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1. Introduction. Let B denote a compact convex body in s-dimensional
Euclidean space, s ≥ 2, which contains the origin as an inner point and
whose boundary ∂B is sufficiently smooth. The central question of the clas-
sical lattice point theory of large domains is to estimate the lattice point
discrepancy of a linearly dilated copy tB, i.e.,
(1.1) PB(t) := #(tB ∩ Z

s)− vol(B)ts,
where t is a large real parameter. For enlightening accounts on this topic,
the reader is referred to E. Krätzel’s monographs [14] and [15], to a recent
survey article by A. Ivić, E. Krätzel, M. Kühleitner, and W. G. Nowak [10],
and to M. Huxley’s book [7] where he presented his breakthrough in the
planar case (“discrete Hardy–Littlewood method”).
If ∂B is of bounded nonzero Gaussian curvature throughout, the usual

and plausible conjecture is that

(1.2) PB(t)≪ tΘs+ε

for every ε > 0, where Θ2 := 1/2 and Θs := s − 2 for s ≥ 3. It is well-
known that for every dimension, Θs is the minimal possible value with this
property, and that (1.2) is actually true for spheres of dimension s ≥ 4,
even with ε = 0 if s ≥ 5: see, e.g., E. Krätzel [15, p. 227]. Quite recently,
V. Bentkus and F. Götze [1] and F. Götze [3] established (1.2) for arbitrary
ellipsoids of dimension s ≥ 5.
However, for s = 2 and 3, and for general bodies of higher dimensions,

the proof or disproof of (1.2) remains an open problem. The sharpest known
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estimates are due to W. Müller [24]. Researchers subsequently dealt with
the task of verifying (1.2) “on average”, i.e., showing that

(1.3)

T\
0

(PB(t))
2 dt≪ T 2Θs+1+ε.

In fact, (1.3) was established for planar domains by D. G. Kendall [13] and
the author [25], ultimately in the form of an asymptotics [26]. For dimensions
s ≥ 4, (1.3) was proved by W. Müller [23] who however had to leave open
the case s = 3. This gap was filled by A. Iosevich, E. Sawyer, and A. Seeger
[8] who showed that

(1.4)

T\
0

(PB(t))
2 dt≪

{

T 2Θs+1 for s ≥ 4,
T 3 (log T )2 for s = 3.

The very last estimate comes rather close to the asymptotic formula known
for the three-dimensional sphere B0, namely

T\
0

(PB0(t))
2 dt = CT 3 log T +O(T 3 (log T )1/2).

Cf. V. Jarńık [12], and also Y.-K. Lau [22] who improved the error term to
O(T 3).

2. Recent developments and statement of the present result.

The topic of this note will combine two recent trends in lattice point theory:
On the one hand, increased interest arose in R

3-bodies of rotation (with
respect to one of the coordinate axes), denoted by R in what follows. For
the case of nonzero curvature, F. Chamizo [2] obtained the upper bound

(2.1) PR(t)≪ t11/8+ε,

while the papers by M. Kühleitner [20] and M. Kühleitner and W. G. Nowak
[21] provided Ω-results. A recent article of E. Krätzel and W. G. Nowak [19]
gives a version of (2.1) with numerical constants, for the special case of an
ellipsoid.

On the other hand, a number of papers investigated the influence of
boundary points with curvature zero on the lattice discrepancy. While Krät-
zel’s monograph [15] provides an enlightening survey of the planar case
(which is comparatively well-understood), results for dimension 3 and higher
can be found in the works of K. Haberland [4], E. Krätzel [16]–[18], and
M. Peter [27]. These are all (pointwise) O-estimates, partially providing a
precise evaluation of the contribution of an isolated flat point on ∂B to
PB(t), with a remainder of smaller order.
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In the present paper we shall take up both of these matters, in the
aspect of a mean-square estimate in the sense of (1.3). We will consider
an R

3-body of rotation R (with respect to one of the coordinate axes),
with smooth boundary ∂R of nonzero Gaussian curvature κ throughout,
except for the points of intersection of ∂R with the axis of rotation, where
κ may vanish. It will turn out that the contribution of these flat points to
the lattice point discrepancy can be evaluated quite accurately, leaving a
remainder term which is in mean-square “as small as it should be”, in the
sense of formula (1.3).
We remark parenthetically that if κ vanished anywhere else on ∂B, it

would do so on a whole circle. This would presumably have a more dramatic
effect on the lattice discrepancy. It seems much more difficult to obtain a
sharp result in this general case.
Precise formulation of the present assumptions. Let ̺ : [0, π]→ R>0 be

a function of class C4, with ̺′(0) = ̺′(π) = 0 and (1)

