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1. Introduction. For an integer ν > 1, we write P (ν) for the greatest
prime factor of ν and we put P (1) = 1. Let b, k ≥ 2, ` > 2, n and y be
positive integers such that P (b) ≤ k and ` is prime. Let t ≥ 2 and r ∈ {0, 1}
be given by t = k − r. Thus k ≥ 2 if r = 0 and k ≥ 3 if r = 1. Further, let
d1 < . . . < dt be integers in the interval [0, k). We consider the equation

(n+ d1) . . . (n+ dt) = by`(1)

in integers b, k, `, n, y, d1, . . . , dt as above. If r = 0, then di = i for 0 ≤ i < k
and the left hand side of (1) is n(n+1) . . . (n+k−1). If r = 1, the left hand
side of (1) is obtained by omitting a term n + i for some i with 0 ≤ i < k
from {n, n+ 1, . . . , n+ k− 1}. For considering equation (1), it is natural to
suppose that the left hand side of (1) is divisible by a prime exceeding k.
This implies that n > k`, which we assume throughout the paper without
reference. For an account of results on equation (1) and its extensions, we
refer to [13] and [14].

Erdős and Selfridge [4] proved that equation (1) with r = 0 and P (b) < k
does not hold. The assumption P (b) < k has been relaxed to P (b) ≤ k for
k ≥ 4 by Saradha [11] and for k = 2, 3 by Győry [5]. The proof of Saradha
depends on the method of Erdős and Selfridge whereas Győry derived his
results from the theorems of Ribet and Darmon and Merel on generalised
Fermat equation. Saradha [11] showed that equation (1) with r = 1 implies
that k ≤ 8. The results of Győry and Saradha are stated with the assumption
that the left hand side of (1) is divisible by a prime exceeding k. But it is
clear from their proofs that this assumption can be relaxed to n > k`.
Saradha and Shorey [12] proved that equation (1) with r = 1 and b = 1
never holds. The assumption n > k` is not required in the preceding result
if (n, k, d1, . . . , dt) = (2, 3, 0, 2), (1, 4, 0, 1, 3) are excluded. In this paper, we
relax the assumption k ≤ 8 in the result of Saradha stated above.
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Theorem. Let n > k`. Then equation (1) with r = 1 and k ∈ {6, 7, 8}
does not hold. This is also the case for k = 3, 5 if P (b) < k.

The cases k = 3, 4, 5 if P (b) ≤ k and k = 4 if P (b) < k remain open.
It is possible to settle the cases k = 3, 4, 5 with P (b) ≤ k if we can solve
completely a generalised Fermat equation of the form Ax` +By` +Cz` = 0
with P (ABC) ≤ 3 in integers ` ≥ 3, x, y and z. It is clear from the proof
of the Theorem that the case k = 4, P (b) < k can be settled if we solve
an equation of the form 2αx` + 3βy` + z` = 0 with 0 ≤ α ≤ 3 in integers
` ≥ 3, x, y, z such that gcd(6, xyz) = gcd(x, y, z) = 1. The Theorem is
obtained by combining the elementary method of Erdős and Selfridge with
the contributions of Wiles, Ribet, Darmon and Merel and others on the
generalised Fermat equation and the developments of Bilu and Hanrot on
solving Thue equations by Baker’s method. For a prime p > k, we write bp
for b times a power of p. Then we conclude that equation (1) with r = 0,
n > k`, b replaced by bp and k ≥ 6 is not possible. For this, we apply the
result of Saradha and the Theorem to the equation obtained from (1) with
r = 0 by deleting a factor n+ i with 0 ≤ i < k on the left hand side which is
divisible by p. In particular, we derive the following result where p(k) denotes
the least prime exceeding k.

Corollary. Let n > k`. Then equation (1) with r = 0, P (b) ≤ p(k) and
k ≥ 6 does not hold.

For the proof of our Theorem, it is easily seen that we can restrict our-
selves to the case of an equation m(m + i)(m + j) = by` for a few small
values of i and j. A careful study of the possible values of m, m + i and
m+j then reduces in turn the preceding equation to a small number of Thue
equations for each ` (Lemmas 6–12), which are solved by Baker’s method
(Lemmas 13–14), as shown e.g. in [2]. To apply Baker’s method, we need to
keep a check on the degree as well as on the coefficients of the Thue equa-
tions. The degree is found to be ≤ 17 by the elementary method of Erdős
and Selfridge (see Lemma 1) and a check on the coefficients is provided by
contributions on the generalised Fermat equation (Lemmas 2–5). We shall
prove analogous results for equation (1) and more general equations with
` = 2 in a subsequent paper.

