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1. Introduction. Let K = k(t) be the field of rational functions of one
variable over an algebraically closed field k of characteristic 0. In this paper
we consider the following two types of equations. Let a1, . . . , an be non-zero
elements of K, then the first type is

(1.1) a1x
p1 + . . .+ anx

pn = 1

where n ≥ 2 and p1 > . . . > pn ≥ 1 are fixed integers, while the second type
deals with zeros of exponential polynomials:

(1.2) a1(m)αm1 + . . .+ an(m)αmn = 0

where the characteristic roots αi ∈ K∗ are distinct and the polynomials
ai(z) ∈ K[z] are not identically zero, to be solved for m ∈ Z. Any linear
recurrence determines an exponential polynomial, and equation (1.2) corre-
sponds to studying the zeros of a linear recurrence in the function field K.

We are interested in the number of solutions of these two equations.
There is an extensive literature on this problem and our aim here is that
of giving a simple elementary approach to the question, based on the abc-
theorem in function fields for equation (1.1) and the use of derivations for
equation (1.2). The main feature of our bounds is their smallness and uni-
formity with respect to coefficients and exponents.

Definition. Let x, x′ ∈ K∗. We say that x and x′ are proportional if
x′/x ∈ k∗.

Theorem 1. The number of non-proportional solutions in K∗ of equa-
tion (1.1) is at most n, provided (1.1) satisfies the following lacunarity con-
dition:

(1.3) pi − pi+1 > λ, i = 1, . . . , n,
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where pn+1 = 0 and

(1.4) λ = 1
2 (n+ 1)!((n+ 1)!− 1)((n+ 1)!− 2).

Remarks. The bound in Theorem 1 is sharp, because given n generic
elements x1, . . . , xn ∈ K∗ we can solve (1.1) for x = xi, i = 1, . . . , n, as a
linear system of n equations in the n unknowns ai. The non-proportionality
of solutions is also needed, as one sees by taking all exponents pi divisible
by some integer N , because if x is a solution then εx is also a solution
whenever ε is an Nth root of unity. Finally, some condition such as (1.3) is
also needed. For example, the equation

− 1
(2t)2(1− t4)2 x

6 +
1 + 14t4 + t8

(2t)2(1− t4)2 x
2 = 1

has the six solutions x = ±2t, ±(1 − t2), ±
√
−1(1 + t2) and in particular

has three non-proportional solutions.
Our second theorem deals with recurrent sequences in function fields.

Theorem 2. Let a1, . . . , an ∈ K[x] be non-zero polynomials of degree
d1, . . . , dn and suppose that α1, . . . , αn are pairwise non-proportional. Then
the number of integer solutions m of equation (1.2) is at most

d1 + . . .+ dn + n(n− 1)/2.

The method of proof of Theorem 2 works in a more general setting, in
which the condition of non-proportionality is dropped. We can describe this
as follows.

Let I ⊆ {1, . . . , n} be a maximal subset of indices such that the elements
αi, i ∈ I, are pairwise non-proportional. Then every αj is proportional to
some αi with i ∈ I and equation (1.2) can be rewritten as

(1.5)
∑

i∈I
bi(m)αmi = 0,

where now the coefficients bi(z) are exponential polynomials with charac-
teristic roots in k∗ and coefficients in K[z].

Definition. A solution m of (1.2) is called isotrivial if every bi(m) = 0
in the decomposition (1.5).

Isotrivial solutions are precisely those solutions for which no information
can be extracted by differentiation with respect to t. Let V be the k-vector
space generated by the coefficients of the polynomials ai(z), i = 0, . . . , n.
Then we can express the exponential polynomials bi(z) as linear combina-
tions of a basis vj of V , with coefficients suitable exponential polynomials
Bij(z) defined over k and with characteristic roots in k∗. Since for m ∈ Z
we have Bij(m) ∈ k and since the elements vj are linearly independent over
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k, the system of equations bi(m) = 0, i ∈ I, is equivalent to the system
Bij(m) = 0, on which differentiation with respect to t acts trivially.