(2.2) ̺̺′′ − 2̺′2 − ̺2 6= 0
throughout ]0, π[. Suppose that ̺ is analytic at π and 0. At these two values,
the left-hand side of (2.2) may vanish, of orders (exactly) N1, N2 ≥ 0, as a
function of θ, the case that min(N1, N2) = 0 not being excluded. It will be
convenient to write for short

αi :=
1

Ni + 2
(i = 1, 2).

Now

C = {(x, y) = (̺(|θ|) cos θ, ̺(|θ|) sin θ) : θ ∈ [−π, π]}
defines a smooth curve in the (x, y)-plane, symmetric with respect to the
x-axis. Rotating C around the latter, we obtain a smooth surface in (x, y, z)-
space, which we call ∂R, where R is the compact convex body bounded by
∂R. We denote by a1, a2 the minimal, resp., maximal x-coordinate on ∂R.
Obviously, the Gaussian curvature of ∂R vanishes at most at the points of
intersection with the x-axis.

Theorem. Suppose that the conditions stated above are satisfied , in par-
ticular , the Gaussian curvature of ∂R vanishes at most at the two points of
intersection with the axis of rotation. Then for the number AR(t) of lattice
points in the linearly dilated body tR we have the asymptotic formula

AR(t) = vol(R)t3 +
2
∑

i=1

Ni+1
∑

j=2

d∗i,jλi,j(t)t
2−jαi +∆R(t),

(1) Recall that the curvature of a curve whose equation in polar coordinates is ̺ = ̺(θ)

is given, in absolute value, by |̺(θ) ̺′′(θ)− 2̺′2(θ)− ̺2(θ)|/(̺2(θ) + ̺′2(θ))3/2.
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where

λi,j(t) := (2π)
−jαiΓ (jαi)

∞
∑

k=1

k−1−jαi sin((−1)iπjαi/2− 2πkait)

(i = 1, 2),

and the remainder satisfies the mean-square estimate

T\
0

(∆R(t))
2 dt = O(T 3+ε)

for each ε > 0. The coefficients d∗1,j , d
∗
2,j are computable, from the formulas

(3.1)–(3.5) below. In particular , d∗1,1 > 0, d
∗
2,1 < 0.

Remarks. 1. It is easy to see that the error term satisfies in fact the
pointwise upper estimate

(2.3) ∆R(t) = O(t
3/2+ε).

This is a straightforward consequence of the works of Krätzel [15]–[18], but
also follows as a simple by-product from the argument in this paper: see the
concluding remark at the end.

2. There is a crucial difference in the treatment of the problem, depend-
ing on whether there are boundary points of curvature zero or not. For
κ nonzero, the analysis leading to the results (1.3), (1.4) is based on the
asymptotic expansion of the Fourier transform of the indicator function of
the body B, which is due to E. Hlawka [5], [6]. In the case that inf κ = 0
the latter is not at our disposal. Thus we have to employ a quite different
approach which uses a truncated Hardy identity (Lemma 1) and a transfor-
mation of trigonometric sums.

3. Some auxiliary results

Lemma 1. For integers k ≥ 0, let as usual r(k) denote the number of
pairs (m1,m2) ∈ Z

2 with m21+m
2
2 = k. Then for large real parameters X,Y ,

and any ε > 0,

P (X) :=
∑

0≤k≤X
r(k)− πX

=
1

π
X1/4

∑

1≤n≤Y

r(n)

n3/4
cos(2π

√
nX − 3π/4)

+O(X1/2+ε Y −1/2) +O(Y ε).