2. Lemmas. In this section, we give the lemmas for the proof of the
Theorem. In these lemmas, the letter b is used in a context which is different
from that of Section 1 but this will be clear and it should not cause any
confusion. Further, we shall understand, without reference, that ` is a prime
number > 2 in these lemmas. Let 2 = p1 < p2 < . . . denote the sequence of
all primes. For any integer m ≥ 1, we define as in [11, p. 159],
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f0(k,m) = t−
∑

h≥m+1

([
k

ph

]
+ εh

)

where εh = 0 if ph > k and for ph ≤ k, εh = 0 or 1 according as ph | k or
not for h ≥ m + 1. We begin with an elementary result due to Erdős and
Selfridge [4] which is fundamental in their method.

Lemma 1. Let 1 ≤ `′ ≤ ` − 1 and f0(k,m) be as above. Then equation
(1) implies that (

f0(k,m) + `′ − 1
`′

)
≤ `m

where the left hand side is zero if f0(k,m) < 1.

The next result on a generalised Fermat equation is due to Ribet [9] for
α > 1 and Darmon and Merel [3] for α = 1.

Lemma 2. Let α be an integer with 1 ≤ α < `. Then the equation

x` + y` = 2αz`(2)

in non-zero relatively prime integers x, y, z has no solution for α > 1 and
for α = 1, it has only the trivial solution for which xyz = ±1.

By using the contributions of Wiles, Ribet and others the following result
on a more generalised Fermat equation has been given in Sander [10] and in
[12, Lemma 13].

Lemma 3. Let ` ≥ 5. Let a, b, c be non-zero integers such that either
P (abc) ≤ 3 or a, b, c are composed of only 2’s and 5’s. Then the equation

ax` − by` = cz` in non-zero integers x, y, z with(3)

gcd(ax`, by`, cz`) = 1, ord2(by`) ≥ 4

has no solution.

The next result of Bennett [1] is based on the hypergeometric method.

Lemma 4. For non-zero integers a and b, the equation

|ax` − by`| = 1

has at most one solution in positive integers (x, y). Hence the equation

|(a+ 1)x` − ay`| = 1

has the only solution (x, y) = (1, 1) in positive integers.

Győry [5] derived from Lemma 2 the following result.

Lemma 5. Let P (b) ≤ 3. The solutions of equation

m(m+ 1)(m+ 2) = by` in positive integers m and y(4)

are given by m = 1, 2.
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Note that the assertions of Lemmas 2–5 are required only for ` ≤ 17 in
the proof of the Theorem. We shall consider equations of the form

(5) m(m+ i)(m+ j) = by` in positive integers m, y with gcd(y, 5) = 1

where
1 ≤ i < j ≤ 5 and P (b) ≤ 3(6)

such that
(m, i, j) 6∈ {(1, 1, 2), (2, 1, 2), (2, 2, 4), (4, 2, 4)}.(7)

We write

m+ µ = aµy
`
µ = AµY

`
µ with aµ `th power free, P (aµ) ≤ 3,(8)

P (Aµ) ≤ 3, gcd(Yµ, 6) = 1 for µ ∈ {0, i, j}.
We also write Aµ = 2fµ3gµ . By (8), we observe that gcd(Yµ, Yν) = 1 for
µ 6= ν, µ, ν ∈ {0, i, j}. We see that the aµ’s are distinct. For, otherwise
we have aµ = aν for some µ, ν ∈ {0, i, j}. We may assume without loss of
generality that µ > ν. Thus yµ > yν and

5 ≥ µ− ν = (n+ µ)− (n+ ν) = aµ(y`µ − y`ν)

≥ aµ(y`−1
µ + y`−2

µ yν + . . .+ y`−1
ν ) ≥ 6,

which is a contradiction. Similarly, we see that Aµ’s are distinct. Further, by
(8), we see that among A0, Ai and Aj , at least one is even and we conclude
from Lemma 5 that at most two are even. Let µ0, µ1 ∈ {0, i, j} be such
that fµ0 > 0 is maximal and fµ1 = 0. We denote the remaining element in
{0, i, j} by µ2. Since j ≤ 5, we see that

fµ2 ≤ 2.