Theorem 3. Let a1, . . . , an ∈ K[x] be non-zero polynomials of degree
d1, . . . , dn. Then the number of non-isotrivial integer solutions m of equation
(1.2) is at most

d1 + . . .+ dn + n(n− 1)/2.

If n = 3 and the polynomials ai are constants, Theorem 2 states that we
have at most three solutions to equation (1.2), which is sharp. In fact, by
making a translation we may suppose that m = 0 is the smallest solution.
Now suppose m = 0, 1 are solutions and a1, a2, a3 are constants in K. We
may assume α3 = 1 and write x = α1, y = α2. Then equation (1.2) becomes

(1.6) (1− y)xm + (x− 1)ym − (x− y) = 0.

If m = 3 the left-hand side of (1.6) factorizes as −(1− x)(1− y)(x− y)(1 +
x + y); therefore, if K ∼= k(t) is the function field of genus 0 given by the
field of fractions of the ring k[x, y]/(1+x+y), we obtain an example of (1.2)
with three solutions m = 0, 1, 3 (note that α1 = t, α2 = −1− t and α3 = 1
are non-proportional). Another example is obtained by taking m = 4, where
now the function field K ∼= k(t) of genus 0 is the field of fractions of the ring
k[x, y]/(1+x+y+x2 +xy+y2) (in this last case, the isomorphism K ∼= k(t)
requires that the associated conic contains a point rational over k).

Conversely, if (1.2) has three solutions (0, l,m) in k(t) then, after a
change of variable (x′, y′) = (x±a, y±a) with a = GCD(l,m), equation (1.2)
can be reduced to these two examples. We sketch the argument. Suppose
0, l, m with 1 ≤ l < m are three solutions with GCD(l,m) = 1 and m ≥ 3.
Then in place of (1.6) we have the equation

(1.6)′ (1− yl)xm + (xl − 1)ym − (xl − yl) = 0.

The plane curve defined by (1.6)′ consists of the three lines x = 1, y = 1,
x = y and the curve Cl,m with equation

R(x)−R(y)
x− y = 0

with R(x) = (xm − 1)/(xl − 1). One shows that Cl,m is an absolutely irre-
ducible curve, by proving that the equation R(x) = w over k(w) has Galois
group the symmetric group Sm−1, and using the fact that Sm−1 is doubly
transitive. Once this is done, one computes the genus g of Cl,m using Hur-
witz’s formula, obtaining g = (m− 3)(m− 4)/2 + (l− 1)(m− l− 1). Hence
g = 0 only if m = 3 or m = 4 and l is 1 or m− 1, proving what we want.

By contrast, the number of solutions of (1.2) in a number field can be
higher and J. Berstel in 1974 produced an example with n = 3 and entries
in a sextic field with 6 solutions (see F. Beukers [Be]). This corresponds to
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the ternary recurrence

um+3 = 2um+2 − 4um+1 + 4um, u0 = u1 = 0, u2 = 1

where um = 0 for m = 0, 1, 4, 6, 13, 52. It is shown in [Be] that 6 is the
maximum number of zeros of a ternary recurrence over Z.

It is an interesting open problem to determine the precise upper bound
for the number of solutions of (1.2) if n > 3, already in the case d1 = . . . =
dn = 0. The upper bound given by Theorem 2 is then n(n − 1)/2, while
the easy lower bound is n. The argument given above extends to general
n as follows. Consider again the case in which every ai is a constant in
K and suppose that m = 0, 1, . . . , n − 2 are solutions. If we assume that
there is another solution n − 1 + p with p ≥ 0 then the corresponding
determinant det(αmi ) for m = 0, . . . , n − 2, n − 1 + p must vanish. After
division by the Vandermonde determinant with m = 0, . . . , n − 2, n − 1
we obtain the complete s-function given by the sum of all monomials in
α1, . . . , αn of degree p. In general, imposing the vanishing for an arbitrary
set of exponents leads to the study of general Schur s-functions. In this way,
one finds rather easily infinitely many examples of equation (1.2) with 2n−2
solutions with algebraic characteristic roots αi and with 2n − 3 solutions
with αi in an algebraic function field in one variable. To see this, note that
imposing the vanishing for p = 1, . . . , n − 2 is equivalent to setting to 0
the first n − 2 elementary s-functions of α1, . . . , αn. Hence the associated
complete intersection is the locus in Pn−1 of (α1, . . . , αn) where αi, i =
1, . . . , n, run over a complete ordered set of roots of the equation

