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An extension of a theorem of Eulerby
Noriko Hirata-Kohno (Tokyo), Shanta Laishram (Mumbai),T. N. Shorey (Mumbai), and R. Tijdeman (Leiden)
1. Introdu
tion. The theorem of Euler ([Eul80℄, 
f. [Mor69, pp. 21�22℄,[MS03℄) referred to in the title of this paper is that a produ
t of four termsin arithmeti
 progression is never a square. Let n, d, k ≥ 2 and y be positiveintegers su
h that gcd(n, d) = 1. We 
onsider the equation

n(n + d) · · · (n + (k − 1)d) = y2(1)in n, d, k and y. It has in�nitely many solutions when k = 2 or 3. A well-known 
onje
ture states that (1) with k ≥ 4 is not possible. We 
laimTheorem 1. Equation (1) with 4 ≤ k ≤ 109 is not possible.By Euler, Theorem 1 is valid when k = 4. The 
ase when k = 5 is dueto Obláth [Obl50℄. Independently of the authors, Bennett, Bruin, Gy®ry andHajdu [BBGH06℄ proved that (1) with 6 ≤ k ≤ 11 does not hold. Theorem 1has been 
on�rmed by Erd®s [Erd39℄ and Rigge [Rig39℄, independently ofea
h other, when d = 1.Theorem 1 is derived from a more general result and we introdu
e somenotation for stating this. For an integer ν > 1, we denote by P (ν) the greatestprime fa
tor of ν and we put P (1) = 1. Let b be a squarefree positive integersu
h that P (b) ≤ k. We 
onsider a more general equation than (1), namely
n(n + d) · · · (n + (k − 1)d) = by2.(2)We write

n + id = aix
2
i for 0 ≤ i < k(3)where ai are squarefree integers su
h that P (ai) ≤ max(P (b), k − 1) and xiare positive integers. Every solution to (2) yields a k-tuple (a0, a1, . . . , ak−1).We rewrite (2) as

m(m − d) · · · (m − (k − 1)d) = by2, m = n + (k − 1)d.(4) 2000 Mathemati
s Subje
t Classi�
ation: Primary 11D61.Key words and phrases: Euler, Diophantine equations, squares, Legendre symbol.[71℄ 
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72 N. Hirata-Kohno et al.Equation (4) is 
alled the mirror image of (2). The 
orresponding k-tuple
(ak−1, ak−2, . . . , a0) is 
alled the mirror image of (a0, a1, . . . , ak−1).Let P (b) < k. Erd®s and Selfridge [ES75℄ proved that (2) with d = 1 neverholds under the assumption that the left-hand side of (2) is divisible by aprime greater than or equal to k. The result does not hold un
onditionally.As mentioned above, equation (2) with k = 2, 3 and b = 1 has in�nitelymany solutions. This is also the 
ase when k = 4 and b = 6; see Tijdeman[Tij89℄. On the other hand, equation (2) with k = 4 and b 6= 6 does not hold.We 
onsider (2) with d > 1 and k ≥ 5. We proveTheorem 2. Equation (2) with d > 1, P (b) < k and 5 ≤ k ≤ 100implies that (a0, a1, . . . , ak−1) is among the following tuples or their mirrorimages:

k = 8 : (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10);

k = 9 : (2, 3, 1, 5, 6, 7, 2, 1, 10);

k = 14 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 24 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(5)
Theorem 2 with k = 5 is due to Mukhopadhyay and Shorey [MS03℄.Initially, Bennett, Bruin, Gy®ry, Hajdu [BBGH06℄ and Hirata-Kohno,Shorey (unpublished), independently, proved Theorem 2 with k = 6 and

(a0, a1, . . . , a5) 6= (1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1). Next, Bennett, Bruin, Gy®ryand Hajdu [BBGH06℄ removed the assumption on (a0, a1, . . . , a5) in theabove result. Thus (2) with k = 6 does not hold and we shall refer to itas the 
ase k = 6. Bennett, Bruin, Gy®ry and Hajdu [BBGH06℄, indepen-dently of us, showed that (2) with 7 ≤ k ≤ 11 and P (b) ≤ 5 is not possible.This is now a spe
ial 
ase of Theorem 2.Let P (b) = k. Then we have no new result on (2) with k = 5. For k ≥ 7,we proveTheorem 3. Equation (2) with d > 1, P (b) = k and 7 ≤ k ≤ 100implies that (a0, a1, . . . , ak−1) is among the following tuples or their mirrorimages:
k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(6)
It has been 
onje
tured that (2) with k ≥ 5 never holds. Granville (un-published) showed that k is bounded by an absolute 
onstant whenever the

abc-
onje
ture holds; see Laishram [Lai04℄ for a proof. For the 
onvenien
e ofthe proofs, we 
onsider Theorems 2 and 3 together. Therefore we formulate



An extension of a theorem of Euler 73Theorem 4. Let d > 1, P (b) ≤ k and 5 ≤ k ≤ 100. Suppose that k 6= 5if P (b) = k. Then (2) does not hold ex
ept for the (a0, a1, . . . , ak−1) among(5), (6) and their mirror images.It is 
lear that Theorem 4 implies Theorems 2 and 3. In fa
t the proof ofTheorem 4 provides a method for solving (2) for any given value of k unless
(a0, a1, . . . , ak−1) is given by (5), (6) and their mirror images. This is a newand useful feature of the paper. We have restri
ted k up to 100 for keepingthe 
omputational load under 
ontrol. It is an open problem to solve (2) foran in�nite sequen
e of values of k. A solution to this problem may be animportant 
ontribution towards the 
onje
ture stated just after Theorem 3.Theorem 4 has been applied in [LS℄ to show that (2) with k ≥ 6 implies that
d > 1010. For more appli
ations, see [LS℄.Now we give a sket
h of the proof of Theorem 4. Let the assumptions ofTheorem 4 be satis�ed. Assume (2) su
h that (a0, a1, . . . , ak−1) is not among(5), (6) or their mirror images. As already stated, the 
ases k = 5 and k = 6have already been solved in [MS03℄ and [BBGH06℄. Therefore we supposethat k ≥ 7. Further it su�
es to assume that k is prime and we pro
eedindu
tively on k. Let k be given. Then we 
hoose a suitable pair (q1, q2) ofdistin
t primes ≤ k su
h that

(

p

q1

)

=

(

p

q2

)

for small primes p. For example, when k = 29, we take (q1, q2) = (19, 29) sothat the above relation holds with p = 2, 3, 5, 7. We show that q1 ∤ d and q2 ∤ d(see Lemma 8). Assume q1 | d or q2 | d. Then we �nd two primes Q1 and Q2su
h that Q1 | d or Q2 | d whenever k ≥ 29 (see Lemma 7). Now we arrive ata 
ontradi
tion by a 
ounting argument using (9) and Lemmas 1, 2. Hen
e
q1 ∤ d and q2 ∤ d but this is ex
luded by Lemma 6, the proof of whi
h dependson Lemma 5. In fa
t, we need to apply it repeatedly for k > 11.In the 
ase k = 6, Bennett, Bruin, Gy®ry and Hajdu [BBGH06℄ solvedthe 
ases (a0, a1, . . . , a5) ∈ {(1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1)} by using expli
itChabauty te
hniques due to Bruin and Flynn [BF05℄. These 
ases appear tobe similar to our ex
eptional 
ases (5) and (6) where we have, in fa
t, morefreedom in the sense that there are at least 7 
urves where we may 
onsiderapplying the Chabauty method. Finally we remark that it su�
es to solvethe 
ases k = 7 in (6) or its mirror images for Theorem 3 and the 
ases k = 8in (5) or its mirror images for Theorem 2.2. Notation and lemmas. We introdu
e some notation. Let

R = {ai : 0 ≤ i < k}and, for a prime q, put
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S = S(q) = {a ∈ R : P (a) ≤ q}, S1 = S1(q) = {a ∈ R : P (a) > q}.(7)Further we write

T = T (q) = {i : ai ∈ S}, T1 = T1(q) = {i : ai ∈ S1}.(8)Then we see that
|T | + |T1| = k.(9)For a ∈ R, let

ν(a) = |{i : ai = a}|,

νo(a) = |{i : ai = a, 2 ∤ xi}|, νe(a) = |{i : ai = a, 2 |xi}|.We observe that
|T | =

∑

a∈S

ν(a).(10)Let
δ = min(3, ord2(d)), ̺ =

{

3 if 3 | d,

1 otherwise.We haveLemma 1. For a ∈ R, let Ka = k/a23−δ, K′
a = k/16a,

f1(k, a, δ) =



























1 if k ≤ a23−δ,
⌈Ka⌉ −

[

⌈Ka⌉

4

] if k > a23−δ, 3 | d,
2

∑

i=1

(⌈

Ka

3i

⌉

−

[

⌈Ka/3i⌉

4

]) if k > a23−δ, 3 ∤ d,and

f2(k, a) =































































1 if k ≤ 4a,

⌈K′
a⌉ + 1 if 4a < k ≤ 32a,

2
∑

i=1

(⌈

K′
a

i

⌉

−

[

⌈K′
a/i⌉

4

])

if k > 32a, 3 | d,

2
∑

i=1

(⌈

K′
a

3i

⌉

−

[

⌈K′
a/3i⌉

4

])

+
2

∑

i=1

(⌈

K′
a

2 · 3i

⌉

−

[

⌈K′
a/2 · 3i⌉

4

])

if k > 32a, 3 ∤ d.Then we have
νo(a) ≤ f1(k, a, δ), νe(a) ≤ f2(k, a),
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ν(a) ≤ F (k, a, δ) :=







1 if k ≤ a,
f1(k, a, δ) if k > a and d even,
f1(k, a, 0) + f2(k, a) if k > a and d odd.Proof. Let I1 = {i : ai = a, xi odd}, I2 = {i : ai = a, 2 ‖xi} and

I3 = {i : ai = a, 4 |xi}. Further, for l = 1, 2, 3, let
Il1 := {i ∈ Il : 3 ∤ xi}, Il2 := {i ∈ Il : 3 |xi}.Let τ := τ(l, m) be de�ned by τ/a = 23−δ · 3̺−1, 23−δ · 9, 32 · 3̺−1, 32 · 9,

16·3̺−1, 16·9 for (l, m) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), respe
tively.Sin
e x2
i ≡ 1 (mod8) for i ∈ I1, (xi/2)2 ≡ 1 (mod8) for i ∈ I2, 16 |x2

i for
i ∈ I3 and x2

i ≡ 1 (mod3) for i ∈ Il1, 9 |x2
i for i ∈ Il2 for l = 1, 2, 3, wesee from (i − j)d = a(x2

i − x2
j ) that τ | i − j for i, j ∈ Ilm. Sin
e a | i − jwhenever ai = aj , we get ν(a) = 1 for k ≤ a. Thus we suppose that k > a.We have ν(a) = νo(a) + νe(a). It su�
es to show νo(a) ≤ f1(k, a, δ) and

νe(a) ≤ f2(k, a) sin
e νe(a) = 0 for d even. We observe that νo(a) = |I1| and
νe(a) = |I2| + |I3|. Sin
e a23−δ | i − j whenever i, j ∈ I1, we get |I1| ≤ 1 if
k ≤ a23−δ. Thus we suppose k > a23−δ for proving |I1| ≤ f1(k, a, δ). Furtherfrom 4a | i − j for i, j ∈ I2 ∪ I3, 32a | i − j for i, j ∈ I2 and 16a | i − j for
i, j ∈ I3, we get |I2| + |I3| ≤ f2(k, a) for k ≤ 32a. Hen
e we suppose that
k > 32a for showing |I2| + |I3| ≤ f2(k, a).Let (l, m) have 1 ≤ l ≤ 3, 1 ≤ m ≤ 2. Let i0 = mini∈Ilm

i, N =
(n + i0d)/a and D = τd/a. Then we see that ax2

i with i ∈ Ilm 
ome fromthe squares in the set {N, N + D, . . . , N + (⌈(k − i0)/τ⌉ − 1)D}. Dividingthis set into 
onse
utive intervals of length 4 and using Euler's result, we seethat there are at most
⌈

k − i0
τ

⌉

−

[

⌈(k − i0)/τ⌉

4

]

≤

⌈

k

τ

⌉

−

[

⌈k/τ⌉

4

]

of them whi
h 
an be squares. Hen
e |Ilm| ≤ ⌈k/τ⌉ − [⌈k/τ⌉/4]. Now theassertion follows from |Il| =
∑2

m=1 |Ilm| for l = 1, 2, 3 sin
e |Il2| = 0 for
3 | d.We observe that there are (p − 1)/2 distin
t quadrati
 residues and
(p − 1)/2 distin
t quadrati
 nonresidues modulo an odd prime p. The nextlemma follows easily from this fa
t.Lemma 2. Assume (2) holds. Let k be an odd prime. Suppose that k ∤ d.Let

T ′ =

{

i :

(

ai

k

)

= 1, 0 ≤ i < k

}

, T ′′ =

{

i :

(

ai

k

)

= −1, 0 ≤ i < k

}

.
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|T ′| = |T ′′| =

k − 1

2
.Lemma 3. Assume that (2) with P (b) ≤ k has no solution at k = k1 with

k1 prime. Then (2) with P (b) ≤ k has no solution at k with k1 ≤ k < k2,where k2 is the smallest prime larger than k1.Proof. Let k1 and k2 be 
onse
utive primes su
h that k1 ≤ k < k2.Assume that (2) does not hold at (n, d, k1). Suppose
n(n + d) · · · (n + (k − 1)d) = by2.Using (3), we see that
n(n + d) · · · (n + (k1 − 1)d) = b′y′2with P (b′) ≤ k1. This is not possible.Let q1, q2 be distin
t primes and

Λ1(q1, q2) :=

{

p ≤ 97 :

(

p

q1

)

6=

(

p

q2

)}

.We write Λ(q1, q2) = Λ(q1, q2, k) := {p ∈ Λ1(q1, q2) : p ≤ k}.Lemma 4. We have
(q1, q2) Λ1(q1, q2)

