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1. Introduction. Let

(1.1) {4ty
be a finite sequence of sets. If a; € Aq,...,a, € A,, and aq,...,a, are

pairwise different, then we call {a;}}'; a system of distinct representatives
(abbreviated to SDR) of (1.1). Apparently (1.1) has an SDR provided that

(1.2) |A;| >4 foralli=1,... n.

If Ay,..., A, are contained in a finite set {z1,...,z;} with cardinality k,
then (1.1) has as many SDR’s as {A}}" ; does where AY = {1 < j <k:
xj e A} C{1,...,k}.

Let Aq,..., A, be finite subsets of an additive abelian group G. Their
sumset is given by

(1.3) A+ ... +A,={a1+...+ay,:a1 € Ay,...,;a, € Ay }.

If we require the summands to be distinct, then we are led to the restricted
sumset

(1.4)  SH{A},) =S(44,...,A,)

n
= { Zai :{a;}, forms an SDR of {Ai}?zl}.

i=1
Of course there are many other kinds of restricted sumsets. An interesting
problem is to provide a nontrivial lower bound for the cardinality of a re-
stricted sumset of Aq,...,A,. In the light of the fundamental theorem on
finitely generated abelian groups, it suffices to work within the ring Z of
integers instead of a torsionfree abelian group G.
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For a finite subset A of Z, in 1995 M. B. Nathanson [N1] obtained the
inequality

(1.5) In"A| > n|A| —n? +1
and determined when equality holds. (By n™A we mean S({A;} ;) with
Ay =...=A, = A.) Soon after this, Y. Bilu [B] gave the same result inde-

pendently. Let p be a prime. In 1994 J. A. Dias da Silva and Y. O. Hami-
doune [DH] proved the following generalization of a conjecture of P. Erdds
and H. Heilbronn (cf. [EH] and [G]):

(1.6) In"A| > min{p,n|A| —n?+1} for any A C Z/pZ.

By the so-called polynomial method, in 1996 N. Alon, M. B. Nathanson
and I. Z. Ruzsa [ANR] got the following result: Let F' be any field of char-
acteristic p and Ay, ..., A, its subsets with 0 < [4;] < ... < |4,| < oo,
then

(1.7) 1S({A:}i=1)] = min {p,z 4, - et 1}.

2

Their method does not allow one to determine when the bound can be
attained. Provided that Ay,..., A, are finite subsets of Z with 0 < |A;] <
... < |Ay|, we have

(1.8) [SHAFZ)] > 1+Z(!Az‘! — ).

A purely combinatorial proof of this inequality was given by Hui-Qin Cao
and Zhi-Wei Sun [CS], where the authors obtained some necessary conditions
for the equality case.

Now we introduce our basic notations in this paper. For A C Z we put
—A={—z:2€¢Alanda+A=A+a={a+z:2¢€ A} foraecZ. An
arithmetic progression A is a set of the form {a,a + d,...,a + kd} where
a and d, k > 0 are integers; we use d(A) to denote the (common) difference
d of A. (A set having a single element is not considered as an arithmetic
progression.) For the sake of convenience, AP will denote the class of all
arithmetic progressions. For a,b € Z we put

(a,b)={zx€Z:a<xz<b}, [a,b]={x€Z:a<xz<b},
[a,b) ={z €Z:a<z<b}, (a,bj={r€Z:a<x<b}.

In this paper we study lower bounds for cardinalities of various restricted
sumsets of subsets of Z. We use the powerful techniques developed in [CS].

In the next section we will prove the following general result on linearly
restricted sums of subsets of Z.
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THEOREM 1.1. Let Aq,..., A, be finite subsets of Z, and V a set of
tuples (s,t, u, v, w) where 1 < s,t <n, s #t, u,v € Z* =7Z\{0} and w € Z.
Set
(1.9) C={ai+...+a,:a; € A;, and pa;+va; # w if (1,7, p,v,w) € V}.

If each V; = {(s,t,p,v,w) € V : i € {s,t}} has cardinality less than |A;,
then

n n
(1.10)  [C] =) A =2V =n+1=1+) (4| -|Vi|-1)>0.
i=1 =1
REMARK 1.1. If we replace a3 + ...+ a, by Aay + ... + Apa, in the

definition (1.9) of C' where A1, ..., A\, € Z*, then Theorem 1.1 remains valid.
For, when (7,7, p,v,w) € V, a; € A; and a; € A;, we have

pa; +va; =w < AAj(pa; +vaj) = h\jw & @ (Na) + v (Nag) =o'
where p/ = \jpu, v/ = \jv and v’ = N\ jw.

Now we give several consequences of Theorem 1.1.

COROLLARY 1.1. Let A1,..., A, be subsets of Z which are nonempty
and finite. Then
(1.11) [A1+ ...+ A > A +.. .+ A —n+ 1L

Proof. Just apply Theorem 1.1 with V =0. =

REMARK 1.2. Corollary 1.1 is a known result. Equality in (1.11) holds
if and only if all those A; with |A;| > 2 are arithmetic progressions with the
same difference. See Theorems 1.4 and 1.5 of [N2].

COROLLARY 1.2. Let Ay,..., A, be finite subsets of Z such that |A;| >
|Ji| for all i =1,...,n where J; ={1 <j<n:A;NA;j#0}. Then

(1.12) IS{AGiL)] = 1+Z(|Ai! = |Jil).