αn + uα+ v = 0

with v 6= 0. This locus is an irreducible curve Cn of genus n!/4− (n− 1)!−
(n− 2)!/2 + 1 (setting v = 1 leads to the cyclic covering C̃n → Cn given by
(α1, . . . , αn, u) 7→ (α1, . . . , αn) with group action

(α1, . . . , αn, u) 7→ (εα1, . . . , εαn, ε
−1u)

with εn = 1; now apply Hurwitz’s genus formula to get first the genus of
C̃n, then the genus of Cn).

For n = 4, taking m = 0, 1, 2, 4, 5 leads to a function field of genus 0
and to an equation (1.2) in 4 variables defined over k(t), with 5 solutions;
the upper bound given by Theorem 2 is 6 solutions. For larger n, the ques-
tion amounts to finding rational curves in these complete intersections and
general arguments can be used to show that the number of solutions of an
equation (1.2) over k(t) can be as large as n+ c(n), where c(n) tends rather
slowly to infinity with n.

Finally, in the last section of this paper we indicate some variants of
Theorem 3 which may be of independent interest.
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We should mention here the important paper [SSW] of H. P. Schlickewei,
W. M. Schmidt and M. Waldschmidt, culminating in Schmidt’s paper [Schm]
proving a uniform bound depending only on n for the number solutions of
(1.2) if K is a number field, provided αi/αj is not a root of unity for i 6= j.
The proofs of these results depend on deep versions of Schmidt’s celebrated
Subspace Theorem, as well as on delicate combinatorial and number the-
oretic arguments. Specialization arguments can be used to deduce bounds
for the number of solutions of equation (1.2) over a function field from the
bounds given in these papers for the more difficult algebraic case, but it
appears that our method of counting non-isotrivial solutions yields sharper
results.

Finally, the results and methods of this paper extend quite easily to base
function fields of transcendence degree 1 and positive genus.

2. Auxiliary results. We denote by MK the set of all places of K and
for v ∈ MK we associate an additive valuation v( ) normalized so that the
sum formula ∑

v∈MK

v(x) = 0

holds for x ∈ K∗.
Assume that equation (1.1) has n+ 1 non-proportional solutions. For a

fixed v ∈MK we order our set of solutions xi, i = 1, . . . , n+ 1, so that

(2.1) v(x1) ≥ . . . ≥ v(xn+1).

Now we apply a familiar argument whose purpose is to obtain a relation
among the solutions xi which is independent of the coefficients ai of (1.1).
In the language of the paper [CHM] by L. Caporaso, J. Harris and B. Mazur,
this amounts to finding an explicit correlation among the solutions xi, i =
1, . . . , n+1. If we view (1.1), evaluated at x = xi, as a linear relation among
the coefficients ai and the constant 1, we see that

(2.2) det




xp1
1 xp2

1 . . . x
pn+1
1

xp1
2 xp2

2 . . . x
pn+1
2

...
... · · ·

...
xp1
n+1 xp2

n+1 . . . x
pn+1
n+1


 =

∑

σ∈S
mσ = 0,

where p1 > . . . > pn > pn+1 = 0, where S is the set of permutations of
{1, . . . , n+ 1} and where we have abbreviated

mσ = ε(σ)xp1
σ(1)x

p2
σ(2) . . . x

pn+1

σ(n+1)

with ε(σ) = ±1 the parity of the permutation σ.
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Let I = {1, . . . , n+ 1}, let qk, k = 1, . . . , l, be the distinct values of v(xi)
arranged in decreasing order and define

Ik = {i ∈ I : v(xi) = qk}, tk = |Ik|.
Then

(2.3) I =
l⋃

k=1

Ik,
l∑

k=1

tk = n+ 1.