Proof. This is contained in formula (1.9) of A. Ivić [9].
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Lemma 2. Let F ∈ C4[A,B], G ∈ C2[A,B], and suppose that , for posi-
tive parameters X,Y, Z, we have 1 ≤ B −A≪ X and

F (j) ≪ X2−jY −1 for j = 2, 3, 4, |F ′′| ≥ c0Y −1,
G(j) ≪ X−jZ for j = 0, 1, 2,

throughout the interval [A,B], with some constant c0 > 0. Let J ′ denote the
image of [A,B] under F ′, and F ∗ the inverse function of F ′. Then
∑

A<m≤B
G(m)e(F (m))

= e

(

sgn(F ′′)

8

)

∑

k∈J ′

G(F ∗(k))
√

|F ′′(F ∗(k))|
e(F (F ∗(k))− kF ∗(k))

+O(Z(
√
Y + log(2 + length(J ′)))).

Proof. Transformation formulas of this kind are quite common, though
often with worse error terms. This very sharp version can be found as The-
orem 8.16, together with formula (8.47), in the recent monograph [11] of
H. Iwaniec and E. Kowalski.

For our argument it will be essential to have at hand a close analysis
of the situation near the points where the Gaussian curvature (possibly)
vanishes. To this end, let C+ denote the upper half of C, and set
C+ = {(̺(θ) cos θ, ̺(θ) sin θ) : θ ∈ [0, π]} = {(x, y) : a1 ≤ x ≤ a2, y = f(x)},
with a1 := −̺(π) < 0 < a2 := ̺(0). This defines f : [a1, a2] → R≥0 as a
strictly positive C4-function on ]a1, a2[, with f(a1) = f(a2) = 0, and f

′′

strictly negative throughout. By our assumptions, for each of the ai’s, and
(x, y) ∈ C+ in a suitable neighborhood of (ai, 0),

(3.1) x = ai + ciy
Ni+2 +

∞
∑

m=1

ci,my
Ni+2+m (ci 6= 0).

Consequently,

(3.2) y = f(x) =
∞
∑

j=1

di,j |x− ai|αij , di,1 = |ci|−αi 6= 0,

and the other di,j ’s can be computed recursively from the ci,m’s. It thus
follows that, for r = 0, 1, 2, . . . ,

(3.3) f (r)(x) ≍ |x− ai|αi−r

for x close to ai. Similarly, we deduce that

(3.4)
dr

dxr
(
√

f(x)) ≍ |x− ai|αi/2−r
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for r = 0, 1, 2, . . . , and x near ai. Furthermore,

(3.5)
d

dx
(f2(x)) =

∞
∑

j=2

d∗i,j |x− ai|αij−1,

with d∗i,2 = 2αid
2
i,1(−1)i+1, again in an appropriate neighborhood of ai.

For our proof we will also need some knowledge about the tac-function
of R,

H(u, v, w) := max
(x,y,z)∈R

(ux+ vy + wz)

and the polar body R∗, given by H(u, v, w) ≤ 1. The connection between
the smoothness and curvature of ∂R and of ∂R∗ has been neatly worked
out in W. Müller [23, Lemma 1]. It is clear that H and thus R∗ is again
invariant under rotations about the first coordinate axis. Let C∗+ denote the
intersection of ∂R∗ with the closed upper half of the (u, v)-plane, i.e., C∗+ is
the polar curve of C+. Then

C∗+ = {(u, v) : 1/a1 ≤ u ≤ 1/a2, v = h(u)},
where h : [1/a1, 1/a2]→R≥0 is a strictly positive C3-function on ]1/a1, 1/a2[,
with h(1/a1) = h(1/a2) = 0 (cf. W. Müller [23, Lemma 1]).

Lemma 3. With the conditions and definitions stated ,

sup
1/a1<u<1/a2

|h(u)h′(u)| <∞.

Further , as u → 1/ai (i = 1, 2), |(d/du)(h(u)h′(u))| either is bounded or
tends to ∞.
Proof. Let the real numbers x ∈ ]a1, a2[ and u ∈ ]1/a1, 1/a2[ be such

that the points (x, f(x)) and (u, h(u)) are polar reciprocal to each other,
i.e.,

1 = xu+ f(x)h(u) = max
(ξ,η)∈C+

(ξu+ ηh(u)) = max
(µ,ν)∈C∗

+

(xµ+ f(x)ν).