We apply Lemma 3 to get

Lemma 6. Let ` ≥ 5. Then equation (5) with (6) and (7) implies that
fµ0 ≤ 3 + fµ2 .

Proof. Suppose that equation (5) with (6) and (7) is satisfied. Let
|µ0 − µ2| = 5. Then |µ0 − µ1| ≤ 4 and we have

2fµ0 3gµ0Y `
µ0
− 3gµ1Y `

µ1
= µ0 − µ1.

Defining g0,1 = min(gµ0, gµ1), we get

2fµ0 3gµ0−g0,1Y `
µ0
− 3gµ1−g0,1Y `

µ1
=
µ0 − µ1

3g0,1

with the two terms on the left hand side coprime. Since |µ0 − µ1| ≤ 4, we
see that (µ0 − µ1)/3g0,1 is a power of 2. Hence we conclude from Lemma 3
that fµ0 ≤ 3. Now we suppose that |µ0 − µ2| < 5. Then

2fµ0 3gµ0Y `
µ0
− 2fµ2 3gµ2Y `

µ2
= µ0 − µ2.
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If g0,2 = min(gµ0 , gµ2), then

2fµ0−fµ2 3gµ0−g0,2Y `
µ0
− 3gµ2−g0,2Y `

µ2
=

µ0 − µ2

2fµ2 3g0,2

with the two terms on the left hand side coprime. Since |µ0 − µ2| ≤ 4, the
right hand side is composed of 2’s and 3’s. Hence by Lemma 3, fµ0 − fµ2

≤ 3.

For the next assertion on equation (5), we state the following two results
on Catalan equation and its extension.

Lemma 7. The solutions of

3m − 2n = ±1 in non-negative integers m,n

are given by (m,n) ∈ {(0, 1), (1, 1), (2, 3), (1, 2)}.
Lemma 8. The solutions of

3m − 2n = ±5 in non-negative integers m,n

are given by (m,n) ∈ {(1, 3), (2, 2), (3, 5)}.
Lemma 7 is a well known result of Leo Hebrews and Levi Ben Gerson

(see Ribenboim [8]) and Lemma 8 is due to Herschfeld [7].

Lemma 9. Suppose that equation (5) with (6) and (7) is satisfied. As-
sume that either at least two distinct Yµ, Yν or two distinct yµ, yν are equal
to one. Then the left hand side of equation (5) equals one of the products in
the following set :

{1 · 2 · 4, 1 · 2 · 6, 1 · 3 · 4, 1 · 3 · 6, 1 · 4 · 6, 2 · 3 · 6, 3 · 4 · 6, 3 · 4 · 8,
3 · 6 · 8, 4 · 6 · 9, 4 · 8 · 9, 6 · 8 · 9, 8 · 9 · 12}.

Proof. Suppose that equation (5) holds with (6) and (7). Let Yµ = Yν = 1
for some µ, ν ∈ {0, i, j} with µ 6= ν. Then

2fµ3gµ − 2fν3gν = µ− ν with |µ− ν| ≤ 5.

There is no loss of generality in assuming µ− ν > 0, thus we need to study
the diophantine inequalities 1 ≤ 2fµ3gµ − 2fν3gν ≤ 5. We split the study
according to the values of gµ, gν .

1. If gµ = gν = 0, then 1 ≤ 2fµ − 2fν ≤ 5 and one easily sees that
(fµ, fν) ∈ {(1, 0), (2, 0), (2, 1), (3, 2)}.

2. If gµ and gν are non-zero, then one has 2fµ3gµ − 2fν3gν = 3 and hence
2fµ3gµ−1 − 2fν3gν−1 = 1. Then there are two possibilities:

• fµ 6= 0; then fν = 0. Then gµ = 1, so that the solutions are (see
Lemma 7) (fµ, fν , gµ, gν) ∈ {(1, 0, 1, 1), (2, 0, 1, 2)}.
• fν 6= 0; then fµ = 0. Similarly, the solutions are (fµ, fν , gµ, gν) ∈
{(0, 1, 2, 1), (0, 3, 3, 1)}.
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3. If gµ 6= 0 and gν = 0, then if fν = 0, we have either (fµ, fν , gµ, gν) =
(0, 0, 1, 0) or 2fµ3gµ − 2fν ≥ 5, with equality only for (fµ, fν , gµ, gν) =
(1, 0, 1, 0). In what follows, fν 6= 0. Then

• the right hand side cannot be 3;
• if the right hand side is 5, then fµ=0 and (fµ, fν , gµ, gν)=(0, 2, 2, 0)

from Lemma 8;
• the equation 2fµ3gµ − 2fν ∈ {1, 2, 4} reduces to the case 2fµ3gµ −

2fν = 4. Then fµ = fν or min(fµ, fν) = 2. The former case yields
(fµ, fν , gµ, gν) = (1, 1, 1, 0), whereas the latter yields fµ = 2, and
then 3gµ − 2fν−2 = 1, thus (fµ, fν , gµ, gν) ∈ {(2, 3, 1, 0), (2, 5, 2, 0)}.
The solutions for 2fµ3gµ − 2fν = 1, 2 are {(0, 1, 1, 0), (0, 3, 2, 0)} and
{(1, 2, 1, 0), (1, 4, 2, 0)}, respectively.

4. If gν 6= 0 and gµ = 0, it is easily seen that fµ 6= 0. The study is then
identical to the preceding case, except that we use the “minus” cases of
Lemmas 7 and 8. We get (fµ, fν , gµ, gν) ∈ {(3, 0, 0, 1), (5, 0, 0, 3), (4, 2, 0, 1),
(2, 0, 0, 1), (3, 1, 0, 1)}.

To sum up, we get (m + µ,m + ν) ∈ {(2, 1), (4, 1), (4, 2), (8, 4), (6, 3),
(12, 9), (9, 6), (27, 24), (3, 1), (6, 1), (9, 4), (6, 2), (12, 8), (36, 32), (3, 2), (9, 8),
(6, 4), (18, 16), (8, 3), (32, 27), (16, 12), (4, 3), (8, 6)}.

For each of these pairs (α, β) with α > β, the corresponding possi-
ble products in (5) are obtained by taking (up to permutation) the triples
(α, β, γ) with γ > 0 and α − 5 ≤ γ ≤ β + 5 and P (γ) ≤ 3, and excluding
(cf. (7)) (1, 2, 3), (2, 3, 4), (2, 4, 6), (4, 6, 8), we obtain the assertion of the
lemma. Since Yµ divides yµ and Yν divides yν , as is seen from the definition,
the result follows in the case yµ = yν = 1.

Lemma 10. Let ` ≥ 5. Assume that equation (5) with (6) and (7) is
satisfied. Suppose that there is at most one Yµ which equals one. Then there
exists (Z1, Z2) ∈ {Yµ0 , Yµ1 , Yµ2} such that

aZ`1 − bZ`2 = ±c(9)

for some a, b, c given below :

b = 1, a ∈ {2, 4, 8}, c ∈ {3, 5};
b = 1, a = 3, c ∈ {1, 2, 4, 5};
b = 1, a ∈ {6, 12, 24}, c ∈ {1, 5};
b = 1, a ∈ {48, 96}, c = 5;

b = 3, a ∈ {2, 4, 8}, c ∈ {1, 5};
b = 3, a ∈ {16, 32}, c = 5.
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Proof. For any µ 6= ν ∈ {0, i, j}, we have 2fµ3gµY `
µ − 2fν3gνY `

ν = µ− ν.
We shall prove, using Lemmas 2 and 3, that only a finite number of such
diophantine equations need to be considered, namely, those just above.

First, since |µ − ν| ≤ 5, we see that at most two of g0, gi, gj can be
non-zero and that at most one can be larger than 2.

Assume that there are µ, ν such that gµ = gν = 0. Then we have 2fµY `
µ−

2fνY `
ν = µ − ν. Dividing by a suitable power of 2, we can assume without

loss of generality that fν = 0 and hence µ− ν is odd; Lemma 2 then shows
(since (Yµ, Yν) 6= (1, 1)) that µ− ν ∈ {±3,±5}. Using Lemma 3, we see that
fµ ≤ 3, which gives b = 1, a ∈ {2, 4, 8}, c ∈ {3, 5}.