(5, 11) {3, 19, 23, 29, 37, 41, 47, 53, 61, 67, 79, 97}

(7, 17) {11, 13, 19, 23, 29, 37, 47, 59, 71, 79, 83, 89}

(11, 13) {5, 17, 29, 31, 37, 43, 47, 59, 61, 67, 71, 79, 89, 97}

(11, 59) {7, 17, 19, 23, 29, 31, 37, 41, 47, 67, 79, 89, 97}

(11, 61) {13, 19, 23, 31, 37, 41, 53, 59, 67, 71, 73, 83, 89}

(19, 29) {11, 13, 17, 43, 47, 53, 59, 61, 67, 71, 73}

(23, 73) {13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 97}

(23, 97) {11, 13, 29, 41, 43, 53, 59, 61, 71, 79, 89}

(31, 89) {7, 11, 17, 19, 41, 53, 59, 73, 79}

(37, 83) {17, 23, 29, 31, 47, 53, 59, 61, 67, 71, 73}

(41, 79) {11, 13, 19, 37, 43, 59, 61, 67, 89, 97}

(43, 53) {7, 23, 29, 31, 37, 41, 67, 79, 83, 89}

(43, 67) {11, 13, 19, 29, 31, 37, 41, 53, 71, 73, 79, 89, 97}

(53, 67) {7, 11, 13, 19, 23, 43, 71, 73, 83, 97}

(59, 61) {7, 13, 17, 29, 47, 53, 71, 73, 79, 83, 97}

(73, 97) {11, 19, 23, 31, 37, 41, 43, 47, 53, 67, 71}

(79, 89) {13, 17, 19, 23, 31, 47, 53, 71, 83}
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Definition. Let P be a set of primes and I ⊆ [0, k) ∩ Z. We say that

I is 
overed by P if, for every j ∈ I, there exists p ∈ P su
h that p | aj .Further, for i ∈ I, let
i(P) = |{p ∈ P : p divides ai}|.(11)For a prime p with gcd(p, d) = 1, let ip be the smallest i ≥ 0 su
h that

p |n+ id. For I ⊆ [0, k)∩Z and primes p1, p2 with gcd(p1p2, d) = 1, we write
I ′ = I(p1, p2) = I \

2
⋃

j=1

{ipj
+ pji : 0 ≤ i < ⌈k/pj⌉}.Lemma 5. Let P0 be a set of primes. Let p1, p2 be primes su
h that

gcd(p1p2, d) = 1. Let (i1, i2) = (ip1
, ip2

), I ⊆ [0, k)∩ Z and I ′ = I(p1, p2) besu
h that i(P0 ∩ Λ(p1, p2)) is even for ea
h i ∈ I ′. De�ne
I1 =

{

i ∈ I ′ :

(

i − i1
p1

)

=

(

i − i2
p2

)}

,

I2 =

{

i ∈ I ′ :

(

i − i1
p1

)

6=

(

i − i2
p2

)}

.Let P = Λ(p1, p2) \ P0. Let ℓ be the number of terms n + id with i ∈ I ′divisible by primes in P. Then either
|I1| ≤ ℓ, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.We observe that ℓ ≤

∑

p∈P⌈k/p⌉.Proof. Let i ∈ I ′. Let U0 = {p : p | ai}, U1 = {p ∈ U0 : p /∈ Λ(p1, p2)},
U2 = {p ∈ U0 : p ∈ P0 ∩ Λ(p1, p2)} and U3 = {p ∈ U0 : p ∈ P}. Then wededu
e from ai =

∏

p∈U0
p that

(

ai

p1

)

=
∏

p∈U1

(

p

p1

)

∏

p∈U2

(

p

p1

)

∏

p∈U3

(

p

p1

)

= (−1)i(P)+|U2|
∏

p∈U0

(

p

p2

)

= (−1)i(P)

(

ai

p2

)

sin
e |U2| = i(P0 ∩ Λ(p1, p2)) is even. Therefore
L :=

{

i ∈ I ′ :

(

ai

p1

)

6=

(

ai

p2

)}

= {i ∈ I ′ : i(P) is odd}.(12)In parti
ular, L is 
overed by P and hen
e
|L| ≤ ℓ.(13)
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ai

pj

)

=
(

n+id
pj

)

=
( i−ij

pj

)(

d
pj

) for i ∈ I ′ and j = 1, 2. Therefore
L = I1 or I2 a

ording as (

d
p1

)

6=
(

d
p2

) or (

d
p1

)

=
(

d
p2

), respe
tively. Now theassertion of Lemma 5 follows from (12) and (13).
Remark. Let P 
onsist of one prime p. We observe that p |n+ id if andonly if p | i − ip. Then I1 or I2 is 
ontained in one residue 
lass modulo pand p ∤ ai for i in the other set.Corollary 1. Let p1, p2, i1, i2,P0,P, I, I ′, I1, I2 and ℓ be as in Lem-ma 5. Assume that

ℓ <
1

2
|I ′|.(14)Then |I1| 6= |I2|. Let

M =

{

I1 if |I1| < |I2|,

I2 otherwise,(15)
B =

{

I2 if |I1| < |I2|,

I1 otherwise.(16)Then |M| ≤ ℓ, M is 
overed by P and B = {i ∈ I ′ : i(P) is even}.Proof. We see from Lemma 5 that min(|I1|, |I2|) ≤ ℓ and from (14) thatmax(|I1|, |I2|) ≥
1
2 |I

′| > ℓ. Now the assertion follows from Lemma 5.We say that (M,B,P, ℓ) has Property H if |M| ≤ ℓ, M is 
overed by Pand i(P) is even for i ∈ B.Lemma 6. Let k be a prime with 7 ≤ k ≤ 97 and assume (2). For
k ≥ 11, assume that Theorem 4 is valid for all primes k1 with 7 ≤ k1 < k.For 11 ≤ k ≤ 29, assume that k ∤ d and k ∤ n + id for 0 ≤ i < k − k′ and
k′ ≤ i < k where k′ < k are 
onse
utive primes. Let (q1, q2) = (5, 7) if
k = 7; (5, 11) if k = 11; (11, 13) if 13 ≤ k ≤ 23; (19, 29) if 29 ≤ k ≤ 59;
(59, 61) if k = 61; (43, 67) if k = 67, 71; (23, 73) if k = 73, 79; (37, 83) if
k = 83; (79, 89) if k = 89; and (23, 97) if k = 97. Then q1 | d or q2 | d unless
(a0, a1, . . . , ak−1) is given by the following tuples or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15), (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).We shall prove Lemma 6 in Se
tion 3.Lemma 7. Let k be a prime with 29 ≤ k ≤ 97 and Q0 a prime dividing d.Assume (2) with k ∤ d and k ∤ n + id for 0 ≤ i < k − k′ and k′ ≤ i < k where
k′ < k are 
onse
utive primes. Then there are primes Q1 and Q2 given inthe following table su
h that either Q1 | d or Q2 | d:
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k Q0 (Q1, Q2) k Q0 (Q1, Q2)

29 ≤ k ≤ 59 19 (7, 17) 73, 79 23 (53, 67)

31 ≤ k ≤ 59 29 (7, 17) 79 73 (53, 67)

61 59 (11, 61) 83 37 (23, 73)

67, 71 43 (53, 67) 89 79 (23, 73)

71 67 (43, 53) 97 23 (73, 97), (37, 83)The proofs of Lemmas 6 and 7 depend on the repeated appli
ation ofLemma 5 and Corollary 1. We shall prove Lemma 7 in Se
tion 4. Next weshall apply Lemmas 1, 2 and 7 to prove the following result.Lemma 8. Let k be a prime with 7 ≤ k ≤ 97. Assume (2) with k ∤ d.Further for k ≥ 29, assume that k ∤ n + id for 0 ≤ i < k − k′ and k′ ≤ i < kwhere k′ < k are 
onse
utive primes. Let (q1, q2) be as in Lemma 6. Then
q1 ∤ d and q2 ∤ d.Se
tion 5 
ontains a proof of Lemma 8. Assume that 3 ∤ d and 5 ∤ d. Wede�ne some more notation. For a subset J ⊆ [0, k) ∩ Z, let

I0
3 = I0

3 (J ) := {i ∈ J : i ≡ i3 (mod3)},

I+
3 = I+

3 (J ) :=

{

i ∈ J :

(

i − i3
3

)

= 1

}

,

I−
3 = I−

3 (J ) :=

{

i ∈ J :

(

i − i3
3

)

= −1

}

and
I+

5 = I+
5 (J ) :=

{

i ∈ J :

(

i − i5
5

)

= 1

}

,

I−
5 = I−

5 (J ) :=

{

i ∈ J :

(

i − i5
5

)

= −1

}

.Assume that ai ∈ {1, 2, 7, 14} for i ∈ I+
3 ∪I−

3 . Then either ai ∈ {1, 7} for i ∈
I+

3 , ai ∈ {2, 14} for i ∈ I−
3 or ai ∈ {2, 14} for i ∈ I+

3 , ai ∈ {1, 7} for i ∈ I−
3 .We de�ne (I1

3 , I2
3 ) = (I+

3 , I−
3 ) in the former 
ase and (I1

3 , I2
3 ) = (I−

3 , I+
3 ) inthe latter. We observe that i's have the same parity whenever ai ∈ {2, 14}.Thus if i's have the same parity in one of I+

3 or I−
3 but not in both, thenwe see that (I1

3 , I2
3 ) = (I+

3 , I−
3 ) or (I−

3 , I+
3 ) a

ording as i's have the sameparity in I−

3 or I+
3 , respe
tively. Further we write

J1 = I1
3 ∩ I+

5 , J2 = I1
3 ∩ I−

5 , J3 = I2
3 ∩ I+

5 , J4 = I2
3 ∩ I−

5and aµ = {ai : i ∈ Jµ} for 1 ≤ µ ≤ 4. Sin
e (

1
5

)

=
(

14
5

)

= 1 and (

2
5

)

=
(

7
5

)

= −1, we see that
(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14})(17)



80 N. Hirata-Kohno et al.where (a1, a2, a3, a4) ⊆ (S1, S2, S3, S4) denotes aµ ⊆ Sµ, 1 ≤ µ ≤ 4. We use
7 | i − i′ whenever ai, ai′ ∈ {7, 14} to ex
lude one of the above possibilities.3. Proof of Lemma 6. Let k′ < k be 
onse
utive primes. We may sup-pose that if (2) holds for some k > 29, then k ∤ d and k ∤ ai for 0 ≤ i < k− k′and k′ ≤ i < k, otherwise the assertion follows from Theorem 4 with k re-pla
ed by k′. Subse
tions 3.1 to 3.10 will be devoted to the proof of Lemma 6.We may assume that q1 ∤ d and q2 ∤ d, otherwise the assertion follows.3.1. The 
ase k = 7. Then 5 ∤ d. By taking the mirror images (4) of (2),there is no loss of generality in assuming that 5 |n + i5d, 7 |n + i7d for somepair (i5, i7) with 0 ≤ i5 < 5, 0 ≤ i7 ≤ 3. Further we may suppose i7 ≥ 1,otherwise the assertion follows from the 
ase k = 6. We apply Lemma 5 with
P0 = ∅, p1 = 5, p2 = 7, (i1, i2) = (i5, i7), I = [0, k) ∩ Z, P = Λ(5, 7) = {2}and ℓ ≤ ℓ1 = ⌈k/2⌉ to 
on
lude that either

|I1| ≤ ℓ1, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ1, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.Let (i5, i7) = (3, 1). Then I1 = {0, 2, 6} and I2 = {4, 5}. We see that I1is 
overed by P and hen
e i(P) is even for i ∈ I2. Thus 2 ∤ ai for i ∈ I2.Therefore a4, a5 ∈ {1, 3} and a0, a2, a6 ∈ {2, 6}. If a0 = 6 or a6 = 6, then

3 ∤ a4a5 so that a4 = a5 = 1. This is not possible by modulo 3. Thus a0 = a6

= 2. Sin
e (

a0

5

)(

a2

5

)

=
( (−3d)(−d)

5

)

= −1, we get a2 = 6. Hen
e a4 = 1. Fur-ther a5 = 3 sin
e (

a5

5

)(

a4

5

)

=
( (2d)(1d)

5

)

= −1. Also 5 | a3 and 7 | a1, other-wise the assertion follows from the results of [MS03℄ for k = 5 and [BBGH06℄for k = 6, respe
tively, stated in Se
tion 1. In fa
t, a1 = 7, a3 = 5by gcd(a1a3, 6) = 1. Thus (a0, a1, a2, a3, a4, a5, a6) = (2, 7, 6, 5, 1, 3, 2). Theproofs for the other 
ases of (i5, i7) are similar. We get (a0, . . . , a6) =
(1, 5, 6, 7, 2, 1, 10) when (i5, i7) = (1, 3), (a0, . . . , a6) = (1, 2, 7, 6, 5, 1, 3) when
(i5, i7) = (4, 2) and all the other pairs are ex
luded. Hen
e Lemma 6 with
k = 7 follows.3.2. The 
ase k = 11. Then 5 ∤ d. By taking the mirror images (4) of (2),there is no loss of generality in assuming that 5 |n+i5d, 11 |n+i11d for somepair (i5, i11) with 0 ≤ i5 < 5, 4 ≤ i11 ≤ 5. We apply Lemma 5 with P0 = ∅,
p1 = 5, p2 = 11, (i1, i2) = (i5, i11), I = [0, k) ∩ Z, P = Λ(5, 11) = {3} and
ℓ ≤ ℓ1 = ⌈k/3⌉ to derive that either

|I1| ≤ ℓ1, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ1, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.