Plainly, (x, f(x))→ (ai, 0) if (u, h(u))→ (1/ai, 0), and vice versa. We may
assume that u is close to 1/ai (i = 1 or 2), since elsewhere the boundedness
of hh′ is obvious. Then x belongs to a suitable neighborhood of ai, and the
inverse function x = x(y) is well-defined and given in an explicit form by
(3.1). By elementary calculus, for y = f(x)⇔ x = x(y), we have

(3.6) 0 = u+ f ′(x)h(u) = x′(y)u+ h(u) = x+ f(x)h′(u) = x(y) + yh′(u).

Consequently, h(u) = −x′(y)u and h′(u) = −x(y)/y, thus
(3.7) h(u)h′(u) = ux(y)x′(y)/y ≪ 1,
since x′(y)/y remains bounded as y → 0, in view of (3.1). This verifies the
first part of Lemma 3.
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Moreover, eliminating h(u) from the pair of equations

1 = x(y)u+ yh(u), 0 = x′(y)u+ h(u),

we see that u = (x(y)− x′(y)y)−1, hence
du

dy
=

x′′(y)y

(x(y)− x′(y)y)2 .

Therefore, using again (3.7), we obtain

d

du
(h(u)h′(u)) =

d

dy

(

xx′

xy − x′y2
)(

du

dy

)−1
(3.8)

=
−x2x′ + 2xx′2y − x′3y2 + x2x′′y

x′′y3
,

where we have suppressed the argument y of x, x′, x′′ for short. By (3.1), for
small y this is equal to a Laurent series, resp., Taylor series in y.

Lemma 4. For a large real parameter X and the tac-function H defined
above, we have the asymptotics

(3.9) N(X) := #{(m,n) ∈ Z× Z≥0 : H(m,
√
n, 0) ≤ X} = CX3 +O(X)

with a constant C > 0. Furthermore, for 0 < δ < 1,

Nδ(X) := #{(m,n) ∈ Z× Z≥0 : H(m,
√
n, 0) ≤ X,

√
n ≤ δ|m|}(3.10)

= CδX
3 +O(X),

with a positive Cδ ≪ δ2 and the O-constant independent of δ. As a conse-
quence, for large X and 0 < ω, δ < 1,

(3.11)
#{(m,n) ∈ Z× Z≥0 : |H(m,

√
n, 0)−X| < ω} ≪ X2ω +X,

#{(m,n) ∈ Z× Z≥0 : |H(m,
√
n, 0)−X| < ω,

√
n ≤ δ|m|}
≪ X2ωδ2 +X.

Proof. Let D∗+ denote the compact planar domain bounded by the curve
C∗+ and the u-axis. Obviously,
N(X) = #{(m,n) ∈ Z× Z≥0 : (m,

√
n) ∈ XD∗+}

=
∑

(1/a1)X≤m≤(1/a2)X
(1 + [X2h2(m/X)])

= X2
∑

(1/a1)X≤m≤(1/a2)X
h2(m/X) +O(X)

= X2
(1/a2)X\
(1/a1)X

h2(u/X) du+ 2X

(1/a2)X\
(1/a1)X

ψ(u)h(u/X)h′(u/X) du+O(X),
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by the Euler–MacLaurin formula (see E. Krätzel [14, p. 20]), with ψ(u) :=

u−[u]−1/2. Here the first integral equals CX with C =
T1/a2
1/a1

h2(ξ) dξ, which

yields the main term of (3.9). Further, for any interval [β1, β2] ⊂ ]1/a1, 1/a2[,
an integration by parts gives

(3.12) 2X

β2X\
β1X

ψ(u)h(u/X)h′(u/X) du

= 2X(h(β2)h
′(β2)ψ1(β2X)− h(β1)h′(β1)ψ1(β1X))

− 2
β2X\
β1X

(h(u/X)h′′(u/X) + h′2(u/X))ψ1(u) du,

where

ψ1(u) :=

u\
0

ψ(v) dv ≪ 1.

If hh′′ + h′2 = (hh′)′ is bounded on ]1/a1, 1/a2[, we simply let β1 → 1/a1
and β2 → 1/a2 to obtain the desired bound O(X) for the remainder. In case
(hh′)′ is unbounded near 1/a1 (say), we choose β1 > 1/a1 such that (hh′)′

has no sign change on ]1/a1, β1]. By the second mean-value theorem and
Lemma 3,

β1X\
(1/a1)X

ψ(u)h(u/X)h′(u/X) du≪ sup
]1/a1,β1]

|hh′| ≪ 1.