Assume now that gµ and gµ′ are non-zero. If {0, i, j} = {µ, µ′, ν}, then
gν = 0. Furthermore, one of gµ and gµ′ , say gµ, is equal to 1. Thus we have
2fµ3Y `

µ−2fνY `
ν = µ−ν and dividing by a suitable power of 2, we can assume

that min(fµ, fν) = 0. The fact that (Yν , 6) = 1 shows that µ − ν 6= ±3. If
fµ = fν = 0, we get a = 3, b = 1, c ∈ {1, 2, 4, 5}. Otherwise µ−ν is odd; then
Lemma 3 shows that max(fµ, fν) ≤ 3 if µ−ν = ±1, whereas Lemma 6 shows
that max(fµ, fν) ≤ 5 if µ− ν 6= ±1. This yields all the remaining cases.

We prove an assertion similar to Lemma 10 for the case ` = 3 using the
following result of Nagell and Ljunggren (see Ribenboim [8, pp. 96–105]).

Lemma 11. The only non-zero solutions of the equations

x2 + x+ 1 = y3 and x2 + x+ 1 = 3y3

in integers x, y are given by

(x, y) = (−1, 1), (18, 7), (−19, 7)

and
(x, y) = (1, 1),

respectively.

Lemma 12. Let ` = 3. Assume that equation (5) with (6) and (7) is
satisfied. Suppose there is at most one yµ which equals one. Then there
exists (Z1, Z2) = (yµ, yν) with yµ, yν ∈ {yµ0 , yµ1 , yµ2} such that

aZ3
1 − bZ3

2 = ±c(10)

for some a, b, c given below :

b = 1, a ∈ {2, 4, 6, 12}, c ∈ {3, 5};
b = 1, a ∈ {3, 9}, c ∈ {2, 4, 5};
b = 1, a ∈ {18, 36}, c = 5;

b = 3, a ∈ {2, 4}, c = 5;

b = 9, a ∈ {2, 4}, c ∈ {1, 5}.
Further (m+ µ,m+ ν) = (aZ3

1 , bZ
3
2).



20 G. Hanrot et al.

Proof. We suppose that equation (5) with (6) and (7) is satisfied. Since
aµ1 is odd, we have aµ1 ∈ {1, 3, 32}. Further aµ2 ∈ {1, 2, 3, 4, 6, 9, 12, 18, 36}.
• Let aµ1 = 1. We consider aµ2y

3
µ2
− y3

µ1
= µ2 − µ1.

Let aµ2 ∈ {2, 4, 6, 12}. Then µ2 − µ1 ∈ {±1,±3,±5} since yµ1 is odd.
Suppose µ2 − µ1 = 1. Then y3

µ1
+ 1 = aµ2y

3
µ2

. Hence (y3
µ1

+ 1)/(yµ1 + 1)
is either y′3µ2

or 3y′3µ2
. Now we apply Lemma 11 to see that yµ1 is either

1 or 19. If m + µ1 = 1, then m + µ2 = 2. Thus yµ1 = yµ2 = 1, which is
excluded. If m+µ1 = 193, we check that m+µ1 +1 is not of the form aµ2y

3
µ2

with aµ2 ∈ {2, 4, 6, 12}. Thus there is no possible value for m + µ2. Hence
µ2 − µ1 6= 1. The possibility µ2 − µ1 = −1 is excluded similarly. Thus we
see that yµ2 , yµ1 is a solution of (10) with b = 1, a ∈ {2, 4, 6, 12}, c ∈ {3, 5}.

Let aµ2 ∈ {3, 9}. Then we apply Lemma 11 to see that µ2−µ1 6= ±1,±3.
Thus (yµ2 , yµ1) is a solution of (10) with b = 1, a ∈ {3, 9}, c ∈ {2, 4, 5}.

Let aµ2 ∈ {18, 36}. Since yµ1 is odd, µ2 − µ1 ∈ {±1,±3,±5}. Now
µ2 − µ1 6= ±3 since otherwise 3 | yµ1 implying 9 | (µ2 − µ1), a contradiction.
Further by Lemma 11, µ2 − µ1 6= ±1. Thus (yµ2 , yµ1) is a solution of (10)
with b = 1, a ∈ {18, 36} and c = 5.