Let S0 be the subset of permutations given by

S0 = {σ ∈ S : σ(Ik) = Ik, 1 ≤ k ≤ l}.
We have

Lemma 1. Let M = max v(mσ). Then

(2.4) S0 = {σ ∈ S : v(mσ) = M}.
Moreover , if σ 6∈ S0 we have

(2.5) v(mσ) < M − λ
with λ = 1

2 (n+ 1)!((n+ 1)!− 1)((n+ 1)!− 2).

Proof. Suppose σ ∈ S0. Then for i ∈ Ik we have v(xσ(i)) = v(xi) and
v(mσ) = v(mid) = M , because

v(mid) =
n+1∑

i=1

piv(xi)

and because the integers pi and v(xi) form decreasing sequences. This proves
that

S0 ⊆ {σ ∈ S : v(mσ) = M}.
The inclusion in the other direction is proven as follows. Suppose σ 6∈ S0.

Then we claim that there is a pair (i, j) with i < j and σ(i) ∈ Ik1 , σ(j) ∈ Ik2

but k1 > k2. Indeed if this were not the case then whenever i < j we would
have σ(i) ∈ Ik1 , σ(j) ∈ Ik2 and k1 ≤ k2. Since σ 6∈ S0, there would be a
first element i with i ∈ Ik0 but σ(i) 6∈ Ik0 . Note that since i is the first such
element we must have σ(I1) = I1, . . . , σ(Ik0−1) = Ik0−1. Hence i ∈ Ik1 and
k1 > k0. Now our assumption was that if i < j and i ∈ Ik1 then j ∈ Ik2

with k2 ≥ k1; therefore,

(2.6) σ({i, i+ 1, . . . , n+ 1}) ⊆
l⋃

k=k1

Ik.

On the other hand, the union on the right-hand side of (2.6) is a proper
subset of {i, i+ 1, . . . , n+ 1} because i ∈ Ik0 and k0 < k1. This contradicts
the fact that σ is a permutation and proves our claim.
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Now let (i, j) be as in our claim and define a new permutation τ by
τ(i) = σ(j), τ(j) = σ(i), and τ(k) = σ(k) for k 6= i, j. Then v(xσ(j)) >
v(xσ(i)) because k2 < k1 and we have

v(mτ )− v(mσ) = piv(xσ(j)) + pjv(xσ(i))− piv(xσ(i))− pjv(xσ(j))

= (pi − pj)(v(xσ(j))− v(xσ(i))) ≥ pi − pj > λ.

This proves both (2.4) and (2.5) and completes the proof of Lemma 1.

We abbreviate Tk = t1 + . . .+ tk and

Dk = det



x
pTk−1+1

Tk−1+1 x
pTk−1+2

Tk−1+1 . . . x
pTk
Tk−1+1

...
... · · ·

...
x
pTk−1+1

Tk
x
pTk−1+2

Tk
. . . x

pTk
Tk


 .

We have

Lemma 2.
l∏

k=1

Dk =
∑

σ∈S0

mσ.

Proof. Clear by multiplying the Laplace expansions of the determinants.

3. Proof of Theorem 1. We prove Theorem 1 by induction on n,
using a determinantal technique already introduced in the papers [BoM1]
and [BoM2]. If n = 1, the result is obvious. Hence suppose n ≥ 2 and that
the theorem has been verified for equations with less than n+ 1 monomials.
Our first objective is to show that if v(xi) is not constant for i = 1, . . . , n+1
then

(3.1)
∑

σ∈S0

mσ 6= 0.

Suppose this is not the case. Then Lemma 2 shows that some Dk = 0. Thus
we can find a non-zero solution (b1, . . . , btk) to



x
pTk−1+1

Tk−1+1 x
pTk−1+2

Tk−1+1 . . . x
pTk
Tk−1+1

...
... · · ·

...
x
pTk−1+1

Tk
x
pTk−1+2

Tk
. . . x

pTk
Tk


 ·



b1
...
btk


 = 0.