An extension of a theorem of Euler 81We 
ompute I1, I2 and we restri
t attention to those pairs (i5, i11) for whi
hmin(|I1|, |I2|) ≤ ℓ1 and either I1 or I2 is 
overed by P. We �nd that
(i5, i11) = (0, 4), (1, 5). Let (i5, i11) = (0, 4). Then I1 = {3, 9} is 
overedby P, i3 = 0 and i(P) is even for i ∈ I2 = {1, 2, 6, 7, 8}. Thus 3 ∤ ai for i ∈ I2.Further, p ∈ {2, 7} whenever p | ai with i ∈ I2. Therefore ai ∈ {1, 2, 7, 14}for i ∈ I2. By taking J = I2, we have I2 = I0

3 ∪ I+
3 ∪ I−

3 and I2 = I+
5 ∪ I−

5with
I0

3 = {6}, I+
3 = {1, 7}, I−

3 = {2, 8}, I+
5 = {1, 6}, I−

5 = {2, 7, 8}.Let (I1
3 , I2

3 ) = (I+
3 , I−

3 ). Then
J1 = {1}, J2 = {7}, J3 = ∅, J4 = {2, 8}.The possibility (a1, a2, a3, a4) ⊆ ({7}, {1}, {2}, {14}) is ex
luded sin
e 7 |

i − i′ whenever ai, ai′ ∈ {7, 14}. Therefore a1 = 1, a7 = 7, a2 = a8 = 2.Further, a6 = 1 sin
e 6 ∈ I+
5 and a1 = 1, a7 = 7. This is not possiblesin
e 1 =

(

a6

7

)(

a8

7

)

=
( (−d)(d)

7

)

= −1. Let (I1
3 , I2

3 ) = (I−
3 , I+

3 ). Then weargue as above to 
on
lude that a2 = a8 = 1, a1 = 2, a7 = 14, whi
h is notpossible sin
e n+2d and n+8d 
annot both be odd squares. The other 
ase
(i5, i11) = (1, 5) is ex
luded similarly.3.3. The 
ases 13 ≤ k ≤ 23. Then 11 ∤ d and 13 ∤ d. There is no loss ofgenerality in assuming that 11 |n + i11d, 13 |n + i13d for some pair (i11, i13)with 0 ≤ i11 < 11, 0 ≤ i13 ≤ (k − 1)/2 and further i13 ≥ 2 if k = 13.We have applied Lemma 5 on
e in ea
h of 
ases k = 7 and k = 11 but weapply it twi
e for every 
ase 13 ≤ k ≤ 23 in this subse
tion. Let P0 = ∅,
p1 = 11, p2 = 13, (i1, i2) = (i11, i13), I = [0, k) ∩ Z, P = P1 := Λ(11, 13)and ℓ ≤ ℓ1 where ℓ1 = 3 if k = 13, and ℓ1 = ⌈k/5⌉ + ⌈k/17⌉ if k > 13. Then
ℓ1 < 1

2 |I
′| sin
e |I ′| ≥ k − ⌈k/11⌉ − ⌈k/13⌉. By Corollary 1, we derive that

I ′ is partitioned into M =: M1 and B =: B1 su
h that (M1,B1,P1, ℓ1) hasProperty H. Now we restri
t to all su
h pairs (i11, i13) satisfying |M1| ≤ ℓ1and M1 is 
overed by P1. We 
he
k that |M1| > 2. Therefore 5 ∤ d sin
e M1is 
overed by P1. Thus there exists i5 with 0 ≤ i5 < 5 su
h that 5 |n + i5d.Now we apply Lemma 5 with p1 = 5, p2 = 11 and partition B1(5, 11)into two subsets. Let P0 = Λ(11, 13) ∪ {11, 13}, (i1, i2) = (i5, i11), I = B1,
P = P2 := Λ(5, 11) ⊆ {3, 19, 23} and ℓ ≤ ℓ2 where ℓ2 = 5, 6, 8, 11 if k =
13, 17, 19, 23, respe
tively. Hen
e B′

1 is partitioned into I1 and I2 satisfyingeither
|I1| ≤ ℓ2, I1 is covered by P2, I2 = {i ∈ I ′ : i(P2) is even},or
|I2| ≤ ℓ2, I2 is covered by P2, I1 = {i ∈ I ′ : i(P2) is even}.We 
ompute I1, I2 and we restri
t attention to those pairs (i11, i13) for whi
h



82 N. Hirata-Kohno et al.min(|I1|, |I2|) ≤ ℓ2 and either I1 or I2 is 
overed by P2. We �nd that
(i11, i13) = (4, 2), (5, 3) if k = 13; (0, 0), (5, 3) if k = 17; (0, 0), (0, 9), (7, 5),
(7, 9), (8, 6), (9, 7), (10, 8) if k = 19; and (0, 0), (0, 9), (1, 10), (2, 11), (4, 0),
(5, 1), (5, 7), (6, 2), (6, 8), (7, 9), (8, 10), (9, 11) if k = 23.Let (i11, i13) be su
h a pair. We write M for the one of I1 or I2 whi
h is
overed by P2 and B for the other. For i ∈ B′

1, we see that p ∤ ai whenever
p ∈ P0 sin
e 17 | ai implies 5 | ai. Therefore

i(P2) is even for i ∈ B and p ∤ ai for i ∈ B whenever p ∈ P0,(18)sin
e B ⊆ B′
1. Further we 
he
k that |M | > 1 if k 6= 23 and > 3 if k = 23,implying 3 ∤ d.By taking J = B, we get B = I0

3 ∪ I+
3 ∪ I−

3 and B = I+
5 ∪ I−

5 . Then
p ∈ {2, 7} whenever p | ai with i ∈ I+

3 ∪ I−
3 by (18). By 
omputing I+

3 , I−
3 ,we �nd that i's have the same parity in exa
tly one of I+

3 , I−
3 . Therefore wededu
e from (17) that

(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14}) .Let k = 13 and (i11, i13) = (4, 2). Then we have M1 = {0, 5, 10}, i5 = 0,
M = {3, 9, 12} and B = {1, 6, 7, 8, 11} sin
e the latter set is not 
overed by
P2 = {3}. Further i3 = 0, I0

3 = {6}, I1
3 = I−

3 = {8, 11}, I2
3 = I+

3 = {1, 7},
I+

5 = {1, 6, 11}, I−
5 = {7, 8}, J1 = {11}, J2 = {8}, J3 = {1}, J4 = {7}.Hen
e a11 = 1, a8 = 7, a1 = 14, a7 = 2 or a11 = 7, a8 = 1, a1 = 2, a7 = 14.The se
ond possibility is ex
luded sin
e a11 = 7, a7 = 14 is not possible.Further, from (18) we get a6 = 1 sin
e 2 ∤ a6 and 7 ∤ a6. Sin
e 13 |n + 2d and

7 |n + d, we get (

i−2
13

)

=
(

aia6

13

)

=
(

ai

13

) and −
(

i−1
7

)

=
(

aia6

7

)

=
(

ai

7

). Weobserve that 13 |n + 2d, 11 |n + 4d, 7 |n + d, 5 |n, 3 |n, 2 |n + d, 5 | ai for
i ∈ M and 3 | ai for i ∈ M1. Now we see that a0 ∈ {5, 15} and a0 = 5 isex
luded sin
e (

5
7

)

6= −
(

−1
7

). Thus a0 = 15. Next a1 = 14, a2 = 13 and
a3 = 3. Also a4 ∈ {1, 11} and a4 6= 1 sin
e (

a4

13

)

=
(

2
13

)

= −1. Similarlywe derive that a5 = 10, a6 = 1, a7 = 2, a8 = 7, a9 = 6, a10 = 5, a11 = 1and a12 = 3. Thus (a0, a1, . . . , a12) = (15, 14, . . . , 6, 5, 1, 3). The other 
ase
(i11, i13) = (5, 3) is similar and we get (a0, a1, . . . , a12) = (1, 15, 14, . . . , 5, 1).Let k = 17 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15} and
i5 = 0. We see from the assumption of Lemma 6 with k = 17, k′ = 13that 4 ≤ i17 < 13. Hen
e, from i17 ∈

⋃

p=5,11,13{ip + pj : 0 ≤ j < ⌈k/p⌉},we get i17 ∈ {5, 10, 11}. Further M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16},
i3 = 0, I0

3 = {9}, I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 = {1, 4, 9, 14, 16},

I−
5 = {2, 7, 8}, J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and J4 = {2, 8}.Therefore a1 = a4 = a16 = 1, a7 = 7, a14 = 14, a2 = a8 = 2. Thus a9 = 1by (18) and 2 ∤ a9, 7 ∤ a9. Now we see by the Legendre symbol mod 17 that

a1 = a4 = a9 = a16 = 1 is not possible. The 
ase (i11, i13) = (5, 3) is ex
ludedsimilarly.



An extension of a theorem of Euler 83Let k = 19 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15, 17},
i5 = 0, i17 = 0, M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18} and i3 = 0.We see from i19 ∈

⋃

p=3,5,11,13,17{ip + pj : 0 ≤ j < ⌈k/p⌉} and 2 ≤

i19 < 17 that i19 ∈ {3, 5, 6, 9, 10, 11, 12, 13, 15}. Further, I0
3 = {9, 18},

I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 = {1, 4, 9, 14, 16}, I−

5 = {2, 7, 8, 18},
J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and J4 = {2, 8}. Therefore a1 = a4 =
a16 = 1, whi
h is not possible by mod 19. The 
ase (i11, i13) = (7, 5) is ex-
luded similarly. Let (i11, i13) = (0, 9). Then M1 = {2, 5, 7, 12, 17}, i5 = 2,
i17 = 5, M = {1, 3, 10, 16}, B = {4, 6, 8, 13, 14, 15, 18}, i3 = 1 and i19 = 3.We now 
onsider (n + 6d)(n + 7d) · · · (n + 18d) = b′y′2. Then P (b′) ≤ 13.By the 
ase k = 13, we get (a6, a7, . . . , a18) = (1, 15, 14, . . . , 6, 5, 1) sin
e 5 | a7and 3 | a16. From 19 |n + 3d, we get (

ai

19

)

=
(

aia6

19

)

= −
(

i−3
19

) whi
h togetherwith 13 |n+9d, 11 |n, 7 |n+d, 2 |n, 5 | a2, 17 | a5, 3 | a1 implies a0 ∈ {2, 22},
a1 ∈ {3, 21}, a2 = 5, a3 = 19, a4 = 2 and a5 = 17. Now from (

ai

17

)

=
(

aia6

17

)

=
(

i−5
17

), we get a0 = 22, a1 = 21. Thus (a0, a1, . . . , a18) = (22, 21, . . . , 6, 5, 1).The 
ase (i11, i13) = (7, 9) is similar and we get (a0, a1, . . . , a18) = (1, 5, 6,
. . . , 21, 22). For the pair (i11, i13) = (10, 8), we similarly get (a0, a1, . . . , a18)
= (21, 5, . . . , 6, 5, 1, 3). This is ex
luded by 
onsidering (n + 3d)(n + 6d)
· · · (n + 18d) and k = 6. For the pairs (i11, i13) = (8, 6), (9, 7), we get
i19 = 0, 1, respe
tively, whi
h is not possible sin
e i19 ≥ 2 by the assumptionof the lemma.Let k = 23 and (i11, i13) = (0, 0). Then M1 = {5, 10, 15, 17, 20}, i5 = 0,
i17 = 0, M = {3, 6, 12, 19, 21}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18}, i3 = 0 and
i19 = 0 sin
e 23 ∤ a19. We have i23 ∈ {5, 6, 9, 10, 11, 12, 13, 15, 17, 18} sin
e
4 ≤ i23 < 19. Here we observe that 23 ∤ a19 and 4 ≤ i23 < 19 in view ofour assumption that k ∤ ai for 0 ≤ i < k − k′ and k′ ≤ i < k with k = 23,
k′ = 19. Further, I0

3 = {9, 18}, I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 =

{1, 4, 9, 14, 16}, I−
5 = {2, 7, 8, 18}, J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and

J4 = {2, 8}. Therefore a1 = a4 = a16 = 1, a7 = 7, a14 = 14, a2 = a8 = 2.This is not possible sin
e (

a1

23

)

=
(

a4

23

)

=
(

a16

23

)

=
(

a2

23

)

=
(

a8

23

)

= 1. The 
ases
(i11, i13) = (0, 9), (1, 10), (2, 11), (4, 0), (7, 9), (8, 10), (9, 11) are ex
luded sim-ilarly. Let (i11, i13) = (5, 1). Then M1 = {7, 10, 12, 17, 22}, i5 = 2, i17 = 10,
M = {0, 3, 4, 6, 8, 15, 21}, B = {9, 11, 13, 18, 19, 20} and i3 = 0. This implieseither 23 | a4, 19 | a8 or 23 | a8, 19 | a4. Further, I0

3 = {9, 18}, I1
3 = {11, 20},

I2
3 = {13, 19}, I+

5 = {11, 13, 18}, I−
5 = {9, 19, 20}, J1 = {11}, J2 = {20},

J3 = {13} and J4 = {19}. Therefore a11 = 1, a20 = 7, a13 = 14, a19 = 2.Further, from (18) we get a9 ∈ {1, 2}, a18 = 1 sin
e 7 ∤ a9a18, 2 ∤ a18. However,
a9 = 2 as 9 ∈ I−

5 , 18 ∈ I+
5 . Sin
e (

a11

23

)

=
(

a18

23

)

= 1, we see that 23 | a4,
19 | a8. By using (

ai

p

)

=
(

aia11

p

)

=
( (i−ip)(11−ip)

p

), we get (

ai

23

)

= −
(

i−4
23

),
(

ai

11

)

= −
(

i−5
11

), (

ai

7

)

= −
(

i−6
7

) and (

ai

5

)