• Let aµ1 = 3. Suppose aµ2 = 1. We use Lemma 11 to see that µ1−µ2 =
±2,±4,±5. Thus (yµ1 , yµ2) is a solution of (10) with b = 1, a = 3, c ∈
{2, 4, 5}.

Suppose aµ2 = 2 or 4. Then we use Lemmas 4 and 11 to see that µ2−µ1 =
±5. Thus (yµ2 , yµ1) is a solution of (10) with b = 3, a ∈ {2, 4}, c = 5.

Similarly, we apply Lemma 11 to exclude aµ2 ∈ {6, 9, 12, 18, 36}.
• Let aµ1 = 9. We argue as in the case aµ1 = 3 to see that (yµ1 , yµ2) is

a solution of (10) with b = 1, a = 9, c ∈ {2, 4, 5} or (yµ2 , yµ1) is a solution of
(10) with b = 9, a ∈ {2, 4}, c = {1, 5}.

Finally the relation (m+µ,m+ν) = (aZ3
1 , bZ

3
2) is clear from the proof.

For a Thue equation of the form Ax`−By` = ±C in non-negative integers
x, y, we say that a solution (x, y) is a trivial solution if max(x, y) ≤ 1.

Lemma 13. Let 5 ≤ ` ≤ 17. The set of equations in (9) has no non-trivial
solution.

Lemma 14. Let ` = 3. The only non-trivial solutions of the set of equa-
tions in (10) are given by

(a, b, c;Z1, Z2) ∈ {(1, 2,−3; 5, 4), (1, 3, 5; 2, 1), (1, 4,−5; 3, 2),

(1, 6, 5; 467, 257), (3, 2, 5; 7, 8)}.
Proofs of Lemmas 13 and 14. The proof of Lemmas 13 and 14 rests on

a mix of modular arguments (for most of the equations that do not have
solutions at all) and effective solution of Thue equations, as e.g. in [2]. We
give a short overview of these techniques now.



Almost perfect powers in consecutive integers 21

In the proof, x1/` and Log x denote the principal determination of the
corresponding functions.

Rewrite the Thue equation aX` − bY ` = c as X` − αY ` = β, where α is
a positive integer, not an `th power. This can be rewritten as

∏

ζ`=1

(X − ζα1/`Y ) = β.

Let K be the number field Q(α1/`), and let M be a complete set of non-
associate solutions of the norm equation NK/Q(µ) = β. Then for any solution
(X,Y ), there is a µ in M and a unit η of K such that X − α1/`Y = µη.

We now split the overview in two cases, according to the value of `.

First, when ` ≤ 7, a system of fundamental units may be easily com-
puted using the pari library. Thus, we can compute η1, . . . , ηr and there
exist integers b1, . . . , br such that

X − α1/`Y = µηb11 . . . ηbrr .

Taking logarithms of all the conjugates of this equation shows that

Log(X − σk(α1/`)Y ) = Log σk(µ) +
r∑

i=1

bi Log σk(ηi) + b0,kiπ(11)

with b0,k = O(maxi |bi|).
Elementary arguments allow one to prove that for any σk, σk′ 6= id, one

has ∣∣∣∣Log
X/Y − σk(α1/`)
α1/` − σk(α1/`)

∣∣∣∣� exp(−C max
i
|bi|) � |Y |−`(12)

and in particular

(13)

∣∣∣∣Log
(
α1/` − σk′(α1/`)
α1/` − σk(α1/`)

· X − σk(α
1/`)Y

X − σk′(α1/`)Y

)∣∣∣∣
� exp(−C max

i
|bi|) � |Y |−`

where both C and the implicit constants are effective.
Now, (11) shows that the left hand side of (13) can be rewritten as a

linear form in logarithms of algebraic numbers. As such, it can be bounded
from below by Baker’s method (note that if the linear form is zero, then
α1/` = X/Y is a rational), with a bound exp(−C ′ log maxi |bi|). Comparing
this with the upper bound provides us with a (very large) upper bound on
maxi |bi|.