Proof. Put V. ={(4,5,1,-1,0) : 1 <i < j<n & A, NA; #0}. Then
Vil=H{1<j<n:j#i& A,NA; #0} =|J;\{i}| <|A;| foriell,n]
Applying Theorem 1.1 we immediately get the desired inequality. m

COROLLARY 1.3. Let A, Aq,..., A, be finite subsets of Z such that

|Ail > > [(Ai+ A))n Al foralli=1,...,n.
J#i
Let A\i,..., A\, € Z* and
L={Ma1+...+ X \an:a1 €Ay,...;an €Ay, a; +a; € Aifi # j}.
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Then

Z]A[—|L\<2 > A+ A) N Al +n—1< (nA] +1)(n—1).

1<i<j<n
Proof. Set
V={36741L1N:1<i<j<n& e (4, +A4;)NA}

Vi= 3 i apnas (5 )il

1<i<j<n

Then

and |Vi| = 2., [(Ai + Aj) N Af for i = 1,...,n. Thus the required result
follows from Theorem 1.1 and Remark 1.1. =

COROLLARY 1.4. Let A1,..., A, be finite subsets of Z, and
S={a1+...4an:a1 € Ay,...,an € Ay, a; # pija; +vi; if i # j},
where p;; € Z* and v;; € Z. If |A;| >2n—1 for all it =1,...,n, then

n
S| > Al = 20" + n+ 1.
i=1
Proof. Let V. = {(i,j,1, —pij,vij) : 1 < i, <n&i#j}.If1<i<n
then |V;| = n—1+(n—1) = 2n—2. Clearly 2|V |+n—1=2(n?—n)+n—1=
2n? —n — 1. So it suffices to apply Theorem 1.1. =
REMARK 1.3. For1 <i<j<mnletpu; =1, pj; = —land v;; = vj = 0.
Then the set S given in Corollary 1.4 becomes {> ", a; : a; € A; and all
the a? are distinct}.

COROLLARY 1.5. For eachi =1,...,n let A; CZ and 3 < |4;| < oc.
Then the set

{a1+...+an a0, € A, a; # ajp1 ifi <n, and a, # a1}
has cardinality at least > | |A;| —3n+ 1.

Proof. Let V.= {(i,i+1,1,-1,0) : i € [1,n)} U{(n,1,1,—1,0)}. Then
V| = n, and |V;| = 2 < |4,] for all i € [1,n]. So the desired result follows
immediately from Theorem 1.1. m

Let F be a field of characteristic p where p is a prime, and A4, ..., A, its
finite subsets satisfying (1.2). Then Theorem 3.2 of [ANR] essentially asserts
that

S{AN)] 2 min {p. 1+ 37 min (14;] - 5)}.
=1 "

In the last section we will show the following general result by our com-
binatorial method.
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THEOREM 1.2. Let Aq,..., A, be finite subsets of Z with (1.2) and |A]
. < |A,|. Then

(1.13) ISHA )| > 1+ Z min (|4,] —j).

1<j<n

In the equality case, | J;~, A; = Ay, if m lies in
(1.14) M={1<i<n:|A|—1i<|A;|—j forall j € (i,n]},
and providing |A;| > i for all i € [1,n] the set |J;_, A; = A, lies in AP with
the only exceptions as follows:

(i)n=1or|A,=n+1;

(ii) n =2, |A1| € {3,4} and Az has the form
(1.15) {x1,29,23, 24} with x1 < x5 < x3 < x4 and T4 — T3 = Ty — T1;

(iii) n > 1, |Ap—1| = n, A1 and A \A,,—1 belong to AP, and d(A,—1) =
d(A, \ Ap_1).

REMARK 1.4. Let Ay,..., A, be finite subsets of Z with k; = |A;| > i for
all i € [1,n]. Providing ks > kg1 for some s € [1,n), we still have inequality

(1.13). To see this, we exchange A; and Ay, 1, i.e. we arrange Aq,..., A, in
the order
AT =A, ..., Al =A,1, A=A,
Al = Ay, Ay =Agio, ... A=A,
Clearly
AL | —(s4+1)=ks—s—1>keq —(s+1)
and
min{|A| —s,|A; 1| — (s +1)} = min{ks1 —5,ks — s — 1}
= ksy1 —8>ksp1—(s+1)
> min{ks — s, ks11 — (s + 1)},
thus

—1) > — =1,...
lg;lgn(\A | —7) lg;lg (kj—j) foralli=1,...,n

The following example shows that in Theorem 1.2 the lower bound (in

terms of cardinalities |A4],...,|Ay|) is best possible.
ExaAMPLE 1.1. Let kq,...,k, be integers for which k; < ... < k, and
k; > iforalli=1,...,n. Let dj = min;<j<n(k; — j) foreach i =1,...,n.

Apparently d; < ... <d,.Put A; =[0,k1—1],..., A4, = [0, k,, —1]. Observe
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that S({A4;}"_,) contains the following sets:
O+14+24+...+(n=3)+(n—-2)+n—1,n—1+4d,],
O+1+24+...+n=3)+n—2,n—2+d,_1]+ (n—1+4d,),
0+ [L14+do]+(24d3)+...+(n—=2+dp_1)+ (n—14d,),
0,d1]+ (1+d2)+ (2+d3)+...+(n—24dp_1)+ (n—1+d,).
Therefore
SHAY- ) 20+1+...+(n—1),d1 + (1 +d2)+...+(n—1+4d,)]

_ n—l [Zd}

Suppose that max S({A4;}" ) = >_.", x; where z; < ... < x, and these n
integers can be rearranged to form an SDR of { A;}7* ;. Choose a permutation
oon{l,...,n} such that 2, € A;. When 1 <i <n, there exists a j € [i,n]
such that o~ 1(j) & (¢,n] and hence z; € A,-1(;) C A;. So x; € A; for every
1 =1,...,n. If z, < k, — 1, then by substituting k£, — 1 for z,, we would
obtaln an SDR of {A;}" | with the corresponding sum larger than > | ;.
Thus z, = k,—1 =n—1+d,. Let 1 <i < n and assume that z; = j—1+d;
for all j € (i,n]. When ¢ < j < n, we have z; = j —1+d; > i+ d;. If
x; < i—1+4 d; then by substituting ¢ — 1 + d; € A; for z; we would obtain
a sum larger than z1 + ...+ x,, thus x; = ¢ — 1 + d;. By the above,

max S({A;}7 ZwZ—Zz—l—l—di):n(nT_l)—i—zn:di.