=
(

i−2
5

). Now from 23 | a4, 19 | a8,
17 | a10, 13 |n + d, 11 |n + 5d, 7 |n + 6d, 5 |n + 2d, 3 |n, 2 |n + d, M1 being
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overed by {5, 17}, and M by {3, 19, 23}, we derive that (a0, a1, . . . , a22) =
(3, 26, . . . , 6, 5). The 
ases (i11, i13) = (5, 7), (6, 2), (6, 8) are similar and weget (a0, a1, . . . , a22) = (6, 7, . . . , 3, 7), (7, 3, . . . , 7, 6), (5, 6, 7, . . . , 3), respe
-tively.3.4. Introdu
tory remarks on the 
ases k ≥ 29. Assume q1 ∤ d and q2 ∤ d.Then, by taking the mirror image (4) of (2), there is no loss of generalityin assuming that q1 |n + iq1

d, q2 |n + iq2
d for some pair (iq1

, iq2
) with 0 ≤

iq1
< q1, 0 ≤ iq2

≤ (k − 1)/2 and further iq2
≥ k − k′ if q2 = k. For

k = 61, by taking (n + 8d) · · · (n + 60d) and k = 53, we may assume that
max(i59, i61) ≥ 8 if i59 ≥ 2. Let P0 = ∅, p1 = q1, p2 = q2, (i1, i2) = (iq1

, iq2
),

I = [0, k)∩Z, P = P1 := Λ(q1, q2) and ℓ ≤ ℓ1 =
∑

p∈P1
⌈k/p⌉. We 
he
k that

ℓ1 < 1
2 |I

′| sin
e |I ′| ≥ k−⌈k/q1⌉−⌈k/q2⌉. By Corollary 1, we get M =: M1and B =: B1 with (M1,B1,P1, ℓ1) having Property H. We now restri
t to allsu
h pairs (iq1
, iq2

) for whi
h |M1| ≤ ℓ1 and M1 is 
overed by P1. We �ndthat there is no su
h pair (iq1
, iq2

) when k = 97.3.5. The 
ases 29 ≤ k ≤ 59. As stated in Lemma 6, we have q1 = 19,
q2 = 29 and P1 = Λ(19, 29) ⊆ {11, 13, 17, 43, 47, 53, 59}. Then the pairs
(iq1

, iq2
) are given by

k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (11, 1),

(12, 2), (13, 3), (14, 4), (15, 5), (16, 6), (17, 7), (18, 8);

k = 37 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (17, 7), (18, 8);

k = 41 : (0, 0), (2, 11), (3, 12), (4, 13);

k = 43 : (0, 0), (1, 1), (3, 12), (4, 13), (5, 14), (6, 15), (7, 16), (8, 17);

k = 47 : (0, 0), (1, 1), (7, 16), (8, 17), (9, 18), (10, 19), (11, 20),

(12, 21), (13, 22), (13, 23), (14, 23);

k = 53 : (0, 0), (1, 0), (1, 1), (13, 22), (13, 23), (14, 23), (14, 24),

(15, 24), (15, 25), (16, 25), (16, 26), (17, 26);

k = 59 : (0, 0), (0, 28), (1, 0), (1, 1), (2, 1), (3, 2), (17, 27), (18, 28).Let k = 31 and (i19, i29) = (0, 9). We see that P1 = {11, 13, 17}, M1 =
{4, 5, 12, 16, 21, 25, 27} and B1 = {1, 2, 3, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20,
22, 23, 24, 26, 28, 29, 30}. Sin
e M1 is 
overed by P1, we �nd that 11 di-vides a5, a16, a27; 13 divides a12, a25; and 17 divides a4, a21. Hen
e i11 = 5,
i13 = 12, i17 = 4. We see that gcd(11 ·13 ·17, ai) = 1 for i ∈ B1. Now we take
P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (i11, i13) = (5, 12), I = B1,
P = P2 := Λ(11, 13) \ P0 = {5, 31} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 8. Thus

|I ′| = |B1| = 21 > 2ℓ2. Then the 
onditions of Corollary 1 are satis�ed andwe have M =: M2, B =: B2 su
h that (M2,B2,P2, ℓ2) has Property H. We



An extension of a theorem of Euler 85get M2 = {1, 3, 7, 8, 18, 23, 28}. This is not possible sin
e M2 is not 
overedby P2. Further, the following pairs (i19, i29) are ex
luded similarly:
k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (1, 10), (2, 11), (3, 12), (4, 13), (18, 8).Thus k > 29.Let k = 59 and (i19, i29) = (0, 0). Then we see that P1 = {11, 13, 17,
43, 47, 53, 59}, M1 = {11, 13, 17, 22, 26, 33, 34, 39, 43, 44, 47, 51, 52, 53, 55},
B1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 30,
31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 48, 49, 50, 54, 56}, i11 = i13 = i17 = 0,
{43, 47, 53} is 
overed by {43, 47, 53, 59} =: P ′

1. Let p | ai for i ∈ B1 and
p ∈ P1. Then we show that i ∈ {4, 6, 10}. Let 59 | a43. Then {47, 53} is 
ov-ered by {43, 47, 53}. Let 43 | a47. If 43 | ai with i ∈ B1, then i = 4 and 43p | a4with p ∈ {47, 53} sin
e i(P1) is even. This implies either 53 | a53, 43 ·47 | a4 or
47 | a53, 43 · 53 | a4. Similarly we get i ∈ {4, 6, 10} by 
onsidering all the 
ases
59 | a43, 59 | a47 and 59 ∤ a43a47a53. We observe that 59 ∤ a53 sin
e 6 ≤ i59 < 53.Hen
e we 
on
lude that p ∤ ai for i ∈ B1 \ {4, 6, 10} and p ∈ P ′

1. Further weobserve that
i59 ∈ M1 ∪ {19, 29, 38} ∪ {6, 10}.(19)Now we take P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (0, 0),

I = B1 \ {4, 6, 10}, P = P2 := Λ(11, 13) \ P0 = {5, 31, 37} and ℓ ≤ ℓ2 =
∑

p∈P2
⌈k/p⌉ = 16. Thus |I ′| = |B1| − 2 > 2ℓ2. Then the 
onditions of Corol-lary 1 are satis�ed and we have M =: M2, B =: B2 with (M2,B2,P2, ℓ2)having Property H. We get M2 = {5, 15, 20, 30, 31, 35, 37, 40, 45}, B2 =

{1, 2, 3, 7, 8, 9, 12, 14, 16, 18, 21, 23, 24, 25, 27, 28, 32, 36, 41, 42, 46, 48,
49, 50, 54, 56}, i5 = 0, and 31 | a31, 37 | a37 or 31 | a37, 37 | a31. Now we take
P0 = P1∪P2∪{19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2, P = P3 :=
Λ(5, 11) \ P0 = {3, 23, 41} and ℓ ≤ ℓ3 =

∑

p∈P3
⌈k/p⌉. Then by Lemma 5,we see that M = {3, 6, 12, 21, 23, 24, 27, 41, 42, 46, 48, 54} is 
overed by P3and i(P3) is even for i ∈ B = {1, 2, 7, 8, 9, 14, 16, 18, 28, 32, 36, 49, 56}. Thus

i3 = i23 = i41 = 0 and p ∈ {2, 7} whenever p | ai with i ∈ B. Putting J = B,we have B = I0
3 ∪ I1

3 ∪ I2
3 and B = I+

5 ∪ I−
5 with

I0
3 = {9, 18, 36}, I1

3 = {1, 7, 16, 28, 49}, I2
3 = {2, 8, 14, 32, 56}and

I+
5 = {1, 9, 14, 16, 36, 49, 56}, I−

5 = {2, 7, 8, 18, 28, 32},so that
J1 = {1, 16, 49}, J2 = {7, 28}, J3 = {14, 56}, J4 = {2, 8, 32}.Hen
e (a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) by (17). Thus a1 = a16 = a49

= 1, a7 = a28 = 7, a14 = a56 = 14, a2 = a8 = a32 = 2. Further, we get
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a9 = a36 = 1 and a18 = 2 sin
e 9, 36 ∈ I+

5 and 18 ∈ I−
5 . Sin
e

(

ai

59

)

= 1 for ai ∈ {1, 7},(20)we see that (

ai

59

)

= 1 for i ∈ {1, 7, 9, 16, 28, 36, 49}, whi
h is not possibleby (19).Let k = 41 and (i19, i29) = (2, 11). Then we see that P1 = {11, 13, 17},
M1 = {1, 6, 7, 14, 18, 23, 27, 29}, B1 = {0, 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, 17, 19,
20, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39}, i11 = 7, i13 = 1,
i17 = 6. Further gcd(ai, 11 · 13 · 17) = 1 for i ∈ B1. Now we take P0 =
P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (7, 1), I = B1, P = P2 :=
Λ(11, 13) \ P0 = {5, 31, 37} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 13. Then |I ′| =

|B1| > 2ℓ2. Thus the 
onditions of Corollary 1 are satis�ed and we get M =:
M2 and B =: B2 su
h that (M2,B2,P2, ℓ2) has Property H. We have M2 =
{0, 3, 5, 9, 10, 20, 25, 30, 35}, B2 = {4, 8, 12, 13, 15, 16, 17, 19, 22, 24, 26, 28, 31,
32, 33, 34, 36, 37, 38, 39}, i5 = 0. Further 31 · 37 | a3a9, 31 ∤ a34. We take P0 =
P1 ∪ P2 ∪ {19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 7), I = B2, P =
P3 := Λ(5, 11) \ P0 = {3, 23, 41}, ℓ ≤

∑

p∈P3
⌈k/p⌉ and apply Lemma 5to see that M = {13, 16, 17, 19, 28, 34, 37} is 
overed by P3, i3 = 1, i(P3) iseven for i ∈ B = {4, 8, 12, 22, 24, 26, 31, 32, 33, 36, 38, 39}. Further, i23 = 17,

i41 ∈ {2, 11, 21}∪M1 ∪M2 ∪M ∪{4, 22, 31} or vi
e versa. Here we observethat i41 exists sin
e 41 ∤ d. Thus 23 · 41 |
∏

ai where i runs through the set
{2, 11, 21}∪M1∪M2∪{4, 22, 31}. Therefore ai ∈ {1, 2, 7, 14} for i ∈ I1

3 ∪I
2
3 ,where B = I0

3 ∪ I1
3 ∪ I2

3 , B = I+
5 ∪ I−

5 with
I0

3 = {4, 22, 31}, I1
3 = {12, 24, 33, 36, 39}, I2

3 = {8, 26, 32, 38}and
I+

5 = {4, 24, 26, 31, 36, 39}, I−
5 = {8, 12, 22, 32, 33, 38}by taking J = B. We get

J1 = {24, 36, 39}, J2 = {12, 33}, J3 = {26}, J4 = {8, 32, 38},and a24 = a36 = a39 = 1, a12 = a33 = 7, a26 = 14, a8 = a32 = a38 = 2by (17). Sin
e
(

ai

41

)

= 1 for ai ∈ {1, 2},(21)we see that (

ai

41

)

= 1 for i ∈ {8, 24, 32, 36, 38, 39}, whi
h is not valid by thepossibilities for i41.All other 
ases are ex
luded similarly. Analogously to (20) and (21), weuse (

ai

k

)

= 1 for
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ai ∈







{1, 7} if k = 37, 53, 59,

{1, 2} if k = 31, 41, 47,

{1, 14} if k = 43to ex
lude the remaining possibilities.3.6. The 
ase k = 61. We have q1 = 59, q2 = 61 and P1 = {7, 13, 17, 29,
47, 53}. Then the pairs (iq1

, iq2
) are given by (8, 6), (9, 7), (10, 8), (11, 9), i.e.

(i + 2, i) with 6 ≤ i ≤ 9.Let (i59, i61) = (8, 6). Then P1 = {7, 13, 17, 29, 47, 53}, M1 = {2, 4, 9, 11,
14, 15, 16, 20, 25, 28, 32, 33, 38, 39, 41, 46, 50, 53, 54, 60}, B1 = {0, 1, 3, 5, 7, 10,
12, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 40, 42, 43,
44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 58, 59}, i7 = 4, i13 = 2, i17 = 16, i29 = 9and a14, a20 are divisible by 47, 53. Further, gcd(p, ai) = 1 for i ∈ B1 and
p ∈ P1. Let P0 = P1 ∪ {59, 61}, p1 = 7, p2 = 17, (i1, i2) := (4, 16), I = B1,
P = P2 := Λ(7, 17) \ P0 = {11, 19, 23, 37} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 15.Then 2ℓ2 < |I ′| = |B1| − 1. By Corollary 1, we get M =: M2, B =: B2su
h that (M2,B2,P2, ℓ2) has Property H. We �nd that M2 = {1, 10, 12,21, 23, 29, 30, 34, 44, 45, 48, 56}, B2 = {0, 3, 5, 7, 13, 17, 19, 22, 24, 26, 27,31, 35, 36, 37, 40, 42, 43, 47, 49, 51, 52, 55, 57, 58, 59}, i11 = 1, i19 = 10,

i23 = 21, i37 = 30. Now we take P0 = P1 ∪ P2 ∪ {59, 61}, p1 = 11,
p2 = 59, (i1, i2) := (1, 8), I = B2, P = P3 := Λ(11, 59) \ P0 = {31, 41}and ℓ ≤ ℓ3 =

∑

p∈P3
⌈k/p⌉ = 4. Then 2ℓ3 < |I ′| = |B2|. By Corollary 1, weget M =: M3 and B =: B3 su
h that (M3,B3,P3, ℓ3) has Property H. Weget M3 = {0, 5, 26, 36}, whi
h 
annot be 
overed by P3. This is a 
ontradi
-tion. The remaining 
ases are ex
luded similarly.3.7. The 
ases k = 67, 71. We have q1 = 43, q2 = 67 and P1 ⊆ {11, 13,

19, 29, 31, 37, 41, 53, 71}. Then the pairs (iq1
, iq2

) are given by
k = 67 : (i, i), 6 ≤ i ≤ 33;

k = 71 : (i, i), 0 ≤ i ≤ 35, i 6= 24, 25, and (24, 0), (25, 1), (26, 2), (27, 3).Let k = 71 and (i43, i67) = (27, 3). We see that P1 = {11, 13, 19, 29, 31, 37,
41, 53, 71}, M1 = {4, 5, 8, 12, 13, 15, 17, 18, 26, 29, 31, 32, 33, 37, 39, 41, 44, 48,
51, 57, 59}, B1 = {0, 1, 2, 6, 7, 9, 10, 11, 14, 16, 19, 20, 21, 22, 23, 24, 25, 28, 30,
34, 35, 36, 38, 40, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69}, i11 = 4, i13 = 5, i19 = 13. Therefore {8, 12, 17, 29, 33,
39, 41} is 
overed by {29, 31, 37, 41, 53, 71} implying either i29 = 12 or i29 ∈
{17, 29, 33}, i31 = 8. Let i ∈ B1 and p | ai with p ∈ P1. Then there is a q ∈ P1su
h that pq | ai sin
e i(P1) is even. Next we 
onsider the 
ase i31 = 8. Then
{12, 17, 29, 33, 41} =: M′

1 is 
overed by {29, 37, 41, 53, 71} and i29 6= 12. For
29 ∈ M′

1, we may suppose that either 29 | a29, 41 | a17, 29 ·41 | a58 or 29 | a29,
41 | a41, 29 · 41 | a0. Thus 0 or 58 in B1 
orrespond to 29. We argue as abovethat for any other element of M′

1, there is no 
orresponding element in B1.