We need to improve this bound. Since the upper bound in (13) does
not leave much place for improvement, we need to replace Baker’s bound
by a better one, using the restriction on the bi, i.e., to bound from below
a linear form

∑r
i=1 biθi + ψ, under the assumption that |bi| ≤ B for a very
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large B. We can in what follows forget about the arithmetical nature of the
coefficients θi, only their numerical properties will be relevant.

This improvement of the bound can be achieved by means of effective
diophantine approximation techniques, such as computing continued frac-
tions (when r = 2) or the LLL algorithm. We first show how one can reduce
to the case r = 2 by applying Bilu and Hanrot’s method [2].

First note that when ` = 3, taking the imaginary part of (13) yields
a linear form with r = 2. Otherwise, let us order the embeddings so that
σ0 = id, σr+i = σi. Take the real part of the identity (11):

log |(X − σk(α1/`)Y )| = log |σk(µ)|+
r∑

i=1

bi log |σk(ηi)|,

which becomes, if we apply (12),

log |Y | = log |σk(µ)| − log |α1/` − σk(α1/`)|+
r∑

i=1

bi log |σk(ηi)|+O(|Y |−`).

Let A = [aij ]1≤i,j≤r−1 be the inverse of the matrix [σj(ηi)]1≤i,j≤r−1. The
determinant of this matrix is, up to a power of 2, equal to the regulator of
the field, so that this matrix is indeed invertible.

Then one has

bi = log |Y |
r∑

j=1

aij +
r∑

j=1

aij log

∣∣∣∣∣
α1/` − σj(α1/`)

σj(µ)

∣∣∣∣∣+O(|Y |−`).(14)

Put δi =
∑r

j=1 aij and λi =
∑r

j=1 aij log |(α1/` − σj(α1/`))/σj(µ)|. Then we
can eliminate log |Y | by combining identities (14) for two different values
of i. More precisely, define δ = δi1δ

−1
i2

and λ = δλi2 − λi1 . Then we get the
estimate |bi2 + bi1δ + λ| � exp(−C maxi |bi|) � |Y |−`.

Thus, we have to estimate an expression of the kind |b1 + b2δ + λ| from
below. We denote by ‖x‖ the distance from x to Z. Let q be the denominator
of a convergent of the continued fraction expansion of δ; choose q slightly
larger than the bound B on maxi |bi|, say q = κB. Then one has

q|b1 + b2δ + λ| ≥ ‖qb2δ + qλ‖ ≥ | ‖qλ‖ − b2‖qδ‖ | ≥ | ‖qλ‖ − κ−1 |.
If ‖qλ‖ is not too small, we see that this gives us a lower bound for

|b1 + b2δ+ λ|. This lower bound in turn can be used to obtain a new bound
on the bi and so on. When we reach a sufficiently small bound (usually in
two steps), we enumerate all the possible r-tuples (b1, . . . , br). Recall that
in that case r ≤ 3.

Second, if ` ≥ 11, pari can still give a system of units, but ensuring that
this system is fundamental without assuming the GRH may take a lot of
time. Using lower bounds for regulators (e.g. [15]) we can however compute
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an upper bound B of the index of our system of units η1, . . . , ηr. Hence there
exists b0 ≤ B and b1, . . . , br such that

(X − α1/`Y )b0 = µb0ηb11 . . . ηbrr .

All the treatment is then very similar to the previous case except that
one can no more reduce the “effective estimation problem” to continued
fractions; one has to use the 3-dimensional version of the LLL algorithm
instead. See [6] for more details.

In that case, it is difficult to reduce the bound on the bi to a reasonable
value and the high value of the rank r = (` − 1)/2 may make a complete
enumeration of all the (r+ 1)-tuples (b0, b1, . . . , br) tricky. It is far better to
use the lower bound on the linear form that we just derived in association
with the rightmost part of (13). This yields directly a bound on |Y | which
is very small when ` is large. Enumerating the corresponding values is then
just a matter of routine.

3. Proof of the Theorem. Suppose that equation (1) with r = 1 and
n > k` is satisfied. Let 6 ≤ k ≤ 8. For 1 ≤ i ≤ t, we write

n+ di = aix
`
i , ai is `th power free, P (ai) ≤ k.