This means that the equation

(3.2) b1x
pTk−1+1 + . . .+ btkx

pTk = 0

has at least tk distinct solutions, namely xi for i = Tk−1 +1, . . . , Tk. Now we
note that the gap condition (1.3) remains valid for the exponents in (3.2),
and we also remark that the decomposition I =

⋃l
k=1 Ik has l ≥ 2, because

v(xi) is not constant for i = 1, . . . , n + 1 by hypothesis. It follows that
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tk ≤ n. Now equation (3.2) is readily reduced to an equation of type (1.1)
but with a strictly smaller number m + 1 of monomials, and with at least
tk ≥ m+1 distinct solutions. This contradicts the induction hypothesis and
proves (3.1).

Our next tool is the abc-inequality in function fields [BrM], [V], which
we state in the following form:

Let ui ∈ K∗, i = 1, . . . ,m, be such that
∑
ui = 0 and no proper subsum

of this sum vanishes. Then

−
∑

v

min v(ui) ≤
(m− 1)(m− 2)

2
|S|

where
∑
v runs over all places of K and where S is the set of places v for

which v(ui) 6= 0 for some i.

The product formula
∑
v v(uj) = 0 yields

∑

v

(v(uj)−min v(ui)) ≤
(m− 1)(m− 2)

2
|S|

whence, summing over j, we infer

(3.3)
∑

v

(max v(uj)−min v(ui))

≤ 1
2
m(m− 1)(m− 2) · |{v : max

i
v(ui)−min

j
v(uj) > 0}|.

For the purpose of applying (3.3) we fix a decomposition of (2.2) into van-
ishing subsums ∑

σ∈S
mσ =

∑

B

∑

σ∈B
mσ

where

(3.4)
∑

σ∈B
mσ = 0

for each B, while no proper subsum of (3.4) vanishes. We call B a component
of S and refer to B as an irreducible block. For a given v and B, we write

Iv(B) = max
σ∈B

v(mσ)−min
σ∈B

v(mσ).

We apply (3.3) to each sum (3.4) and get

(3.5)
∑

B

∑

v

Iv(B) ≤
∑

B

1
2
|B|(|B| − 1)(|B| − 2) · |{v : Iv(B) > 0}| ≤ λ · |S|

where λ is given by (3.1) and S is the set of places v for which Iv(B) > 0
for some B.
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Now we note that by (3.1) the set S0 is not a union of components B of S.
Therefore, for every v ∈ S there is a block B(v), possibly depending on v,
containing an element σ ∈ S0 and another element τ 6∈ S0. By Lemma 1,
we then have v(mσ) = M and v(mτ ) < M − λ, where λ is given by (1.4). It
follows that Iv(B(v)) > λ and

∑

B

∑

v

Iv(B) ≥
∑

v

Iv(B(v)) > λ · |S|.

This contradicts (3.5) and completes the proof of Theorem 1.

4. Proof of Theorems 2 and 3. Theorem 2 is a special case of The-
orem 3.

Proof of Theorem 3. Let I ⊆ {1, . . . , n} be a maximal subset of indices
such that the elements αi, i ∈ I, are pairwise non-proportional. Then every
αj is proportional to some αi with i ∈ I and equation (1.2) can be rewritten
as

(4.1)
∑

i∈I
bi(m)αmi = 0

where now
bi(z) =

∑

j:αj/αi∈k∗
aj(z)(αj/αi)z

is an exponential polynomial with characteristic roots αj/αi in k∗ and co-
efficients in K[z].

Let δ = d/dt be the usual derivation in K := k(t) with field of constants
k. We also want to describe the action of δ on exponential polynomials.
To this end, we introduce indeterminates z and ui, i ∈ I, algebraically
independent over K and extend δ to the field F = K(z, {ui : i ∈ I}) by
means of

δ(z) = 0, δui = zδ(αi)α−1
i ui,

so that ui can be viewed as a formal exponential αzi on which δ acts by the
chain rule. We denote by F0 the field of constants of δ in F ; it is clear that
k(z) ⊆ F0.