88 N. Hirata-Kohno et al.For the �rst 
ase, we derive similarly that 31 | a33, 37 | a39, 31 · 37 | a2 or
37 | a17, 37 · 71 | a54 or 37 | a29, 37 · 71 | a63 or 41 | a17, 37 · 71 | a58. Therefore

29 · 31 · 37 · 41 · 53 · 71
∣

∣

∏

(n + id) for i ∈ M1 ∪ {3, 27, 70} ∪ B′
1where B′

1 = {2, 54, 58, 63} if i29 = 12 and {0, 58} otherwise. Further,
i71 ∈ M1 ∪ {27} ∪ B′

1 and i71 6= 32.(22)For ea
h possibility i29 ∈ {0, 4, 12, 17}, we now take P0 = P1 ∪ {43, 67},
p1 = 19, p2 = 29, (i1, i2) := (13, i29), I = B1\B

′
1, P = P2 := Λ(19, 29)\P0 =

{17, 47, 59, 61} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 11. Then |I ′| = |B1| − 4 > 2ℓ2.Thus the 
onditions of Corollary 1 are satis�ed and we get M =: M2 and

B =: B2 with (M2,B2,P2, ℓ2) having Property H. We 
he
k that |M2| ≤ ℓ2only at i29 = 12, in whi
h 
ase we getM2 = {9, 11, 19, 23, 36, 53}, B2 = {0, 1,6, 7, 10, 14, 16, 20, 21, 22, 24, 25, 28, 30, 34, 35, 38, 40, 42, 43, 45, 46, 47, 49,
50, 52, 55, 56, 60, 61, 62, 63, 64, 65, 67, 68, 69}, i17 = 2 and {9, 11, 23} is 
overedby {47, 59, 61}. Thus 47·59·61 | a9a11a23. Further, p ∤ ai for i ∈ B2 and p ∈ P2.We now take P0 = P1∪P2 ∪{43, 67}, p1 = 11, p2 = 13, (i1, i2) := (4, 5), I =
B2,P = P3 := Λ(11, 13)\P0 = {5} and ℓ = ℓ3 = ⌈k/5⌉ = 15. Then |I ′| = |B2|
> 2ℓ3. By Corollary 1, we get M =: M3 and B =: B3 su
h that (M3,
B3,P3, ℓ3) has Property H. We 
al
ulate M3 = {0, 10, 25, 30, 35, 40, 50, 55,60, 65}, B3 = {1, 6, 7, 14, 16, 20, 21, 22, 24, 28, 34, 38, 42, 43, 45, 46, 47, 49,52, 54, 56, 58, 61, 62, 63, 64, 66, 67, 68, 69}, i5 = 0 and further 5 ∤ a20a45.Lastly, we take P0 = P1∪P2∪P3∪{43, 67}, p1 = 5, p2 = 11, (i1, i2) := (0, 4),
I = B3, P = P4 := Λ(5, 11) \ P0 = {3, 23} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. ByLemma 5, we see that M = {16, 22, 24, 28, 43, 46, 47, 49, 64, 67} is 
overed by

P4, i3 = i23 = 1, B = {1, 6, 7, 14, 21, 34, 38, 42, 52, 56, 61, 62, 63, 68, 69} andhen
e 3 ∤ a7a34a52a61 and possibly 3 · 23 | a1. Therefore ai ∈ {1, 2, 7, 14} for
i ∈ B\{1}. By taking J = B\{1}, we have B\{1} = I0

3 ∪I1
3 ∪I−

3 = I+
5 ∪I−

5with
I0

3 = {7, 34, 52, 61}, I1
3 = {6, 21, 42, 63, 69}, I−

3 = {14, 38, 56, 62, 68}and
I+

5 = {6, 14, 21, 34, 56, 61, 69}, I−
5 = {7, 38, 42, 52, 62, 63, 68}.Therefore

J1 = {6, 21, 69}, J2 = {42, 63}, J3 = {14, 56}, J4 = {38, 62, 68},and hen
e a6 = a21 = a69 = 1, a42 = a63 = 7, a14 = a56 = 14, a38 =
a62 = a68 = 2 by (17). Further, we get a34 = a61 = 1 and a52 = 2 by takingresidue 
lasses modulo 5. Sin
e (

1
71

)

=
(

2
71

)

= 1, we see that (

ai

71

)

= 1 for
i ∈ {6, 21, 34, 38, 52, 61, 62, 68, 69}, whi
h is not valid by the possibilities for
i71 given by (22).



An extension of a theorem of Euler 89Let k = 67 and (i43, i67) = (9, 9). We see that P1 = {11, 13, 19, 29, 31, 37,
41, 53}, M1 = {20, 22, 28, 31, 35, 38, 40, 42, 46, 47, 48, 50, 53, 61, 62, 64, 66},
B1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26,
27, 29, 30, 32, 33, 34, 36, 37, 39, 41, 43, 44, 45, 49, 51, 54, 55, 56, 57, 58, 59, 60,
63, 65}, i11 = i13 = i19 = 9 and {38, 40, 46, 50, 62} is 
overed by {29, 31, 37,
41, 53}. Further, p ∤ ai for i ∈ B1 and p ∈ P1 ex
ept possibly when 29 | a50,
41 | a62, 29 · 41 | a21. Now we take P0 = P1 ∪ {43, 67}, p1 = 11, p2 = 13,
(i1, i2) := (9, 9), I = B1 \ {21} and P = P2 := Λ(11, 13) \ P0 = {5, 17, 47,
59, 61}. If 5 ∤ d, we observe that there is at least one multiple of 5 among
n + (i11 + 11i)d, 0 ≤ i ≤ 5, and ℓ ≤

∑

p∈P2
⌈k/p⌉ − 1 = 23. Thus we alwayshave ℓ ≤ 23 = ℓ2. Then |I ′| = |B1| − 1 > 2ℓ2 sin
e |B1| = 48. Thus the 
on-ditions of Corollary 1 are satis�ed and we get M =: M2, B =: B2 su
h that

(M2,B2,P2, ℓ2) has Property H. We have M2 = {0, 1, 2, 3, 5, 6, 7, 8, 14, 19,
24, 26, 29, 39, 43, 44, 49, 54, 56, 60}, whi
h 
annot be 
overed by P2. This isa 
ontradi
tion. The 
ases k = 67, (i43, i67) = (i, i) with 9 ≤ i ≤ 28, and
k = 71, (i43, i67) = (i, i) with 13 ≤ i ≤ 28, i 6= 24, 25, are ex
luded inthe same way as in this paragraph. The remaining 
ases are ex
luded in thesame way as k = 71, (i43, i67) = (27, 3) given in the pre
eding paragraph.3.8. The 
ases k = 73, 79. We have q1 =23, q2 =73 and P1⊆{13, 19, 29,
31, 37, 47, 59, 61, 67, 79}. Then the pairs (iq1

, iq2
) are given by

k = 73 : (6, 2), (7, 3), (8, 4), (9, 5);

k = 79 : (0, 0), (1, 1), (2, 2), (7, 3), (8, 4), (9, 5), (10, 6), (11, 7), (12, 8),

(13, 9), (14, 10), (15, 11), (16, 12), (17, 13), (18, 14), (19, 15).These pairs are of the form (i +4, i) ex
ept for (0, 0), (1, 1), (2, 2) in the 
ase
k = 79.Let k = 79 and (i23, i73) = (8, 4). We see that P1 = {13, 19, 29, 31, 37, 47,
59, 61, 67, 79},M1 = {1, 3, 10, 12, 15, 16, 18, 19, 20, 25, 30, 38, 39, 40, 46, 48,51, 58, 64, 78}, B1 = {0, 2, 5, 6, 7, 9, 11, 13, 14, 17, 21, 22, 23, 24, 26, 27,28, 29, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 50, 52, 53, 55, 56,57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i13 = 12,
i19 = 1 and {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78} is 
overed by {29, 31, 37,
47, 59, 61, 67, 79}. Thus

29 · 31 · 37 · 47 · 59 · 61 · 67 · 79
∣

∣

∏

(n + id)

for i ∈ {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78}.Further, we have
i79 ∈ {10, 15, 16, 18, 19, 30, 40, 46, 48}(23)and either i29 = 19 or i29 ∈ {1, 10, 16, 18}, i31 = 15, i37 = 3, i59 = 19.Also, for p ∈ P1, we have p ∤ ai for i ∈ B1 sin
e i(P1) is even for i ∈ B1.
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h possibility i29 ∈ {1, 10, 16, 18, 19}, we now take P0 = P1 ∪{23, 73},
p1 = 19, p2 = 29, (i1, i2) := (1, i29), I = B1, P = P2 := Λ(19, 29) \ P0

= {11, 17, 43, 53, 71} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 19. Then |I ′| ≥ |B1| − 2

> 2ℓ2. Thus the 
onditions of Corollary 1 are satis�ed and we have M =:
M2, B =: B2 su
h that (M2,B2,P2, ℓ2) has Property H, implying i29 = 19,in whi
h 
ase we get M2 = {0, 6, 9, 11, 22, 24, 26, 33, 34, 43, 44, 55, 60, 66},
B2 = {2, 5, 7, 13, 14, 17, 21, 23, 27, 28, 29, 32, 35, 36, 37, 41, 42, 45, 47, 49, 50,52, 53, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i11 = 0,
i17 = 9 and {6, 24, 34} is 
overed by {43, 53, 71}. Thus 43 · 53 · 71 | a6a24a34.Further, p ∤ ai for i ∈ B2 and p ∈ P2. We now take P0 = P1 ∪ P2 ∪ {23, 73},
p1 = 11, p2 = 13, (i1, i2) := (0, 12), I = B2, P = P3 := Λ(11, 13) \ P0 = {5}and ℓ = ℓ3 = ⌈k/5⌉ = 16. Then |I ′| = |B2| > 2ℓ3. By Corollary 1, we get
M =: M3 and B =: B3 with (M3,B3,P3, ℓ3) having Property H. We 
al-
ulate M3 = {7, 17, 32, 37, 42, 47, 57, 62, 67, 72}, B3 = {2, 5, 13, 14, 21, 23, 27,28, 29, 35, 36, 41, 45, 49, 50, 52, 53, 56, 59, 61, 63, 65, 68, 69, 70, 71, 73, 74,
75, 76}, i5 = 2 and 5 ∤ ai for i ∈ B3. Lastly, we take P0 = P1 ∪ P2 ∪
P3 ∪ {23, 73}, p1 = 5, p2 = 11, (i1, i2) := (2, 0), I = B3, P = P4 :=
Λ(5, 11) \ P0 = {3, 41} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. By Lemma 5, we seethat M = {23, 29, 35, 36, 50, 53, 56, 65, 71, 74} is 
overed by P4, i3 = 2,

i41 = 36, B = {5, 13, 14, 21, 28, 41, 45, 49, 59, 61, 63, 68, 69, 70, 73, 75, 76} andhen
e ai ∈ {1, 2, 7, 14} for i ∈ B. By taking J = B, we have B = I0
3 ∪ I1

3

∪ I2
3 = I+

5 ∪ I−
5 with

I0
3 = {5, 14, 41, 59, 68}, I1

3 = {13, 28, 49, 61, 70, 73, 76},

I2
3 = {21, 45, 63, 69, 75}and

I+
5 = {13, 21, 28, 41, 61, 63, 68, 73, 76}, I−

5 = {5, 14, 45, 49, 59, 69, 70, 75}.Thus
J1 = {13, 28, 61, 73, 76}, J2 = {49, 70}, J3 = {21, 63}, J4 = {45, 69, 75},and hen
e a13 = a28 = a61 = a73 = a76 = 1, a49 = a70 = 7, a21 = a63 = 14,
a45 = a69 = a75 = 2 by (17). Further, we get a41 = a68 = 1 and a5 = a59 = 2by residues modulo 5. Sin
e (

1
79

)

=
(

2
79

)

= 1, we see that (

ai

71

)

= 1 for i ∈
{5, 13, 28, 41, 45, 59, 61, 68, 69, 75, 76}, whi
h is not valid by the possibilitiesfor i79 given by (23). The other 
ases are ex
luded similarly.3.9. The 
ase k = 83. We have q1 = 37, q2 = 83 and P1 = {17, 23, 29, 31,
47, 53, 59, 61, 67, 71, 73}. Then the pairs (iq1

, iq2
) are given by

(13, 4), (14, 5), (15, 6), (16, 7), (17, 8), (18, 9), (19, 10),

(20, 11), (21, 12), (22, 13), (23, 14), (24, 15), (25, 16), (26, 17).These pairs are of the form (i + 9, i) with 4 ≤ i ≤ 17.