Since n > k` we see that ai’s are distinct. Further Lemma 1 holds. We
observe that f0(k, 2) ≥ 3 and f0(k, 3) ≥ 5. We apply Lemma 1 with `′ = `−1
and m = 3 to obtain

(
`+3
`−1

)
≤ `3. This inequality is not satisfied when ` = 19.

By induction, it is also not satisfied for every odd ` ≥ 19. Hence we conclude
from Lemma 1 that ` ≤ 17. If f0(k, 2) ≥ 4, we apply Lemma 1 with `′ = `−1
and m = 2 to derive that

(
`+2
`−1

)
≤ `2, which is not valid for ` ≥ 3. Hence

f0(k, 2) = 3.
Let k = 8. Since f0(k, 2) = 3, we see that 7 divides a0, a7; 5 divides

a1, a6 and by Lemma 5, the omitted term is either n+ 3 or n+ 4. Thus we
have two possible equations:

n(n+ 1)(n+ 2)(n+ 4)(n+ 5)(n+ 6)(n+ 7) = by`(15)

with
(n+ 2)(n+ 4)(n+ 5) = b′y′`, P (b′) ≤ 3,(16)

or
n(n+ 1)(n+ 2)(n+ 3)(n+ 5)(n+ 6)(n+ 7) = by`(17)

with
(n+ 2)(n+ 3)(n+ 5) = b′y′`, P (b′) ≤ 3.(18)

We find that (16) and (18) are equations of the form (5) with m = n + 2,
i = 2, j = 3 and m = n+ 2, i = 1, j = 3, respectively. Thus (6) and (7) are
satisfied. We use the fact that 7 |n and 5 | (n+ 1) to deduce from Lemma 9
that at most one Yµ equals 1. Hence by Lemmas 10 and 13, we conclude that
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equations (16) and (18) have no solution for ` ≥ 5. Let ` = 3. By Lemma
9, we have at most one yµ equalling 1. Then by Lemmas 10 and 14, we see
that (n + 2, n + 5) = (125, 128). This is not possible since 5 | (n + 1). Thus
equations (16) and (18) do not hold. This excludes the case k = 8.

Let k = 6. Then we have 5 dividing a0, a5 and the omitted term is either
n+ 2 or n+ 3. Thus we have either

n(n+ 1)(n+ 3)(n+ 4)(n+ 5) = by`(19)

with
(n+ 1)(n+ 3)(n+ 4) = b′y′`,(20)

or
n(n+ 1)(n+ 2)(n+ 4)(n+ 5) = by`(21)

with
(n+ 1)(n+ 2)(n+ 4) = b′y′`, P (b′) ≤ 3.(22)

We proceed as in the case k = 8 and conclude that equations (20) and (22)
are impossible.

Let k = 7. Then 5 divides a0 and a5 or a1 and a6. By excluding the
omitted term and the term divisible by 7, we arrive at equations of the form
(5) with (6) and (7). We discuss one case. The arguments for other cases
are similar. We take the case when 5 divides a1 and a6, 7 divides a2 and the
omitted term is n+ 4. Then we get

n(n+ 3)(n+ 5) = b′y′`, P (b′) ≤ 3, gcd(y, 5) = 1.

By Lemma 9 we find that if at least two distinct Yµ, Yν or yµ, yν are equal
to 1, then n = 1 or 3, which contradicts 5 | (n + 1). Thus we may assume
that at most one Yµ or yν equals 1. Then by Lemmas 10, 12, 13, 14, we get
` = 3 and

(n, n+ 3) = (125, 128)

or
(n, n+ 5) ∈ {(3, 8), (27, 32), (4673, 6 · 2573), (3 · 73, 2 · 83).

These possibilities are ruled out since 5 | (n+ 1) and 7 | (n+ 2).
Let k = 5, P (b) < k. Then f0(k, 2) = 4 and hence Lemma 1 does not

hold with `′ = `− 1,m = 2 for ` ≥ 3.
Let k = 3, P (b) < k. Then the assertion follows from Lemma 2.

References

[1] M. Bennett, Rational approximation to algebraic numbers of small height: The dio-
phantine equation |axn − byn| = 1, J. Reine Angew. Math., to appear.

[2] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory
60 (1996), 373–392.



Almost perfect powers in consecutive integers 25

[3] H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s Last
Theorem, J. Reine Angew. Math. 490 (1997), 81–100.
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