A similar reasoning holds near 1/a2 if necessary. On the remaining interval
[β1X,β2X], (3.12) readily yields the bound O(X) and thus completes the
proof of (3.9). Quite similarly,

Nδ(X) =
∑

(1/a1)X≤m≤(1/a2)X
min(X2h2(m/X), δ2m2) +O(X)(3.13)

=

(1/a2)X\
(1/a1)X

min(X2h2(u/X), δ2u2) du

+

(1/a2)X\
(1/a1)X

ψ(u)
d

du
(min(X2h2(u/X), δ2u2)) du+O(X).

Here it is important to notice that the equationX2h2(u/X) = δ2u2 can have
at most two solutions in ]X/a1, X/a2[. To see this, the change of variable
u/X 7→ u gives h(u) = ±δu, 1/a1 < u < 1/a2. Recalling the first equation
of (3.6) leads to f ′(x) = ∓1/δ, with a1 < x < a2. By convexity of the arc
C+, this has at most two solutions.
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The first integral in (3.13) equals CδX
3 with

Cδ :=

1/a2\
1/a1

min(h2(ξ), δ2ξ2) dξ ≪ δ2.

The remainder integral can be treated as before, with the bound O(X), since
for any interval I ⊆ ]X/a1, X/a2[,\

I

ψ(u)δ2u du≪ X.

The deduction of (3.11) from (3.9), (3.10) is trivial.

Lemma 5. For an arbitrary finite index setM, let (γm)m∈M be a com-
plex sequence and let (ξm)m∈M be reals. Then, for any real T0 and T > 0,

T0+T\
T0

∣

∣

∣

∑

m∈M
γme(ξmt)

∣

∣

∣

2

dt ≤ 3T
∑

m1,m2∈M
|ξm1−ξm2 |<1/T

|γm1γm2 |.

Proof. This is essentially Lemma 7.1 in H. Iwaniec and E. Kowalski [11].

4. Asymptotic evaluation of the main terms. For a large parameter
t it follows, with the definitions of Section 3, that

AR(t) =
∑

a1t≤m≤a2t

(

∑

0≤k≤t2f2(m/t)
r(k)
)

(4.1)

= πt2
∑

a1t≤m≤a2t
f2(m/t) +

∑

a1t≤m≤a2t
P (t2f2(m/t)).

We proceed to evaluate the first sum on the right-hand side, postponing the
mean-square estimation of the last one to the next section. By the Euler–
MacLaurin formula,

(4.2) πt2
∑

a1t≤m≤a2t
f2(m/t)

= πt2
a2t\
a1t

f2(τ/t) dτ + πt2
a2t\
a1t

ψ(τ)
d

dτ
(f2(τ/t)) dτ

= vol(R)t3 + πt2
a2\
a1

ψ(tx)
d

dx
(f2(x)) dx.

By (3.5),

(4.3)
d

dx
(f2(x)) =

2N1+3
∑

j=2

d∗1,j(x−a1)α1j−1+
2N2+3
∑

j=2

d∗2,j(a2−x)α2j−1+Φ(x),
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with Φ ∈ C1[a1, a2]. Integrating by parts and using again ψ1(u) ≪ 1, we
obtain

(4.4) t2
a2\
a1

ψ(tx)Φ(x) dx = O(t).

The same argument works for |x− ai|αij−1 instead of Φ(x), with Ni + 2 ≤
j ≤ 2Ni + 3, i ∈ {1, 2}. In the subsequent analysis we may thus replace the
upper summation limits in the sums from (4.3) by N1+1, resp., N2+1. To
deal with the first of these remaining sums, we use the Fourier series

ψ(z) = − 1
π

∞
∑

k=1

1

k
sin(2πkz) (z /∈ Z)

and an obvious shift of variable. For j = 2, . . . , N1 + 1, we conclude that

a2\
a1

ψ(tx)(x− a1)α1j−1 dx = −
1

π

∞
∑

k=1

1

k

a2−a1\
0

xα1j−1 sin(2πkt(a1 + x)) dx.

An integration by parts shows that

∞\
a2−a1

xα1j−1 sin(2πkt(a1 + x)) dx = O((kt)
−1).