An extension of a theorem of Euler 91Let (i37, i83) = (13, 4). We see that P1 = {17, 23, 29, 31, 47, 53, 59, 61, 67,
71, 73}, M1 = {0, 2, 14, 16, 18, 19, 20, 25, 26, 28, 29, 34, 36, 40, 41, 53, 56,58, 64, 70}, B1 = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 21, 22, 23, 24, 27, 30, 31,32, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 59, 60,61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82},
i17 = 2, i23 = 18, i29 = 0, i31 = 25 and {14, 16, 20, 26, 28, 34, 40} is 
overedby {47, 53, 59, 61, 67, 71, 73}. Further, p ∤ ai for i ∈ B1 and p ∈ P1. For ea
hpossibility i73 ∈ {14, 16, 20, 26, 28, 34, 40}, we take P0 = P1 ∪ {37, 83}, p1 =
23, p2 = 73, (i1, i2) := (18, i73), I = B1, P = P2 := Λ(23, 73) \ P0 =
{13, 19, 79} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉ = 14. Then |I ′| = |B1| > 2ℓ2. Thusthe 
onditions of Corollary 1 are satis�ed and we getM =: M2, B =: B2 su
hthat (M2,B2,P2, ℓ2) has Property H, whi
h is possible only if i73 = 14. Then

M2 = {8, 9, 11, 22, 30, 35, 48, 49, 61, 68, 74}. Therefore i13 = 9, i19 = 11 and
i79 = 8. This is not possible by applying the 
ase k = 73 to (n + 9d) · · · (n +
81d). Similarly, for (i37, i83) = (14, 5), we get i73 = 15, i79 = 9 and this isex
luded by applying the 
ase k = 73 to (n + 10d) · · · (n + 82d). For all theremaining 
ases, we 
ontinue similarly to �nd that M2 is not 
overed by P2for the possible 
hoi
es of i73, and hen
e they are ex
luded.3.10. The 
ase k = 89. We have q1 = 79, q2 = 89 and P1 = {13, 17, 19,
23, 31, 47, 53, 71, 83}. Then the pairs (iq1

, iq2
) are given by

(16, 6), (17, 7), (18, 8), (19, 9), (20, 10), (21, 11).These pairs are of the form (i + 10, i) with 6 ≤ i ≤ 11.Let (i79, i89) = (16, 6). We see that P1 = {13, 17, 19, 23, 31, 47, 53, 71, 83},
M1 = {0, 1, 2, 3, 4, 10, 12, 17, 19, 24, 26, 27, 30, 33, 38, 42, 43, 44, 48, 49, 56,57, 61, 64, 69, 72, 76, 78, 82}, B1 = {5, 7, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23,25, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 50, 51, 52, 53, 54, 55,58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85,86, 87, 88}, i13 = 4, i17 = 10, i19 = 0, i23 = 3, i31 = 2, i47 = 1 and
{12, 24, 42} is 
overed by {53, 71, 83}. Further, p ∤ ai for i ∈ B1 and p ∈ P1.Now we take P0 = P1 ∪ {79, 89}, p1 = 31, p2 = 89, (i1, i2) := (2, 6), I = B1and P = P2 := Λ(31, 89) \ P0 = {7, 11, 41, 59, 73}. If 7 ∤ d, we observe thatthere is at least one multiple of 7 among n + (i13 + 13i)d, 0 ≤ i ≤ 6,and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ − 1 = 28. Thus in all 
ases, we have ℓ ≤ ℓ2 and

|I ′| = |B1| > 2ℓ2. Therefore the 
onditions of Corollary 1 are satis�ed and weget M =: M2 and B =: B2 with (M2,B2,P2, ℓ2) having Property H. We �nd
M2 = {7, 11, 13, 22, 25, 29, 32, 36, 39, 40, 51, 53, 54, 60, 62, 67, 73, 74, 81,84, 88}, B2 = {5, 8, 9, 14, 15, 18, 20, 21, 23, 28, 31, 34, 35, 37, 41, 45, 46, 47,50, 52, 55, 58, 59, 63, 65, 66, 68, 70, 71, 75, 77, 79, 80, 83, 85, 86, 87}, i7 = 4,
i11 = 7, i41 = 13 and {22, 36} is 
overed by {59, 73}. Further, for p ∈ P2, p ∤ aifor i ∈ B2\{18}. We take P0 = P1∪P2∪{79, 89}, p1 = 41, p2 = 79, (i1, i2) :=
(13, 16), I = B2 \ {18}, P = P3 := Λ(41, 79) \ P0 = {37, 43, 61, 67} and ℓ =
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ℓ3 =

∑

p∈P3
⌈k/p⌉ = 10. Then |I ′| = |I| = |B2|−1 > 2ℓ3. Thus the 
onditionsof Corollary 1 are satis�ed and we have M =: M3, B =: B3 su
h that

(M3,B3,P3, ℓ3) has Property H. We get M3 = {9, 21, 28, 34, 52, 58}, B3 =
{5, 8, 14, 15, 20, 23, 31, 35, 37, 41, 45, 46, 47, 50, 55, 59, 63, 65, 66, 68, 70, 71,75, 77, 79, 80, 83, 85, 86, 87}, i37 = 21, i43 = 9 and {28, 34} is 
overed by
{61, 67}. Therefore p ∈ {2, 3, 5, 29} whenever p | ai for i ∈ B3. Now we take
P0 = P1 ∪ P2 ∪ P3 ∪ {79, 89}, p1 = 7, p2 = 17, (i1, i2) := (4, 10), I = B3,
P = P4 := Λ(7, 17)\P0 = {29} and ℓ = ℓ4 = ⌈k/29⌉ = 4. Then |I ′| = |B3|−1sin
e 46 ∈ B3 and |B3|−1 > 2ℓ3. By Corollary 1, we get M =: M4 and B =:
B4 with (M4,B4,P4, ℓ4) having Property H. We �nd M4 = {8, 37, 66}, B4 =
{5, 14, 15, 20, 23, 31, 35, 41, 45, 47, 50, 55, 59, 63, 65, 68, 70, 71, 75, 77, 79, 80,83, 85, 86, 87}, i29 = 8 and P (ai) ≤ 5 for i ∈ B4. Now we get a 
ontradi
tionby taking k = 6 and (n+47d)(n+55d)(n+63d)(n+71d)(n+79d)(n+87d) =
b′y′2. Similarly the pair (i79, i89) = (17, 7) is ex
luded by applying k = 6 to
(n+48d)(n+56d)(n+64d)(n+72d)(n+80d)(n+88d). For all the remaining
ases, we 
ontinue similarly to �nd that M3 is not 
overed by P3, and hen
ethey are ex
luded.4. Proof of Lemma 7. Assume that Q1 ∤ d and Q2 ∤ d. Then, by takingthe mirror image (4) of (2), there is no loss of generality in assuming that
0 ≤ iQ1

< Q1, 0 ≤ iQ2
≤ min(Q2 − 1, (k − 1)/2). Further, iQ2

≥ k − k′ if
Q2 = k. Let P0 = {Q0}, p1 = Q1, p2 = Q2, (i1, i2) := (iQ1

, iQ2
), I = [0, k)∩Zand P = P1 := Λ(Q1, Q2) \ P0. Then |I ′| ≥ k − ⌈k/Q1⌉ − ⌈k/Q2⌉ and

ℓ ≤ ℓ1 where ℓ1 =
∑

p∈P1
⌈k/p⌉. In fa
t we 
an take ℓ1 =

∑

p∈P1
⌈k/p⌉ − 1 if

(k, Q0) = (79, 23) or (k, Q0) = (59, 29) with i7 ≤ 2 by 
onsidering multiplesof 13, 11 or 19, 7, 11, respe
tively.Let (k, Q0) 6= (79, 73). Then ℓ1 < 1
2 |I

′|. We observe that i(P0) = 0 for
i ∈ I ′ sin
e Q0 | d, and by Corollary 1, we get M =: M1, B =: B1 su
h that
(M1,B1,P1, ℓ1) has Property H. We now restri
t to all su
h pairs (iQ1

, iQ2
)with |M1| ≤ ℓ1 and M1 
overed by P1. These pairs are given by

k Q0 (Q1, Q2) (iQ1
, iQ2

)

29 19 (7, 17) (0, 0), (0, 11)

37 19 or 29 (7, 17) (0, 0), (1, 2)

47 29 (7, 17) (0, 0), (4, 12)

59 29 (7, 17) (1, 1), (1, 6)

71 43 (53, 67) (0, 0)

89 79 (23, 73) (0, 0), (19, 15)Let (k, Q0) = (79, 73) and (Q1, Q2) = (53, 67). We apply Lemma 5 toderive that either |I1| ≤ ℓ1, I1 is 
overed by P1, i(P1) is even for i ∈ I2, or
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|I2| ≤ ℓ1, I2 is 
overed by P1, i(P1) is even for i ∈ I1. We 
ompute I1, I2and we �nd that both I1 and I2 are not 
overed by P1 for ea
h pair (i53, i67)with 0 ≤ i53 < 53, 0 ≤ i67 ≤ (k − 1)/2.Let (k, Q0) = (37, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 2). Then
P1 = {11, 13, 19, 23, 37}. We �nd that M1 = {3, 7, 10, 13, 14, 17, 23, 25},
B1 = {0, 4, 5, 6, 9, 11, 12, 16, 18, 20, 21, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35},
i11 = 3, i13 = 10 and {7, 13, 17} is 
overed by {19, 23, 37}. Further, p ∤ ai for
p ∈ P1, i ∈ B1. Now we take P0 = P1 ∪ {7, 17, 29}, p1 = 11, p2 = 13,
(i1, i2) := (3, 10), I = B1, P = P2 := Λ(11, 13) \ P0 = {5, 31} and
ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉ = 10. Thus |I ′| = |I| = |B1| = 21 > 2ℓ2. Then the
onditions of Corollary 1 are satis�ed and we have M =: M2, B =: B2 su
hthat (M2,B2,P2, ℓ2) has Property H. We get M2 = {5, 6, 16, 21, 26, 31},

B2 = {0, 4, 9, 11, 12, 18, 20, 24, 27, 28, 30, 32, 33, 34, 35}, i5 = 1, 31 | a5 and
5 ∤ a11. Also, P (ai) ≤ 3 for i ∈ B2 and P (a31) = 5. Thus P (a30a31 · · · a35) ≤ 5and this is ex
luded by the 
ase k = 6. The other 
ases for k = 29, 37, 47 areex
luded similarly. Ea
h possibility is ex
luded by the 
ase k = 6 after show-ing P (a1a2 · · · a6) ≤ 5 when (k, Q0) ∈ {(29, 19), (37, 19), (37, 29), (47, 29)},
(i7, i17) = (0, 0); P (a22a23 · · · a27) ≤ 5 when (k, Q0) = (29, 19), (i7, i17) =
(0, 11); P (a30a31 · · · a35) ≤ 5 when (k, Q0) = (37, 19), (i7, i17) = (1, 2); and
P (a40a41 · · · a45) ≤ 5 when (k, Q0) = (47, 29), (i7, i17) = (4, 12).Let (k, Q0) = (59, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 1). Then
P1 = {11, 13, 19, 23, 37, 47, 59}. We �nd that M1 = {0, 12, 14, 20, 23, 24, 27,
30, 34, 38, 39, 40, 45, 47, 48, 53, 56, 58}, B1 = {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 16,
17, 19, 21, 25, 26, 28, 31, 32, 33, 37, 41, 42, 44, 46, 49, 51, 54, 55}, i11 = i13 = i19

= i23 = 1 and {30, 38, 48} is 
overed by {37, 47, 59}. Further, p ∤ ai for p ∈ P1,
i ∈ B1. Now we take P0 = P1∪{7, 17, 29}, p1 = 11, p2 = 13, (i1, i2) := (1, 1),
I = B1, P = P2 := Λ(11, 13)\P0 = {5, 31, 43} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉. ByLemma 5, we get M = {6, 11, 16, 21, 31, 32, 41, 44, 46}, i5 = 1, 31 ·43 | a32a44,and i(P2) is even for i ∈ B = {2, 3, 4, 5, 7, 9, 10, 13, 17, 19, 25, 26, 28, 33, 37,

42, 49, 51, 54, 55}. Further, for p ∈ P2, p ∤ ai for i ∈ B. Finally we applyLemma 5 with P0 = P1 ∪ P2 ∪ {7, 17, 29}, p1 = 5, p2 = 11, (i1, i2) :=
(1, 1), I = B and P = P3 := Λ(5, 11) \ P0 = {3, 41, 53}. We get M1 =
{4, 7, 13, 25, 28, 42, 49, 54, 55}, whi
h is 
overed by P3, i3 = 1, {42, 54} is 
ov-ered by {41, 53} and i(P3) is even for i ∈ B1 = {2, 3, 5, 9, 10, 17, 19, 33, 37}.Hen
e P (ai) ≤ 2 for i ∈ B1. Sin
e (

ai

29

)

=
(

n
29

) and (

2
29

)

6= 1, we see that
ai = 1 for i ∈ B1. By taking J = B1, we derive that either I+

5 = ∅ or
I−

5 = ∅, whi
h is a 
ontradi
tion. The other 
ase (i7, i17) = (1, 6) is ex
ludedsimilarly.Let (k, Q0) = (71, 43), (Q1, Q2) = (53, 67), (i53, i67) = (0, 0). Then P1 =
{7, 11, 13, 19, 23, 71}. We get M1 = {7, 11, 13, 14, 19, 21, 22, 23, 26, 28, 33, 35,
38, 39, 42, 43, 44, 46, 52, 55, 56, 57, 63, 65, 66, 69, 70}, B1 = {1, 2, 3, 4, 5, 6, 8, 9,



94 N. Hirata-Kohno et al.10, 12, 15, 16, 17, 18, 20, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 40, 41, 45, 47, 48,49, 50, 51, 54, 58, 59, 60, 61, 62, 64, 68}, i7 = i11 = i13 = i19 = i23 = 0,
i71 = 43. Further, for p ∈ P1, p ∤ ai for i ∈ B1. Now we take P0 = P1 ∪
{43, 53, 67}, p1 = 11, p2 = 13, (i1, i2) := (0, 0), I = B1, P = P2 :=
Λ(11, 13) \ P0 = {5, 17, 29, 31, 37, 47, 59, 61} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉. ByLemma 5, we see that M = {5, 10, 15, 17, 20, 29, 30, 31, 34, 37, 40, 45, 47, 51,