=1

Obviously
minS({A;};-)=0+1+...+(n—1)=

So we also have

sy € D oy a).

i=1
Therefore

S e e

2 i=1
and hence |[S{A;} )| =1+>" ,d;

REMARK 1.5. Example 1.1 was realized by Alon, Nathanson and Ruzsa
[ANR], but they did not go into details. Let kq,...,k, and Ay,..., A, be
as in Example 1.1. For i = 1,...,n put A = {a + jd : j € [0,k;)} where



Restricted sums of subsets of Z 47

a € Z and d € Z*. By Example 1.1,

ISHAT D] = [S{AL !—1+Z min (JA7] - j).

i<j<n

As for the exceptions (i) and (ii), here we give

EXAMPLE 1.2. Let A be a finite subset of Z with |A] > n > 1, and
Ay, ..., A, subsets of Z with J_, A; = A, = A. Suppose that [A;| —i >
|An| —n forall i = 1,...,n (i.e. the set M defined by (1.14) only contains
n). If {a;}_, is an SDR of {A;} ,, then {ai,...,a,} is a subset of A with
cardinality n. If S C A and |S| = n, then for each i € [1,n] we have

1SN Ail > [S] = [AN Ail =n = (JAa] = |Ai]) =4,

therefore {S N A4;}" , has an SDR {a;}; and hence S = {a1,...,a,}.
Thus S({A;}",) = n"A, (1.13) is equivalent to (1.5), and the equality
case of (1.13) is the same as that of (1.5). A result of Nathanson says that
In*A| = n|A| — n? + 1 if and only if n € {1,|A] — 1,|A]}, or A € AP,
or n = 2 and A can be written in the form (1.15). (See Section 3 of [N1]
and Section 1.3 of [N2].) Thus, if n = 1 or |A| = n+ 1, whether A € AP
or not, the two sides of (1.13) are always equal; this corresponds to the
exception (i). In the case n = 2, if Ay = A is of the form (1.15), then
44| € {|42] = 1, | Ao} = {3,4} and

[S{AYL) = 2" A =2/A| -2 +1=5
=14 min{|A1| — 1, |A2| — 2} + |As| — 2
though we may not have A, = A € AP.

For the equality case of (1.13), Example 1.2 shows that the necessary
conditions given by Theorem 1.2 are also sufficient in the case M = {n}.
From Theorem 1.2 we have

COROLLARY 1.6. Let Ay, ..., A, be finite subsets of Z with |A1] <...<
|A,| and minj<;<,(|4;] —i) = 0. Put m = max{l < i < n: |4 = i}.
Suppose that the two sides of (1.13) are equal. Then A, \ A, € AP unless
we have one of the following:

(i"Yme{n—1,n} or |A,| =n+1;

(ii'y m=n—2, |Ap_1] € {n+1,n+ 2} and A, \ A,_2 is of the form
(1.15);

(iii'Yy m <n—1, |Ap_1| = n, A1\ 4, and A, \ A,—1 lie in AP, and
d(An-1\ Anm) = d(An \ Ap—1).

Proof. Write M = {my,...,m;} where mg=0<m; <...<m; =n.
Clearly m; = m. For any j € [1,(] set A} = A, for all i € (m;_1,m;]. By
Theorem 1.2, A; C Ay, for all i = 1,...,m;. In the light of Example 1.2,
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any mj —m;_1 distinct elements of A,,; can be arranged to form an SDR
of {Ai}mj,1<i§mj- So
S{Aitin) = SHATHS)
= { Z T+ Z a; :a; € A7\ A, all the a; are distinct}
TEAm, m<i<n
TEAm
where we regard S()) as {0}. Observe that

n

l
Somin (4] -0)=3 > (An,|-m)

=1 jil mj,1<i<mj

= > min (47— /)
m<i<n

= Z ZglgnﬂA \ Ap| = (4 —m)).

Thus
IS{AT\ Am iemm)| = [SHAi )]
=1+ min (JA \ Al — (§ —m)).

i<j<n
m<i<n

If i € (m,n], then |A;|—i > |A;,|—m = 0 and hence |AF\ A,,| = |Af|—m >
T —m.

Below we assume that m # n. Let us apply Theorem 1.2 to the sets
Ar i\ Apy AR\ Ap IE AR\ Ay = Ay \ Ay, € AP, then we are led to
the exceptions corresponding to (i)—(iii) in Theorem 1.2. Obviously

[((m,n]|=1 < m=n—1 and |A \An|=(Mn—-m)+1 & |A,|=n+1.
In the case n —m =2, A% \ A, = A, \ A,,—2 and
[ A1 \Am| € [A\AR|+{0, -1} & |A] ] € |An|+{0, -1} & n—-1¢ M,
if |[Af\ Ap| =|An\ Ap—2| =4 then |A,| =|A4,—2| +4=n+2 and
|AY 1\ An| €1{3,4} & |A,—1| €A, +{0,-1} ={n+1,n+2}.
When n —m > 1, we have
AL\ A =n—m & (A7 \ An) \ (A, 1\ An) € AP
& |Ar_|=n, A | #AA =A, & A\ A _, € AP
S n—1eM, |Apql=n& A, \ A1 € AP
& |Ap—1l=n & A, \ A1 € AP.
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In view of this, we have (i") or (ii’) or (iii’) if A, \ 4,, € AP. =

REMARK 1.6. Clearly (i), (ii) and (iii) correspond to (i’), (ii’) and (iii’)
with m = 0 and Ay = 0. The proof of Corollary 1.6 shows that in the
equality case of (1.13) those A,, with m € M are vital.