Let Mi, i ∈ I, be the k[z]-module generated by the coefficients aj(z)
with αj/αi ∈ k∗. Since k[z] is a principal ideal domain, Mi is free and there
is a basis cih, h = 1, . . . , hi, of this module such that

(4.2)
hi∑

h=1

deg(cih(z)) ≤
∑

j:αj/αi∈k∗
deg(aj(z)).

A proof of this statement is readily obtained following the proof of Corol-
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lary 2 of Ch. I, Th. 1, p. 13 of Cassels [Ca]. It is also obvious that

(4.3) N :=
∑

i∈I
hi ≤ n.

With respect to this basis we have

(4.4) bi(z) =
hi∑

h=1

cih(z)gih(z)

for suitable exponential polynomials gih(z) with characteristic roots in k∗

and coefficients in k[z]; the point of this decomposition is that now δ(gih(z))
= 0 for every i, h. Moreover, (4.2) shows that

(4.5)
∑

i∈I

hi∑

h=1

deg(cih(z)) ≤
n∑

j=1

deg(aj(z)).

If we define clih(z) by

(4.6) clih(z)ui = δl(cihui)

and apply δl to (4.1) we obtain

(4.7)
∑

i∈I

hi∑

h=1

clih(m)gih(m)αmi = 0.

The polynomials clih(z) can be defined inductively directly in K(z) by

c0ih(z) = cih, cl+1,ih(z) = δ(clih(z)) + zδ(αi)α−1
i clih(z).

Consider (4.7) for l = 0, . . . , N − 1. This is a homogeneous linear system of
N equations with a solution gih(m)αmi , where the pairs (i, h) are indexed
by i ∈ I and, for fixed i, by h = 1, . . . , hi. We have two cases.

Case I: Every gih(m) = 0. Such a solution is isotrivial by definition
and is not part of the counting of solutions in Theorem 3.

Case II: Some gih(m) 6= 0. In this case the linear system of equations
has a non-trivial solution. We define

R(z) := det(clih(z))

where the rows are indexed by l = 0, . . . , N − 1 and the columns by pairs
(i, h) with i ∈ I and, for each i, h = 1, . . . , hi. Then we obtain R(m) = 0.
Since deg(clih(z)) ≤ deg(cih(z)) + h, we see that R(z) is a polynomial in
K[z] of degree at most

∑

i∈I

hi∑

h=1

deg(cih(z)) +N(N − 1)/2.
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In particular, by (4.5) and (4.6) the number of roots does not exceed d1 +
. . . + dn + n(n − 1)/2; therefore, if R(z) is not identically 0 we have the
conclusion of Theorem 3.

Thus we may assume that R(z) is identically 0. By (4.6), we have

R(z) =
(∏

i∈I
u−hii

)
det(δl(cih(z)ui))

hence the identical vanishing of R(z) is the same as the vanishing of the
Wronskian of cih(z)ui with respect to the derivation δ. By the theorem of
the Wronskian, this happens if and only if the elements cih(z)ui are linearly
dependent over the field F0 of constants of the derivation δ.

Now we claim that the elements ui are linearly independent over the
field F0(t) (note that F0(t) = K(z)F0 because k(z) ⊆ F0). Suppose this is
not the case and consider a non-trivial linear relation of smallest length

∑
γiui = 0

with γi ∈ F0(t). We apply δ to this relation and obtain a new relation
∑

(δ(γi) + zδ(αi)α−1
i γi)ui = 0,

again with coefficients in F0(t). This relation must be proportional to the
first relation and we conclude that

λγi = δ(γi) + zδ(αi)α−1
i γi

for some λ ∈ F0(t), for at least two indices i ∈ I. If we eliminate λ, we see
that there are two distinct indices i, j ∈ I such that

(4.8)
δ(γi/γj)
γi/γj

+ z
δ(αi/αj)
αi/αj

= 0.