Further,

∞\
0

xα1j−1 sin(2πkt(a1 + x)) dx = ℑ
(

e(a1kt)(kt)
−α1j

∞\
0

τα1j−1e(τ) dτ
)

= ℑ(e(a1kt)(2πkt)−α1jΓ (α1j)e(α1j/4))

= Γ (α1j)(2πkt)
−α1j sin(2πa1kt+ πα1j/2),

using well-known formulas for the last integral (cf., e.g., H. Rademacher
[28, p. 82]). Collecting the results, we get

πt2
a2\
a1

ψ(tx)
(

N1+1
∑

j=2

d∗1,j(x− a1)α1j−1
)

dx =

N1+1
∑

j=2

d∗1,jλ1,j(t)t
2−jα1 +O(t)

where λi,j(t) has been defined in our Theorem. Dealing quite similarly with
the second sum coming from (4.3), and recalling (4.2), (4.4), we obtain
altogether

(4.5) πt2
∑

a1t≤m≤a2t
f2(m/t) = vol(R)t3+

2
∑

i=1

Ni+1
∑

j=2

d∗i,jλi,j(t)t
2−jαi +O(t).



Lattice discrepancy of bodies of rotation 295

5. Estimating the remainder in mean-square. It remains to deal
with the last sum in (4.1), i.e., to show that

2T\
T

(

∑

a1t≤m≤a2t
P (t2f2(m/t))

)2

dt≪ T 3+ε.

For given large T we divide ]a1, (a1+a2)/2] and ](a1+a2)/2, a2] into dyadic
subintervals J (1,r) = ]u(1,r+1), u(1,r)], J (2,r) = ]u(2,r), u(2,r+1)], 0 ≤ r ≤ R,
where u(i,r) := ai − (−1)i2−r−1(a2 − a1), and R is chosen such that the
shortest of these intervals are of length ≍ T−1. Dropping the superscripts
for short, we write J for any of these subintervals, whose number is obviously
O(log T ). Let K := [a1, a2] \

⋃

J ; then |K| ≍ T−1, and the trivial bound
P (z)≪ √z readily implies

2T\
T

(

∑

m∈tK
P (t2f2(m/t))

)2

dt≪ T 3.

Thus it suffices to prove that, for each J and ε > 0,

(5.1)

2T\
T

(

∑

m∈tJ
P (t2f2(m/t))

)2

dt≪ T 3+ε.

For every t ∈ [T, 2T ] and m ∈ tJ , we apply Lemma 1, with X = t2f2(m/t)
and Y = T 2. We obtain

(5.2)
∑

m∈tJ
P (t2f2(m/t))

=
∑

m∈tJ

(
√
t

π

√

f(m/t)
∑

1≤n≤T 2

r(n)

n3/4
cos(2π

√
n tf(m/t)− 3π/4) +O(T ε)

)

=

√
t

π

∑

1≤n≤T 2

r(n)

n3/4

{

∑

m∈tJ

√

f(m/t) cos(2π
√
n tf(m/t)− 3π/4)

}

+O(T 1+ε).

We shall transform the inner sum here by means of Lemma 2, with

G(τ) :=
√

f(τ/t), F (τ) :=
√
n tf(τ/t).

To do so we put L := T length(J ), and observe that |τ − at| ≍ L for all
τ ∈ tJ , where a is the one of a1, a2 which is nearer to J . Hence, in view of
(3.3),

F ′′(τ) =
√
n t−1f ′′(τ/t) ≍

√
n t−1|τ/t− a|α−2 ≍

√
n t1−αLα−2

for all τ ∈ tJ (α the appropriate αi), and similarly
F (j)(τ)≪

√
n t1−αLα−j for j = 3, 4.
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Furthermore, by (3.4),

G(j)(τ) =
dj

dτ j
(
√

f(τ/t))≪ t−j |τ/t− a|α/2−j ≪ t−α/2Lα/2−j

for τ ∈ tJ , j = 0, 1, 2. We may thus apply Lemma 2 with the parameters
X := L, Y := n−1/2tα−1L2−α, Z := (L/t)α/2.

To simplify the notation in what follows, put

β(z) :=

√

f(f∗(z))

|f ′′(f∗(z))| .