58, 59, 60, 61, 62, 68} is 
overed by P2 and i(P2) is even for i ∈ B = {1, 2, 3,
4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 41, 48, 49, 50, 54, 64}. We get i5 = i17 =
i29 = i31 = 0, and {37, 47, 59, 61} is 
overed by {37, 47, 59, 61}. Thus
37 · 47 · 59 · 61 | a37a47a59a61. Further, p ∤ ai for i ∈ B and p ∈ P2. Wetake P0 = P1 ∪ P2 ∪ {43, 53, 67}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2,
P = P3 := Λ(5, 11) \ P0 = {3, 41} and ℓ = ℓ3 =

∑

p∈P3
⌈k/p⌉. By Lemma 5,we see that M1 = {3, 6, 12, 24, 27, 41, 48, 54} is 
overed by P3 and i(P3) iseven for i ∈ B1 = {1, 2, 4, 8, 9, 16, 18, 32, 36, 49, 64}. Thus i3 = 0, implying

i41 = 0 and p = 2 whenever p | ai for i ∈ B1. By taking J = B1, we have
B1 = I+

5 ∪ I−
5 with
I+

5 = {1, 4, 9, 16, 36, 49, 64}, I−
5 = {2, 8, 18, 32}.Thus ai = 1 for i ∈ I+

5 and ai = 2 for i ∈ I−
5 sin
e ai ∈ {1, 2} for i ∈ B1.This is a 
ontradi
tion sin
e 43 | d, (

ai

43

)

=
(

n
43

) and (

1
43

)

6=
(

2
43

).Let k = 89, Q0 = 79, (Q1, Q2) = (23, 73), (i23, i73) = (19, 15). Then P1 =
{13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89}. We �nd that M1 = {1, 9, 10, 12, 14,21, 23, 26, 27, 29, 30, 31, 36, 41, 49, 50, 51, 57, 59, 62, 69, 75}, B1 = {0, 2, 3, 4,5, 6, 7, 8, 11, 13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 35, 37, 38, 39, 40, 43,44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73,74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i13 = 10, i19 = 12, i29 = 1,
i31 = 26, i37 = 14 and {9, 21, 27, 29, 41} is 
overed by {47, 59, 61, 67, 89}.Thus i89 ∈ {9, 21, 27, 29, 41}. Further, for p ∈ P1, p ∤ ai for i ∈ B1. Nowwe take P0 = P1 ∪ {23, 73, 79}, p1 = 19, p2 = 29, (i1, i2) := (12, 1),
I = B1, P = P2 := Λ(19, 29) \ P0 = {11, 17, 43, 53, 71} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 22. Thus |I ′| = |I| = |B1| > 2ℓ2. By Corollary 1, we have

M =: M2, B =: B2 su
h that (M2,B2,P2, ℓ2) has Property H. We getM2 =
{0, 2, 3, 11, 17, 20, 22, 33, 35, 37, 44, 45, 54, 55, 66, 71, 77}, B2 = {4, 5, 6, 7, 8,13, 16, 18, 24, 25, 28, 32, 34, 38, 39, 40, 43, 46, 47, 48, 52, 53, 56, 58, 60, 61, 63,64, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i11 = 0,
i17 = 3, i43 = 2 and {17, 35} is 
overed by {53, 71}. Further, p ∤ ai for i ∈ B2and p ∈ P2. We take P0 = P1∪P2∪{23, 73, 79}, p1 = 11, p2 = 13, (i1, i2) :=
(0, 10), I = B2, P = P3 := Λ(11, 13) \ P0 = {5} and ℓ = ℓ3 =

∑

p∈P2
⌈k/p⌉

= 18. Thus |I ′| = |I| = |B2| > 2ℓ3. Then the 
onditions of Corollary 1 aresatis�ed and we have M =: M3, B =: B3 with (M3,B3,P3, ℓ3) having Prop-erty H. We get M3 = {8, 18, 28, 43, 48, 53, 58, 68, 73, 78, 83}, B3 = {4, 5, 6, 7,13, 16, 24, 25, 32, 34, 38, 39, 40, 46, 47, 52, 56, 60, 61, 63, 64, 67, 70, 72, 74, 76,



An extension of a theorem of Euler 9579, 80, 81, 82, 84, 85, 86, 87}, i5 = 3. Lastly, we take P0 = P1 ∪ P2 ∪ P3 ∪
{23, 73, 79}, p1 = 5, p2 = 11, (i1, i2) := (3, 0), I = B3, P = P4 := Λ(5, 11) \
P0 = {3, 41} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. By Lemma 5, we see that M =

{4, 6, 34, 40, 46, 47, 61, 64, 67, 76, 82, 85} is 
overed by P4 and i(P4) is evenfor i ∈ B = {5, 7, 16, 24, 25, 32, 39, 52, 56, 60, 70, 72, 74, 79, 80, 81, 84, 86, 87}.Thus i3 = 1, i41 = 6 and p ∈ {2, 7, 83} whenever p | ai for i ∈ B. Sin
e 79 | d,we see that ai ∈ {1, 2, 83, 2 · 83} or ai ∈ {7, 14, 7 · 83, 14 · 83} for i ∈ B. Thelatter possibility is ex
luded sin
e 7 ∤ i− i′ for all i, i′ ∈ B. By taking J = B,we have B = I+
5 ∪ I−

5 with
I+

5 = {7, 24, 32, 39, 52, 72, 74, 79, 84, 87},

I−
5 = {5, 16, 25, 56, 60, 70, 80, 81, 86}.Then we observe that either ai ∈ {1, 2 · 83} for i ∈ I+

5 and ai ∈ {2, 83} for
i ∈ I−

5 or vi
e versa. This is not possible by parity argument. The other 
ase
(i23, i73) = (0, 0) is ex
luded similarly.5. Proof of Lemma 8. Let 7 ≤ k ≤ 97 be primes. Suppose that theassumptions of Lemma 8 are satis�ed. Assume that q1 | d or q2 | d and we shallarrive at a 
ontradi
tion. We divide the proof into Subse
tions 5.1 and 5.2.5.1. The 
ases 7 ≤ k ≤ 23. We take q = 5 in (7) and (8). We maysuppose that 5 | d if k = 7, 11 and 11 | d if k = 13. Let 5 | d. Then

S ⊆ {1, 6} or S ⊆ {2, 3}(24)a

ording as (

n
5

)

= 1 or −1, respe
tively. Thus (24) holds if k = 7, 11. Let
11 | d. Then

S ⊆ {1, 3, 5, 15} or S ⊆ {2, 6, 10, 30}(25)a

ording as (

n
11

)

= 1 or −1, respe
tively. Let 13 | d. Then
S ⊆ {1, 3, 10, 30} or S ⊆ {2, 5, 6, 15}(26)a

ording as (

n
13

)

= 1 or −1, respe
tively. Thus either (25) or (26) holds if
13 ≤ k ≤ 23.By observing that ai's divisible by a prime p 
an o

ur in at most ⌈k/p⌉terms, we have

|T1| ≤ t′1 :=











∑

p>5⌈k/p⌉ if k = 7, 11,
∑

p>5⌈k/p⌉ − 2 if 13 ≤ k < 23,
∑

p>5⌈k/p⌉ − 3 if k = 23,

(27)
where the sum is taken over all p ≤ k. For the last sum, we observe that 7and 11 together divide at most six ai's when k = 23. We divide the proofinto four 
ases.
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Case I. Let 2 ∤ d and 3 ∤ d. From (24)�(26), (10) and Lemma 1, we get

|T | ≤ t1 :=























max(f1(k, 1, 0) + f1(k, 6, 0), f1(k, 2, 0) + f1(k, 3, 0)) + ⌈k/4⌉if k = 7, 11,

f1(k, 1, 0) + f1(k, 3, 0) + f1(k, 5, 0) + f1(k, 15, 0) + ⌈k/4⌉if k > 11,sin
e f1(k, a, δ) is a nonin
reasing fun
tion of a and ∑

a∈R νe(a) ≤ ⌈k/4⌉.We 
he
k that k = |T | + |T1| ≤ t1 + t′1 < k, a 
ontradi
tion.Thus we have either 2 | d or 3 | d. Let k = 7, 11. If 2 | d, then S ⊆ {1}or S ⊆ {3}. If 3 | d, we have S ⊆ {1} or S ⊆ {2}. By Lemma 2, we get
|T | ≤ (k − 1)/2. We 
he
k that k = |T | + |T1| ≤ (k − 1)/2 + t′1 < k by (27).This is a 
ontradi
tion. From now on, we may also suppose that 13 ≤ k ≤ 23.
Case II. Let 2 | d and 3 ∤ d. Then S ⊆ {1, 3, 5, 15} if 11 | d and S ⊆ {1, 3}or S ⊆ {5, 15} if 13 | d. Let 2 ‖ d. From (10) and Lemma 1 with δ = 1, we get

|T | ≤ F (k, 1, 1) + F (k, 3, 1) + F (k, 5, 1) + F (k, 15, 1) =: t2.Let 4 ‖ d. From ai ≡ n (mod4), we see that S ⊆ {1, 5} or S ⊆ {3, 15} if 11 | d,and either S = ∅ or S = {1}, {3}, {5} or {15} if 13 | d. Therefore
|T | ≤ F (k, 1, 2) + F (k, 5, 2) =: t3by Lemma 1 with δ = 2. Let 8 | d. Then ai ≡ n (mod8) and Lemma 1 with

δ = 3 imply
|T | ≤ F (k, 1, 3) =: t4.Thus |T | ≤max(t2, t3, t4). This with (27) 
ontradi
ts (9).

Case III. Let 2 ∤ d and 3 | d. From ai ≡ n (mod3), we see that either
S = ∅ or S = {1}, {2}, {5} or {10} if 11 | d, and S ⊆ {1, 10} or S ⊆ {2, 5} if
13 | d. By (10) and Lemma 1, we get

|T | ≤ F (k, 1, 0) + F (k, 5, 0),whi
h together with (27) 
ontradi
ts (9).
Case IV. Let 2 | d and 3 | d. Then S ⊆ {1}, {5}. By Lemma 2, we get

|T | ≤ (k − 1)/2. We 
he
k that k = |T | + |T1| ≤ (k − 1)/2 + t′1 < k, a
ontradi
tion.5.2. The 
ases k ≥ 29. Let 29 ≤ k ≤ 59 and 19 | d. Then by Lemma 7with Q0 = 19, we get 7 | d or 17 | d. Thus we get a prime pair (Q, Q′) = (7, 19)or (Q, Q′) = (17, 19) su
h that QQ′ | d. Similarly we get (Q, Q′) = (7, 29) or
(Q, Q′) = (17, 29) with QQ′ | d when 31 ≤ k ≤ 59 and 29 | d. Let k = 71.Then we have either 43 | d, 67 | d or 43 | d, 67 ∤ d or 43 ∤ d, 67 | d. We get a primepair (Q, Q′) = (43, 67) with QQ′ | d if 43 | d, 67 | d. If 43 | d, 67 ∤ d, we dedu
efrom Lemma 7 with Q0 = 43 that 53 | d and we take (Q, Q′) = (43, 53) su
h



An extension of a theorem of Euler 97that QQ′ | d. If 43 ∤ d, 67 | d, we �nd from Lemma 7 with Q0 = 67 that 53 | dand we take (Q, Q′) = (53, 67) su
h that QQ′ | d. Similar prime pairs (Q, Q′)with QQ′ | d for ea
h 61 ≤ k ≤ 97 are given in the table below. For q ≤ 17,we see that
|T1| ≤

∑

p>q
p6=Q,Q′

⌈

k

p

⌉

≤ t′2 :=











∑

p>q⌈k/p⌉ − 2 if 29 ≤ k ≤ 61,
∑

p>q⌈k/p⌉ − 4 if 61 < k < 97,
∑

p>q⌈k/p⌉ − 7 if k = 97,(28)
where the sum is taken over primes ≤ k.

k (Q, Q′) S ⊆ S′ with S′ given by one of
29 ≤ k ≤ 59 (7, 19), (7, 29) {1, 30}, {2, 15}, {3, 10}, {5, 6}

29 ≤ k ≤ 59 (17, 19), (17, 29) {1, 30, 35, 42}, {2, 15, 21, 70}, {3, 10, 14, 105}, {5, 6, 7, 210}

61 (11, 59) {1, 3, 5, 15}, {2, 6, 10, 30}, {7, 21, 35, 105}, {14, 42, 70, 210}

67, 71 (43, 53) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}

71 (43, 67) See (29)
71 (53, 67) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}

73 (23, 53) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}

73 (23, 67) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}

79 (23, 53), (53, 73) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}

79 (23, 67), (67, 73) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}

83 (23, 37), (37, 73) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}

89 (23, 79), (73, 79) {1, 2, 105, 210}, {3, 6, 35, 70}, {5, 10, 21, 42}, {7, 14, 15, 30}

97 (23, 37), (23, 83) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}

Case I. Let 2 ∤ d and 3 ∤ d. In (7) and (8) we take q = 11 if k = 71,
(Q, Q′) = (43, 67) and q = 7 otherwise. From (

ai

Q

)

=
(

n
Q

) and (

ai

Q′

)

=
(

n
Q′

),we get S ⊆ S′ =
{

s : s squarefree, P (s) ≤ q,
(

s
Q

)

=
(

n
Q

)

,
(

s
Q′

)

=
(

n
Q′

)}.By 
onsidering ((

n
Q

)

,
(

n
Q′

))

= (1, 1), (1,−1), (−1, 1) and (−1,−1), we getfour possibilities for S′. For ea
h value of k, the above table shows (Q, Q′)and S′. For k = 71, (Q, Q′) = (43, 67), we get S ⊆ S′ with S′ given by one of
(29)

{1, 6, 10, 14, 15, 21, 35, 210}, {2, 3, 5, 7, 30, 42, 70, 105},

{11, 66, 110, 154, 165, 231, 385, 2310}, {22, 33, 55, 77, 330, 462, 770, 1155}.From the possibilities for S ⊆ S′ given by the table, (10) and Lemma 1,we get
|T | ≤ t5 := max

