 97
and the assertion follows by the case £ = 97 in Theorem 4. This is also
true when P(ajp1ai02) = 101 since P(ayq---ajoo) < 97 in this case. Let
k = 108,109. Then P(ag---ajg2) < 101. Thus either P(agay;) = 101 or
P(a101a102) = 101. Let P(a6a7) = 101. Then P(ag .- ~a102) < 97. We may
assume that 97 | agagaipair or 97 | agr - - - arp1a102. Let 97 | agagaiparr. Then
P(aj2a13---a102) < 89 and the assertion follows by the case k = 91 of
Theorem 4. Let 97 | ag7 - - - aj02. Then P(agag - - - ags) < 89 and the assertion
follows from the case k = 89 of Theorem 4. When P(ajp1a102) = 101, we
argue as above to get the assertion. =
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