Let Ay,..., A, be finite subsets of Z satisfying (1.2). Theorem 1.2, to-
gether with Example 1.1, Remark 1.5 and Corollary 1.6, shows that we have
completely determined the set | J!; A; = A,, in the equality case of (1.13).

COROLLARY 1.7. Let Ay,..., A, be finite subsets of Z with (1.2) and
|A1| < ... < |A,|. Then

(1.16) ISHAYZ) = 14> (|4l + hi = n)
i=1

where

(1.17) hi = [{|A;]: 1 <7 <n & [A;] > A}

Furthermore, when the lower bound in (1.16) is reached, A; C A,, for all
i =1,....,mif |[An| < |[Ams1] =1 or m = n; also |4 < ... < |A4,]
where 1 is the least index with |A;| < |Ai41] — 1 or | = n; and providing
min{n, |Ai| — 1,...,|A,] — n} > 2 we have A,, € AP unless A,, is of the
form (1.15).

Proof. Let k; = |A;| for i € [1,n]. When ¢ € [1,n), if k; = k;41 then
hi = hijy1, if k; < kjy1 — 1 then h; = hjpq + 1; thus k; + hy < kg1 + iy,
and k;+h; < kiy1+hi11 if and only if k; < k:l+1—1 Fori € [1,n],if j € [i,n]
then k;+h;—n < kj+hj—n < kj—j,s0 ki+h; —n < d; = min;<j<,(k; —j).
Thus (1.16) holds by Theorem 1 2.

Clearly k1 + hy = ... = k; + h; by the above, and d; = ... = d; since
ki —1> ... >k —1. When k; + h; —n =d; for all : = 1,...,n, for each

€ [1,n) we have

meM & dy, <dnt1 & kn+hm <kpnp1+hmt1r € km < kmgr — 1,

sol € M and k;+h; —n =d; = k; — 1, therefore hy =n—1 and |4;| < ... <
|Ay|. Conversely, if |A;| < ... < |Ay|, then ki — 1 < ... <k, —n and hence
di=ki—i=ki+h;—nforalli e [l,n]. Sok;+h; —n=4d; for all i € [1,n]
if and only if k; < ... < k.

Suppose that the two sides of (1.16) are equal. Then the two sides of
(1.13) are equal, and k; < ... < k,, by the above. In view of Theorem 1.2,
Ui, A; = A, provided that k,, < kp11 —1 orm =n. If n > 2 and
dy = minj<j<y(k; — i) > 2, then either A,, € AP, or n = 2 and Ay can be
written in the form (1.15). m

REMARK 1.7. In the case A1 = ... = A, = A, we have h; = ... =
hy, = 0 and Corollary 1.7 reduces to Theorem 2 of Nathanson [N1]. When



50 Z. W. Sun

|A1| < ... < |A,|, Corollary 1.7 is a slight improvement on the main theorem
of Cao and Sun [CS].

COROLLARY 1.8. Let Ay,..., A, be finite subsets of Z with (1.2). Then

(118) ISUAYZD = D A = n® + 1

Providing 2 < n < |A,| —2 and |A,| # 4, the two sides are equal if and only
if Ay =...= A, € AP.

Proof. 1f we rearrange the order of Ay, ..., A,, both sides of (1.16) keep
unchanged. Suppose that [A, )| < ... < |Ag )| where o is a permutation
on {1,...,n}. If [A;q;| < i, then

li,n] C{1<j<n:|4;] >i} C{o(j):j € (i,n]},
which is impossible. So |A,(;)| > i for all 7 € [1,n]. By Corollary 1.7, (1.16)
holds and hence (1.18) follows. If both sides of (1.18) are equal, then h; =0
for all i = 1,...,n and hence |A;| = ... = |A,|, as U;_, A; = A, by
Corollary 1.7 we must have A; = ... = A,,. Now it suffices to apply the
Nathanson result. m

For the equality case of (1.13), let us look at one more example.

ExaMPLE 1.3. Let k and n be integers with k > n > 1. Let Ay,..., A1
be subsets of A,, = [0, k—1] with A1 = [0, k—n|\{k—n—1} and |A;+1]|—|4;| €
{0,1} for all i € (1,n). We assert that

n(n —1)

Eann il

S| =kn—n?>=1+ (A1 - 1)+ (n—1)(k —n—1+ min (|4;] — 7).

z<]<n

S =S{Ai}is) =

and hence

Since M = {1,n}, by the arguments in the proof of Corollary 1.6, we may
assume A, = ... = A,, without any loss of generality.

In the case k = n + 1, clearly A1 = {1} and A; = [0,n] for i € (1,n];
setting A = [0,n] \ {1} we then have

S:1+(n—1)AA:1+{Zx—a:aeA}:zn:i—A
i=1

z€A

_ @ (0] \ {1 = [n(n; ) n(n2+ 1)} \{n(n2+ n 1}
— M,lm—w} \{lm—w—l}.