Let F 0 be an algebraic closure of F0 and look at the decomposition of
(4.8) in partial fractions in the purely transcendental extension F 0(t) of F 0;
the derivation δ extends uniquely to F 0(t), with F 0 its field of constants.
The residue of any element δ(f)/f , f ∈ F 0(t), at any point in F 0 is an
integer; since z is transcendental over Q, we must have δ(αi/αj) = 0. This
is impossible, because αi and αj are non-proportional.

Thus we see that a linear dependence relation of the elements cih(z)ui
over F0 implies a linear dependence relation of the elements cih(z) over
F0, for some fixed i and h = 1, . . . , hi. On the other hand, since cih(z) ∈
K(z), another application of the Wronskian theorem shows that this relation
already occurs in the field of constants of the derivation δ in the subfield
K(z) = k(z, t) of F . Since k(z) ⊆ F0 and t is transcendental over F0 we
obtain a relation over k(z). This contradicts the fact that the elements cih(z)
are a basis of the free k[z]-module Mi.
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We conclude that R(z) is not identically 0 and, with it, the proof of
Theorem 3.

5. Concluding remarks. We conclude with two simple remarks. The
first, which we owe to W. M. Schmidt, pertains to the equation

(5.1)
n∑

j=1

aj(m)αmj ∈ k,

more general than (1.2). However, applying δ to this equation we find the
new equation

(5.2)
n∑

j=1

Aj(m)αmj = 0,

with
Aj(z) = δ(aj(z)) + zδ(αj)α−1

j aj(z),

to which we may apply Theorem 3. Conversely, any non-isotrivial solution
of (5.2) yields a solution of (5.1). Thus Theorem 3 can be used to obtain
information about equation (5.1).

The second remark is that our method can be used to obtain bounds
for the number of non-isotrivial solutions of (1.2) which depend solely on
the number ν of monomials appearing in the polynomials aj(z), rather than
their degree. We follow again the same proof as in Theorem 3, except that
this timeMi is the k-vector space generated by the coefficients of the polyno-
mials aj(z) with αj/αi ∈ k∗, rather than the k[z]-module generated by the
polynomials themselves. Hence the quantity N is replaced by the ν, the to-
tal number of monomials appearing in (1.2). Again, we obtain a polynomial
R(z) vanishing at the non-isotrivial solutions of (1.2) and the same proof
shows that it does not vanish identically. The degree of R(z) is majorized
by ν(ν − 1)/2 and the same bound holds for the number of non-isotrivial
solutions of (1.2).
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228 (1995), 19–40.

[BoM2] —, —, On a conjecture of Siegel , Monatsh. Math. 125 (1998), 293–308.
[BrM] D. Brownawell and D. Masser, Vanishing sums in function fields, Math. Proc.

Cambridge Philos. Soc. 100 (1986), 427–434.
[CHM] L. Caporaso, J. Harris and B. Mazur, Uniformity of rational points, J. Amer.

Math. Soc. 10 (1997), 1–35.



Equations in one variable 39

[Ca] J. W. S. Cassels, An Introduction to the Geometry of Numbers, 2nd printing,
Springer, Berlin, 1971.

[SSW] H. P. Schlickewei, W. M. Schmidt and M. Waldschmidt, Zeros of linear recur-
rences, Manuscripta Math. 98 (1998), 225–241 .

[Schm] W. M. Schmidt, The zero multiplicity of linear recurrence sequences, Acta Math.
182 (1999), 243–282.

[V] F. Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Mat. 16
(1985), 29–39.

Institute for Advanced Study
School of Mathematics
Princeton, NJ 08540, U.S.A.
E-mail: eb@math.ias.edu

Istituto Universitario di Architettura, DCA
Santa Croce 191
30135 Venezia, Italy
E-mail: zannier@iuav.unive.it

Department of Mathematics
Fordham University

Bronx, NY 10458, U.S.A.
E-mail: maiyu@cuphyb.phys.columbia.edu

Received on 20.3.2000
and in revised form on 6.9.2000 (3783)