After a short computation, Lemma 2 yields

(5.3)
∑

m∈tJ

√

f(m/t) cos(2π
√
n tf(m/t)− 3π/4)

=

√
t

n1/4
ℜ
(

−
∑

k∈√nJ ∗
β(k/
√
n)e(t(

√
n f(f∗(k/

√
n))− kf∗(k/

√
n)))
)

+O(n−1/4t(α−1)/2L1−α/2) +O(log t),

where f∗ denotes the inverse function of f ′ and J ∗ the image of the closure
J of J under f ′. The contribution of the error terms here to the whole of
(5.2) is

≪ t
∑

1≤n≤T 2

r(n)

n
+
√
t log t

∑

1≤n≤T 2

r(n)

n3/4
≪ T log T,

hence small enough. Now k ∈ √nJ ∗ implies that f∗(k/√n) ∈ J . Hence,
by (3.3) and the fact that f ′′ is bounded away from zero,

(5.4) β(k/
√
n)≪ L/T for k ∈

√
nJ ∗.

Furthermore, by the definition of the tac-function H, for all k ∈ Z, n ∈ Z
+,

H(−k,
√
n, 0) = max

(x,y,0)∈∂R
(−kx+

√
n y) = max

a1≤x≤a2
(−kx+

√
n f(x))

=
√
n f(f∗(k/

√
n))− kf∗(k/

√
n).

Hence it will suffice to show that

(5.5) I(J , T ) :=
2T\
T

t2|S(J , t, T )|2 dt≪ T 3+ε,

where

S(J , t, T ) :=
∑

1≤n≤T 2

r(n)

n

∑

k∈√nJ ∗
β(k/
√
n)e(tH(−k,

√
n, 0)).
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Dividing into dyadic subintervals, it is thus enough to show that

(5.6)

2T\
T

∣

∣

∣

∑

n≍N

∑

k≍K
γn,ke(tH(−k,

√
n, 0))

∣

∣

∣

2

dt≪ T 1+ε

with

(5.7)
N ≪ T 2, K ≪

√
N(L/T )α−1,

γn,k := β(k/
√
n)
r(n)

n
≪ LT−1+ε/2N−1.

Here we used (5.4) and the fact that, in view of (3.3),

max
ξ∈J ∗
|ξ| = max

x∈J
|f ′(x)| ≪ (L/T )α−1.

By Lemma 5, the left-hand side of (5.6) is

≪ T 1+ε
L2

T 2N2
NK

× max
H0≪K+

√
N
#{n ≍ N, k ≍ K : |H(−k,

√
n, 0)−H0| < 1/T}.

According to Lemma 4, this cardinality is

≪ N/T +
√
N +K ≪

√
N +K.

To see this, we use the first inequality of (3.11) if K ≪
√
N and the second

one otherwise, with δ a constant multiple of
√
N/K. Therefore, the left-hand

side of (5.6) is overall

≪ T 1+ε(L/T )2
K√
N

(

1 +
K√
N

)

≪ T 1+ε((L/T )1+α + (L/T )2α)≪ T 1+ε,

with an appeal to (5.7). This completes the proof of (5.6) and thereby, in
view of (4.1) and (4.5), that of our Theorem.

6. Concluding remark. We indicate briefly how the pointwise bound
(2.3) follows as a by-product from the above analysis. Estimating the right-
hand side of (5.3) trivially, we get, for t = T ,
∑

m∈tJ

√

f(m/t) cos(2π
√
n tf(m/t)− 3π/4)

≪ n1/4t1/2|J ∗|+ n−1/4t(α−1)/2L1−α/2 + log t

≪ n1/4t3/2−αLα−1 + n−1/4t(α−1)/2L1−α/2 + log t,

in view of (5.7). Using Lemma 1 with

X = t2f2(m/t)≪ t2, Y = L2−αtα−1 ≪ t,
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we obtain, as an obvious variant of (5.2),
∑

m∈tJ
P (t2f2(m/t))

≪
√
t
∑

1≤n≤Y

r(n)

n3/4
(n1/4t3/2−αLα−1 + n−1/4t(α−1)/2L1−α/2 + log t)

+ Lt1+ε/Y 1/2

≪ t2−αLα−1Y 1/2 + tα/2L1−α/2 log t+ t1/2Y 1/4 log t+ Lt1+ε/Y 1/2

≪ Lα/2t3/2−α/2+ε + L1−α/2tα/2 log t+ L1/2−α/4tα/4+1/4 log t

≪ t3/2+ε.
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