2 2 2
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Below we verify the assertion on the condition £ > n+1. By Example 1.1,

Sgska—mﬂ%wuﬁ%):EQ%JQ+[Q§5w—nﬂ

i=1
_ [n(n— 1),kn— n(n+1)]
2 2
and S contains
-1
S([O,k—n—2],A2,...,An):%—F[O,k—n—Z—i—(n—l)(k—n)]
_ [n(n—l)’kn_ n(n+1) _2}
2 2
Observe that
n(n+1)

maxS=k—-n+(k—-n—-1)+...+(k—1)=kn— 5

Now it suffices to show that kn —n(n+1)/2 —1 ¢ S. On the contrary, we
can write

n(n+1)
2
where 1 <iy <...<ip_1 <kandn¢{i,...,in—1}. Apparently

kn — —d=k—n+k—i) ...+ (k—in1)

n—1
_ _ n(n+1 . , .
Zl+...+Zn1:¥+1_na 1.€. Z(Zj_])zl‘
j=1

So iy —t = 1 for some ¢t € [1,n), and i; = j for all j € [1,n) \ {t}. As
in—1 # n, we have t <n — 1 and hence iy =t + 1 = i351. This contradicts
it < it+1.

Let Ay,...,A,_1 be subsets of A,, = [0,k, — 1] with the two sides of
(1.13) equal. Set A, ={k, —1—x:2¢€ A;} fori=1,...,n. Then

[SHAZ)l = 1S{ AR =1+ min (J45] - 5).

If min Ay + max A; > k,, then min A} + max A} = 2(k, — 1) — min A; —
max A; < ky. So, to discuss the equality case of (1.13) with A,, € AP, we
may simply take A4,, = [0, k,, — 1] and assume that min A; + max A < k.

Now we pose a conjecture which essentially determines the equality case
of (1.13).

CONJECTURE 1.1. Let Ay,..., A, be finite subsets of Z with |A;| <
oo <AL, ki = |Ail >0 for i € [1,n], and -, A; = Ay, for allm € M.
Suppose that A,, = [0, ky, — 1] and min A; + max Ay < k. If the two sides
of (1.13) are equal, then A,, = [0, ky, — 1] for all m € M, unless

(119) M = {1,’[1}, k‘n — k‘l =n and A1 = [O, kl] \ {k‘l — 1}
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Though we are unable to solve this conjecture, we have found evidence
to support it through computer calculations.

2. Proof of Theorem 1.1. We use induction on n. In the case n = 1,
the inequality is obvious since C' = A; and V; = V = (). So we proceed to
the induction step.

Let n > 1 and assume the assertion holds for smaller values of n. Set
a = min A4,, and

V' = {(s,t,p,r,w) €V :1<s,t<n—1}.

Foreachi=1,...,n—1let A} consist of those a; € A; for which pa;,+va # w
if (i,n, p,v,w) € V, and pa + va; # w if (n,i, u,v,w) € V. Apparently

A5l > [Ail = {(s,t, v, w) € Ve {s,t} = {i,n}},

and thus
‘/i, = {(S’taﬂvva) € V/ : Z € {S’t}}

=Vi\{(s,t,p,v,w) € V: {s,t} = {i,n}}
has cardinality not greater than |V;| + |AL| — |A;| < |AL|. Let
C'={a1+...+ap_1:0a; € A}, and pa; +va; #w if (i,j, p,v,w) € V'}.
By the induction hypothesis,

n—1 n—1
C1 21+ (1A = Vi =) =1+ ) (|4l = [Vi| = 1) > 0.
i=1 i=1
Write max C’ = Z?;ll a; where ay € Aj,...,a,_y € A},_y, and paj + va;

# w if (4,4, u,v,w) € V'. Let Al consist of those a,, € A,, for which pal +
va, # w if (i,n, p,v,w) € V, and pa, + va, # w if (n,i, p,v,w) € V. Note
that a € A/, and |A!| > |A,| — |Va| > 0. Clearly

(C'"+a)U(a)+...+a, +A)CC
and
max(C'+a)=d} +...+a,_; +a=min(a} +...+al,_, +A).
Therefore
Cl21C" +al +ay + ... +ay g + A =1 = [C]+ A5 ] -1

n—1 n
> 14+ ([l = Vil = D)+ [Ap| = [Val = 1= 14 (J4] = [Vi| = 1).

=1 =1

Since Y i, |Vi| = 2|V, we are done.
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3. Several lemmas. We first check the exception (iii) given in Theo-
rem 1.2.

LEMMA 3.1. Let Aq,..., A, (n > 1) be finite subsets of Z such that
|Ai| > i foralli € [1,n], [Ap_1| =n < |Au| =1 and U]—' Ai = A, 1 C A,.
Then the two sides of (1.13) are equal if and only if Ap—1,An \ An—1 € AP
and d(Ap—1) =d(Ap, \ Ap—1).

Proof. Let S = S({A;},) and k; = |A;| for all ¢ = 1,...,n. Write
Apo1=Az1,...,xntand Ap\ Ap—1 ={y1,.. ., Yk, —k,_, } where z; < ... <
xpand y1 < ... < Yk, —k, .. Since k; —i >1=k,_1—(n—1) foralli e
[1,n—1], S{A}") = (n — 1)"A,_; as pointed out in Example 1.2. Thus

S: U{xl_‘_”'—i_mn_xi—i_y:ye{xiayh'”)yknfkn_l}}

=z1+...+x, + {0} U{y; —zirie[l,n], j€l,kn—kn_1]})
and hence |S| =14 |(A, \ An—1) — An—1| where we let A—B = A+ (—B) =
{a—b:a€ A, be B} for A, B C Z. By a known result (cf. Lemma 1.3 and
Theorem 1.5 of [N2]), for any finite subsets A and B of Z with |A| > 2 and
|B| > 2,|A+B| = |A|+|B|—1if and only if A, B € AP and d(A) = d(B). So

|5|_1+Z min (kj —j) =14+ —1)(kp_1 — (n—1)) + k, —n = ky

1<j<n
<~ |(An\An71)_ n71|:kn_]-:|An\An71|+|_An71’_]-
& Tiy1 —x; =y;j41—y; forallie[l,n)andje(l,k, —Fkp_1) =
The following lemma is an improvement on Lemma 2 of [CS].