∑

s∈S′

F (k, s, 0),where the maximum is taken over all the four 
hoi
es of S′. This with (28)gives |T | + |T1| ≤ t5 + t′2 < k, 
ontradi
ting (9).
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Case II. Let 2 | d and 3 ∤ d. We take q = 7 for 2 ‖ d, 4 ‖ d and q = 11 for

8 | d.Let 2 ‖ d. Then S ⊆ {1, 3, 5, 7, 15, 21, 35, 105} =: S2. From (10) andLemma 1 with δ = 1, we get
|T | ≤

∑

s∈S2

F (k, s, 1) =: t6.Let 4 ‖ d. Then we see that either S⊆{1, 5, 21, 105}=:S41 or S⊆{3, 7, 15, 35}
=: S42. From (10) and Lemma 1 with δ = 2, we get

|T | ≤ max
i=1,2

∑

s∈S4i

F (k, s, 2) =: t7.Hen
e, if 8 ∤ d, then |T | ≤ max(t6, t7). This with (28) implies |T | + |T1| ≤
max(t6, t7) + t′2 < k, 
ontradi
ting (9).Let 8 | d. Then we see from ai ≡ n (mod8) that S ⊆ {1, 33, 105, 385} =:
S81 or S ⊆ {3, 11, 35, 1155} =: S82 or S ⊆ {5, 21, 77, 165} =: S83 or S ⊆
{7, 15, 55, 231} =: S84. Then

|T | ≤ max
1≤i≤4

∑

s∈S8i

F (k, s, 3) =: t8by Lemma 1 with δ = 3. This with (28) implies |T | + |T1| ≤ t8 + t′2 < k,a 
ontradi
tion.
Case III. Let 2 ∤ d and 3 | d. We take q = 11. Then by modulo 3, we geteither S ⊆ {1, 7, 10, 22, 55, 70, 154, 385} =: S31 or S ⊆ {2, 5, 11, 14, 35, 77,

110, 770} =: S32. By (10) and Lemma 1, we get
|T | ≤ max

i=1,2

∑

s∈S3i

F (k, s, 0) =: t9.This together with (28) 
ontradi
ts (9).
Case IV. Let 2 | d and 3 | d. Let 2 ‖ d. We take q = 7. Then we seethat either S ⊆ {1, 7} or S ⊆ {5, 35}. By (10) and Lemma 1, we get |T | ≤

F (k, 1, 1) + F (k, 7, 1), whi
h together with (28) 
ontradi
ts (9).Let 4 ‖ d. We take q = 13. From ai ≡ n (mod12), we see that
S ⊆ S′ ∈ S := {{1, 13, 385, 5005}, {5, 65, 77, 1001},

{7, 55, 91, 715}, {11, 35, 143, 455}}.Then
|T | ≤ max

S′∈S

∑

s∈S′

F (k, s, 2),

whi
h together with (28) 
ontradi
ts (9).



An extension of a theorem of Euler 99Let 8 | d. We take q = 17. From ai ≡ n (mod24), we see that S ⊆ S′ =
{1, 385, 1105, 17017} or S ⊆ S′′ ∈ S1 where S1 is the union of sets

{5, 77, 221, 85085}, {7, 55, 2431, 7735},

{11, 35, 1547, 12155}, {13, 85, 1309, 5005}, {17, 65, 1001, 6545},

{91, 187, 595, 715}, {119, 143, 455, 935}.Let S ⊆ S′′ ∈ S1. Then
|T | ≤ max

S′′∈S1

∑

s∈S′′

F (k, s, 3) =: t10.Let S ⊆ S′. By Lemma 2, we get ν(1) ≤ (k − 1)/2. This together with
ν(1105) + ν(17017) ≤ 1 by 13 · 17 | gcd(1105, 17017) and ν(385) ≤ 1 byLemma 1 gives |T | ≤ (k − 1)/2+2. Therefore |T | ≤ max(t10, (k − 1)/2+2),whi
h with (28) 
ontradi
ts (9).6. Proof of Theorem 4. Let k = 7. By the 
ase k = 6, we may assumethat 7 ∤ d. Now the assertion follows from Lemmas 8 and 6. Let k = 8.Then by applying the 
ase k = 7 twi
e to n(n + d) · · · (n + 6d) = b′y′2 and
(n + d) · · · (n + 7d) = b′′y′′2, we get

(a0, . . . , a6), (a1, . . . , a7)

∈ {(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),

(2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)}.This gives (a0, . . . , a7) = (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10) or theirmirror images and the assertion follows. Let k = 9. By applying the 
ase
k = 8 twi
e to n(n + d) · · · (n + 7d) = b′y′2 and (n + d) · · · (n + 8d) =
b′′y′′2, we get the result. Let k = 10. By applying k = 9 twi
e, we get
(a0, a1, . . . , a8), (a1, a2, . . . , a8, a9)∈{(2, 3, . . . , 1, 10), (10, 1, . . . , 3, 2)}, whi
his not possible.Let k ≥ 11 and k′ < k be 
onse
utive primes. We suppose that Theorem 4is valid with k repla
ed by k′. Let k | d. Then (

ai

k

)

=
(

n
k

) for all 0 ≤ i < k.By applying the 
ase k = k′ to n(n + d) · · · (n + (k′ − 1)d) = b′y′2 with
P (b′) ≤ k′, we get k′ ≤ 23 and 1, 2, 3, 5 ∈ {a0, a1, . . . , ak′−1} in view of (5)and (6). Therefore (

2
k

)

=
(

3
k

)

=
(

5
k

)

= 1, whi
h is not possible.Thus we may assume that k ∤ d and k |n + id for some 0 ≤ i ≤ (k − 1)/2by 
onsidering the mirror image (4) of (2) whenever Theorem 4 holds at k′.We shall use this assertion without referen
e in the proof of Theorem 4.Let k = 11. By Lemmas 8 and 6, we see that 11 |n + id for 0 ≤ i ≤ 3. If
11 |n, the assertion follows by the 
ase k = 10. Let 11 |n + d. We 
onsider
(n + 2d) · · · (n + 10d) = b′y′2 with P (b′) ≤ 7 and the 
ase k = 9 to get
(a2, a3, . . . , a10) ∈ {(2, 3, 1, 5, 6, 7, 2, 1, 10), (10, 1, 2, 7, 6, 5, 1, 3, 2)}. The �rst
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luded sin
e 1 =
(

14
11

)

=
(

a2a7

11

)

=
(

1·6
11

)

= −1. For the se
-ond possibility, we observe P (a0) ≤ 5 sin
e gcd(a0, 7 · 11) = 1 and this isex
luded by the 
ase k = 6 applied to n(n + 2d)(n + 4d)(n + 6d)(n + 8d) ·
(n + 10d). Let 11 |n + 2d. Then by the 
ase k = 8, we have (a3, a4, . . . , a10)
∈ {(2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10), (1, 2, 7, 6, 5, 1, 3, 2), (10, 1, 2, 7, 6,
5, 1, 3)}. The �rst three possibilities are ex
luded by 
onsidering the valuesof the Legendre symbol mod 11 at a3, a8, at a3, a4 and at a3, a5, respe
tively.If the last possibility holds, then a0 = 1 sin
e gcd(a0, 2 · 3 · 5 · 7 · 11) = 1,and this is not possible sin
e 1 =

(

a0a4

11

)

=
( (−2)2

11

)

= −1. Let 11 |n+3d. We
onsider (n+4d) · · · (n+10d) = b′y′2 with P (b′) ≤ 7 and the 
ase k = 7 to in-fer that (a4, . . . , a10)∈{(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),
(2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)}, whi
h is not possibleas above. This 
ompletes the proof for k = 11. The assertion for k = 12follows from that of k = 11.Let k = 13. Then the assertion follows from Lemmas 8, 6 and the 
ase
k = 11. Let k = 14. By applying the 
ase k = 13 to n(n + d) · · · (n + 12d) =
b′y′2 and (n+ d) · · · (n+13) = b′′y′′2, we get the assertion. Let k = 15. Thenapplying the 
ase k = 14 both to n(n+d) · · · (n+13d) and (n+d) · · · (n+14d)gives the result. For k = 16 the assertion follows from the 
ase k = 15.Let k = 17. Then 17 |n + 2d or 17 |n + 3d by Lemmas 8, 6 and the 
ase
k = 15. Let 17 |n + 2d. Then by applying the 
ase k = 14 to (n + 3d) · · ·
(n+16d) = b′y′2 with P (b′) ≤ 13, we get (a3, a4, . . . , a16) ∈ {(3, 1, . . . , 15, 1),
(1, 15, . . . , 1, 3)}. The �rst possibility is ex
luded by 
onsidering the Legendresymbol mod 17 at a3, a4. For the se
ond, we observe that gcd(a1, 7 · 11 ·
13 · 17) = 1, whi
h is not possible by the 
ase k = 6 applied to (n + d) ·
(n + 4d)(n + 7d)(n + 10d)(n + 13d)(n + 16d). Let 17 |n + 3d. By 
onsidering
(n + 4d) · · · (n + 16d) = b′y′2 with P (b′) ≤ 13, it follows from the 
ase k
= 13 that (a4, . . . , a16) ∈ {(3, 1, . . . , 14, 15), (1, 5, . . . , 15, 1), (15, 14, . . . , 1, 3),
(1, 15, . . . , 5, 1)}. The �rst three possibilities are ex
luded by 
onsidering theLegendre symbol mod 17 at a4, a5. If the last possibility holds, we observethat a1 = 1 sin
e gcd(a1,

∏

p≤17 p) = 1 and then 1 =
(

a1a4

17

)

=
( (−6)(−3)

17

)

=
−1, a 
ontradi
tion. The assertion for k = 18 follows from that for k = 17.Let k = 19. Then the assertion follows from Lemmas 8, 6 and the 
ase
k = 17. By applying the 
ase k = 19 twi
e to n(n + d) · · · (n + 18d) and
(n + d) · · · (n + 18d)(n + 19d), the assertion for k = 20 follows and this alsoimplies the 
ases k = 21, 22.Let k = 23. We see from Lemmas 8, 6 and the 
ase k = 20 that 23 divides
n + 3d. We 
onsider the 
ase k = 19 and (n + 4d) · · · (n + 22d) = b′y′2 with
P (b′) ≤ 19 to get (a4, a5, . . . , a22) = (1, 5, . . . , 21, 22) or (22, 21, . . . , 5, 1). By
onsidering the values of the Legendre symbol mod 23 at a4 and a5, we mayassume the se
ond possibility. Now P (a2) ≤ 11 and this is not possible by
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ase k = 11 applied to (n + 2d)(n + 4d) · · · (n + 22d). Let k = 24. Weget (a0, a1, . . . , a23) = (5, 6, . . . , 3, 7) or (7, 3, . . . , 6, 5) by applying the 
ase
k = 23 both to n(n + d) · · · (n + 22d) and (n + d) · · · (n + 23d). Further, theassertion for 25 ≤ k ≤ 28 follows from k = 24.Let k ≥ 29. First we 
onsider k = 29. We see from Lemmas 8, 6 and the
ase k = 25 that 29 |n + 4d or 29 |n + 5d. Let 29 |n + 4d. Then applyingthe 
ase k = 24 to (n + 5d)(n + 6d) · · · (n + 28d), we get (a5, a6, . . . , a28) =
(5, 6, . . . , 3, 7) or (7, 3, . . . , 6, 5). By observing 1 =

(

30
29

)

=
(

a5a6

29

)

=
(

1·2
29

)

=
−1, we may assume the se
ond possibility. Then a1 = 1, implying 1 =
(

a2a8

29

)

=
( (−2)4

29

)

= −1, a 
ontradi
tion. Let 29 |n + 5d. Now by 
onsidering
k = 23 and (n+6d) . . . (n+28d), we get (a6, a7, . . . , a28) ∈ {(5, 6, . . . , 26, 3),
(6, 7, . . . , 3, 7), (3, 26, . . . , 6, 5), (7, 3, . . . , 7, 6)}. Then we may restri
t to thelast possibility by 
onsidering the Legendre symbol mod 29 at the �rst twoentries in the remaining possibilities. It follows that a3 = 1, implying 1 =
(

a3a9

29

)

=
( (−2)4

29

)

= −1, a 
ontradi
tion. This 
ompletes the proof for k = 29.We now pro
eed by indu
tion. By Lemmas 8 and 6, the assertion follows forall primes k. Now Lemma 3 
ompletes the proof of Theorem 4.7. Proof of Theorem 1. Observe that for all tuples in (5) and (6), theprodu
t of the ai's is not a square. Hen
e, by Theorem 4, we may assumethat 101 ≤ k ≤ 109. Assume (1). Then ordp(a0a1 · · · ak−1) is even for ea
hprime p. Let 101 ≤ k ≤ 105. Then P (a4a5 · · · a100) ≤ 97. Now the assertionfollows from Theorem 4 by 
onsidering (n + 4d) · · · (n + 100d) and k =
97. Let k = 106, 107. Then P (a4a5 · · · a102) ≤ 101. We may suppose that
P (a4a5) = 101 or P (a101a102) = 101, otherwise the assertion follows by the
ase k = 99 in Theorem 4. Let P (a4a5) = 101. Then P (a6 · · · a102) ≤ 97and the assertion follows by the 
ase k = 97 in Theorem 4. This is alsotrue when P (a101a102) = 101 sin
e P (a4 · · · a100) ≤ 97 in this 
ase. Let
k = 108, 109. Then P (a6 · · · a102) ≤ 101. Thus either P (a6a7) = 101 or
P (a101a102) = 101. Let P (a6a7) = 101. Then P (a8 · · · a102) ≤ 97. We mayassume that 97 | a8a9a10a11 or 97 | a97 · · · a101a102. Let 97 | a8a9a10a11. Then
P (a12a13 · · · a102) ≤ 89 and the assertion follows by the 
ase k = 91 ofTheorem 4. Let 97 | a97 · · · a102. Then P (a8a9 · · · a96) ≤ 89 and the assertionfollows from the 
ase k = 89 of Theorem 4. When P (a101a102) = 101, weargue as above to get the assertion.
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