LEMMA 3.2. Let Ay and Ay be finite subsets of 7 with |A1| > 3, A1 C A,
min A; = min Ag, max Ay # max Az and |S(A1, A2)| = |A1|+|As|—2. Then
As € AP unless |A1] = 3 and Az can be written in the form (1.15).

Proof. Let Ay ={aq,...,ar} and Ay = {by,..., b} where a; < ... < ag
and by < ... < b;. By the proof of Lemma 2 of [CS], a; € {b;,b;41} for all
i€[1,k],

S(A1,As) ={a1 +ba,...;a1 +bi_1,a1 + by, ..., a5 + b},

and As € AP if ag < bj_;1.

Suppose that a3 = b;_1. Then k = 3 since a3 < ar < b;. As a1 +b_1 <
as+b_1 < az+b;, we must have as +b;_1 = a1 +b;,i.e. by —b_1 = az —ay.
If ag = b3, then | = 4, as = by and hence by — b3 = by — by, so A, is of the
form (1.15). Below we let ag = by. Then | = 5 and b5 — by = ay — a;. As
a1 +bsy < az+by =by+ by <as+ by = ay + by, we must have as = by < bs.
Observe that
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a1 +b3 <as+b3<as+by=a;+bs <asz+ bz <as-+ bs.
So as + bz = a1 + by and asz + b3 = as + bs, therefore Ay € AP. m
We now present a lemma reflecting some symmetry.

LEMMA 3.3. Let Aq,..., A, be finite subsets of Z with A1 = ... = A, C
Api1 = ... = A, and0<\Am|—m<|A|—nwherem6[ ] Define
the dual sequence {B; }IA e of {A;} as follows:

B, =A,\ A, foreachie€[l,|A,| —n— (JAn] —m)]
and

Bj=A4, foralje (|A,] —n— (|An| —m),|An] —n].
Then |S{AY™)| = [SEB: A1) and

n ‘Anl_n
i, (1451 =9) = Z; i (1Bj] = ).
1= 1=

Proof. Let ky, = |An| and k,, = |A,|. Suppose that A, = {z1,..., 2k, }
and A, \ A, = {y1,---, Yk, —k,, }- Then S({A;},) consists of integers of
the form 37,z +> ",y yj where I C [1 k], J C [1,kn—kp], [I|+]J] =n
and |I| > m, in other words the elements of S({A4;}},) are integers of the

form
k'n - k'm

Z =Y wm D> -y
i=1 iel Jj=1 jeTJ
where I C [1,k ] J C L ky—knl, I +|J] = km+ (kn —km)—n=k,—n
and|j\2k‘n —(n— )—k —n — (ky —m). Thus
SUAYL) = 3 o - SUBYE™
T€EA,
and so
IS{AS )] = [SUB:Y = ™).
Clearly
S in (4] =) = mlln = m) + (= m) (ko = ).
Also, .
kn—n
> Join ([Bj] =) = (km —m)([An| = (kn —n))

i=1

= (kn —n — (ko — m))(|An \ Am| — (kn —n — (K, —m)))
=(n—m)(k, —n)+ (m —n)(k, —m).

This concludes the proof. m
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Let Ay C Ay C Z, |A1] = 3 and |A3| = 4. Then the dual sequence of
{A;}2_, is the sequence Ag, Ay. Thus the example (given by Nathanson)
with [2"Ag| = 2|As| — 22 + 1 and Ay ¢ AP, induces the exception (ii) in
Theorem 1.2.

4. Reduction of Theorem 1.2. Let Aq,..., A, be finite subsets of
Z with (1.2) and |A;| < ... < |A4,|. Put d; = min;<;<,(|4,] — j) and
ki =d;+ifori=1,...,n. Clearly k;, = |A,| and ki < ki, foralli € [1,n).
As k. < |A;|, we can choose a subset A of A; Wlth |A%| = k}. Obviously
Al = A, and D7 |AL <370 | |A;|. By the Theorem of Cao and Sun [CS],
we have

|SH{A L)) > [S{ AL Z kj—i)=1 +Zd
So (1.13) holds. If equality is valid in (1.13), then
S ’—1—1-214:’—2'

hence by the Theorem of [CS] we have |J;-, A} = Al C A,, for any m in
the set

M={1<i<n:ki<kiy,—1}U{n}={1<i<n:d; <diy1}U{n}
={1<i<n:|A]—-i<|Aj|—jforallje (i,n]}.

For any i = 1,...,n, if a; € A; then we can select A, C A; so that a; € A
and |A}| = k. Thus, in the equality case of (1.13) we have (J!", 4; C A,,
for all m € M.

Let 1 <7 <n. Then

ki>i < d; >0 & |A;] > jforall j€[i,n].
Thus
|A;| > i for alli € [1,n] & |A}| > for all i € [1,n].

Recall that A}, = A,,. When n = 2 and A = A, is of the form (1.15),
clearly

|A1] €1{3,4} & |A1]—1>|A3] -2 & d1=2 & k) =3.
In the case n > 1 and |A,,| > n, we have
|An_1|:7’L = dn_lzl = kibfl =n,

thus A,,—1 = A/, providing |4,,—1| =nor k,_, =n.
In view of the above and Lemma 3.1, Theorem 1.2 can be reduced to the
following
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THEOREM 4.1. Let Ay, ..., A, be subsets of Z with |A1] < ... <|A,| <
oo and |A;| > foralli=1,...,n. If

(4.1) \SHAAEQM=1+§:UAH—U,

then A, € AP unless we have (i) or (iii), or (i) with |A;] = 3.

REMARK 4.1. Let k be a positive integer. By the previous reasoning, if
Theorem 4.1 holds for those subsets Ay, ..., A, of Z with |A;|+...+]A,| <
k, then so does Theorem 1.2.

5. Proof of Theorem 4.1. We proceed by induction on k = Y. | |A;|.
Apparently k > |A;| > 1.

If k=2, then n =1 and |A;| = 2. In the case n = 1, both (4.1) and (i)
hold.

Below we let £ > 2 and n > 2, and assume that the result holds if
|A1| + ...+ |A,| < k. Now let |Ay|+ ...+ |A,| = k. For all i € [1,n] we set
(5.1) ki =|A;| and d; = min (k; —j) =k; — 1.

1<j<n
Obviously 1 < d; <...<d,. Put

(5.2) a:minUAi, I={1<i<n:a€A;}, r=minl, t=maxl.

i=1
For i € I let
(5-3) Ai = { {a} if i =r;
and for i € I = [1,n]\ I set
;A N{a;} ifr<i<tandiég M,
(5-4) A = {Ai otherwise,

where a; is an arbitrary element of A;. Write k = |A}| for i € [1,n] \ {r}
Then 1 < K} < ... < k.| <k, <kT+1<...<k’ and >

iET z
Yo ki =k.Forie[l,n]\{r} weset
K —i ifi<r
/ ’
(5:5) di = { ki—(@G—1) ifi>r.

Let S = S({Ai}~), and assume that (4.1) holds. By the Theorem of
[CS] and its proof, | J;*, A; = A, for all m € M, and

|S{ A i) =D K} — +1_1+Zd’

iET iET
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Alsot = n and (r,t) NI NM = 0 (see (12) and (14) of [CS]), therefore
ki =Fk; — 1 fori € (r,n] and d, = d; for all i € [1,n] \ {r}.

Clearly b = max|J;_; A; # a (otherwise |A,| = [{a}| < n), =b =
min J;_, (—4;) and

SU-AFL)| = 18] = 1+ 3 min (-4;] - j).
=1 tSI=m

Like the fact that a € A; = A, we should also have —b € —A,,. Thus

be A, \{a}.
Let s denote the least index such that b € Ag. By p. 166 of [CS], there
exists an [ € [r,n] such that k; — 1 = k, —r (le. d, = ... = d;), and

[ = s =r <n is impossible.

From now on we assume that none of (i)—(iii) (in Theorem 1.2) holds.
Then &, > n+1. Ik, =n, thenn —1 € M and | J"' 4; = A,_; C A,
thus (iii) holds by Lemma 3.1. Now that (iii) fails, we must have k,_; > n.

We claim that A} = A, \ {a} € AP. For this conclusion, it suffices to
work under the condition A;, & AP.

CASE 1.7 <n—1. Apparentlyn > 2, k/, =k,—1>n=(n—1)+1 and
El,_y=kn1—1>n—-1=(n—-2)+1. As A}, = A} ¢ AP, by the induction
hypothesis, n—1 =2, r =1, k}, = 3 and A; = A3\ {a} is of the form (1.15).
Note that ks = k5 +1 =4 and ks = k5 + 1 = 5. If k&; > 2, then k; = 3
and M = {3}, hence S = 3" A3 and A3 € AP by Example 1.2. Thus k; = 2,
ks = 4 and ks = 5. Observe that |[S|=14+(2—-1)+(4—-2)+ (5 —3) =6.
If 1 <i<j <4, then x; or z; lies in Ay (since Ay C Az and k3 — kg = 1),
therefore a + x; +x; € S. Thus S contains the following 5 integers:

a+zy+22, at+x1+2x3, a+x1+x4=0a+22+ T3, at+x2+24, a+13+24.

Suppose that A; = {a,x;} where 1 < i < 4. If i € {3,4}, then both
x4 + 3 + x1 and x4 + x3 + x2 belong to S, this contradicts the fact that
|S]| =6 < 5+2.S01i € {1,2}, and S consists of the above 5 integers and the
number x; +x3+x4. Apparently S also contains 1 +xo+x3 and x1+x2+2x4.
Since a + 12 + 3 < T1 + X2 + 13 < 1 + T2 + x4 < x; + T3 + T4, We must
have x1 + x9 + 23 = a + 29 + x4 and 1 + o + 4 = a + x3 + x4. Thus
Ty — T3 =1 —a =23 — 22 and hence A, = A3 € AP.

CASE 2. A, 1 C Af. Asn—1€ M,a & A, = U?;ll A; and so
r=n. Clearly k1 < ... < kn_1 <k} = |A}| = k,, — 1. Let S* denote the set
S(Ay,..., Ay_1, A%). Then a+min S({4;}/"}') = min S < min S*. So |S*| <
|S|—1=>"",(k;—i) and hence |S*| = |S|—1 = 1+E?;11(ki—i)+(k;§—n).

Recall that k) =k, —1 > k,_1 > n + 1. By the induction hypothesis,
n =2, k; = 3, A has the form (1.15) and hence k3 = 5. For any two distinct
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elements z and y of A5 we have z +y € S* since one of them belongs to A;.
All the 14+ (3 —1) + (4 — 2) = 5 elements of S* are as follows:

1+ X2, 1+ X3, T1+ T4 = T2 + T3, T2+ Tyq, T3+ 4.
As la+A;| =3, max(a+A4;) < x1+x4 and |S| =1+(3—-1)+(5—2) =6,
we must have
S=(a+A)U{z;+z4:1=1,2,3}.

Evidently x4 € A1 and 1 +x3 = a+ x4 since 1 +x3 € a+ Ay, also x3 € A
and z1 +29 =a-+x3since r1+x2 €a+A1. Soxy — T3 =1 —a = T3 — Ta
and hence A, = Ay € AP.

Case3.r=n—1l,orr=nand A,,_; = A}. LetT=nifr =n—1, and
F=n—1ifr =n.Clearly AL, = A} and k- = |A}| =k,—1>n=(n—1)+1.

Let us handle the case n = 2. Note that k&1 = k,_1 >n =2.If A; = A},
then min(—A;) = min(—As) and max(—A4;) < max(—Az) = —a, hence
—Ay € AP (i.e. Ay € AP) by Lemma 3.2 since (ii) fails. When r = 1, we
have min A; = min Ay, if s = 2 (i.e. max A; # max As) then A; € AP by
Lemma 3.2. In the case r = s = 1, we have [ > 1 because | = r = s < n
is impossible, hence ki = ko — 1 since k. —r = k; — [, thus S = 2" A5 and
A € AP by Example 1.2. (Recall that (ii) fails.)

Let n —1 =2, ky =k} = 3 and A% have the form (1.15). Observe that
n=3<kn1 ==k <ks—1=]|A5 = |AL| = 4. So M = {3} and hence
A3 € AP by Example 1.2.

Now we assume that n > 2, and n # 3 or k] # 3 or A% is not of the form
(1.15). As AL = A} ¢ AP, by the induction hypothesis, k,_2 = k], _o = n—1,
also A,,_o = A/ _,and A} \ A,,_o = AL\ A,_, form arithmetic progressions
with the same difference d. Since k,_s = n—1 < n < k,_1, we have
n — 2 € M and hence U?:_f A = Ao C A:. Let Af | = Apq \ {a},
kr_y=|A:_i] and S* = S(A1,...,Apn_2, A _1,A}). Then

<k <...<kpo=n—-1<k: | <k <k,

=k, —n=k,—1—-n=d,—1>0,

y_y=min{k,_; —(n—1),k; —n}=kp,_1—n=d,—1—1>0,

d; =min{k; —i,...,kn—2 —(n—2),d;,_} =1=d,; fori € [1,n —2].
Write Ap—2 = {z1,...,2n-1} and Ay \Apn_2 = {y1,.. ., Yk, —1—(n—1)} Where
) <...<xpqand y; < ... < Yg, _n. In view of Example 1.2, S({A;}7?2)
=n-2 ", 2 ={r—x; : 1 <i < n—1} where z = Z?;llmi. As
A C A} all elements of S* have the form z—z;+y;+2 where 1 <1i <n-—1,
1<j<kp—nand z€{x,y1,...,Yk,—n} \ {y;}, they are all greater than
T—Tp+yi+alfr—x, 1+y+a=x—x;+y; + 2z where 7, j,z are
as above, then j = 1 and z = x; since a + yo < min{x; + y2,y1 + y2}, hence
—Tp_1t+yeta=—z;+y1+x; =yrand x,_1—a = Yo—y1 = d = Ty 1 —Tp_2;
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this is impossible. So x — x,,_1 +y1 + a, 2 — 1 + yo + a € S*. However,
both z —z, 1 +y1 +aand x — z,,_1 +y2 +a liein S, for, a € A, _1 if
r=n—1,and y1,y2 € A,—1 if A,,_1 = A}. Therefore

n n
S| <[S|—2=1+) di—2=1+) d;.
i=1 i=1
If A, = A}, then k) _| = k,—1 > n. Since A}, ¢ AP, by Remark 4.1 and
the induction hypothesis we have either

(i*) k, —1 =k} =n+1 and hence k,,_1 =n+ 1, or
(iii*) |AY _;| = n (whence r = n—1),and A¥ _; and A,\A,—1 = A \AS 4
form arithmetic progressions with the same difference.

Assume (i*). Let By = ... = B,_2 = A,_2 and B,_1 = B, = A,.
As M = {n — 2,n}, by the idea in Example 1.2 or the proof of Corollary
16,5 = S({B,Y™,) and |S({B,}y)| = 1+ Y1, minycj<(|By| - ). The
dual sequence of {B;}!_; is the sequence A, \ A,,_2, A, with |A, \ A,_2| =
n+2—(n—1)=3,|A,|=n+2>4and |[A,\ Ap_2|+|4,| < (n+1)+k, <
k=ki+ ...+ k.. In view of Lemma 3.3 and the induction hypothesis, we
have A, € AP.

Now we consider the case (iii*). Clearly k,—1 = n+1 and k, —k,—1 > 2,
son—1€ Mand A, 5 C A,_1 CA,. Write A,,_1 = {a,z1,...,2p-1,y;}
where 1 < j < k, —n. Then A, \ Ap—1 = {v1,.. ., Yk, —n} \ {y;}. Since
d(A;_y) = d(A, \ An—1) > d, we must have y; € {x; —d,x,,—1 + d}. Now
that d(A, \ An—1) = d(A}_,) =d, j must be L or k,, —n. If y1 € A4
(i.e. 7 = 1), then y1 +d = y2 # x1 and hence y; = z,—1 + d, thus A} =
{z1,.. ,Tn-1,Y1,-- -, Yk,—n} € AP. If yp,—p € Ap_q (le. j = k n),
then yi,—n —d = Yk, —n—1 # Tn—1 and hence y,, _, = 21 — d, thus A* =
{yla--wykn*nalilw- xnfl}eAP

By the above, we do have A, \ {a} € AP in either case. As —b =
min [ J;_, (—A4;), by analogy —A,, \ {—b} € AP. Because k,, > n+1 > 3, and
Ap \ {minA,} and A, \ {max A,} are both in AP, the set A,, must form
an arithmetic progression.

The induction step is now complete and the proof of Theorem 4.1 is
finished.
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