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Hausdorff dimensions in Engel expansions
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1. Introduction. Given z in (0, 1], let x = [d1(x), d2(z), . ..] denote the
Engel expansion of x, that is,
1 1 1
T h)  d@he T T h@hE) . d()
where {d;(z),j > 1} is a sequence of positive integers satisfying d;(z) > 2
and d;i1(z) > d;(x) for j > 1 (see [3]). In [3], Janos Galambos proved that
for almost all = € (0, 1],

(2) lim dY/"(z) =e.

n—oo

(1) x

+...,

Also he posed the following questions (see [3], P132):

(i) Find the Hausdorff dimension of the set where (2) fails.
(ii) For any k > 1, let

A = {x € (0,1] : logd,(x) > kn for any n > 1}.
Find the Hausdorff dimension of the set Ay.

For (i), the second author [4] has proved that the Hausdorff dimension
of the set where (2) fails is 1.
In this paper, we get a stronger result than those in (i) and (ii). We show

THEOREM. For any a > 1, let
A(e) = {z € (0,1] : lim d¥/"(z) = a}.
n—oo
Then
dimyg A(a) = 1.

As corollaries of the Theorem, both the Hausdorff dimensions in (i) and
(ii) are 1.
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We use | - | to denote the diameter of a subset of (0,1}, dimy to denote
the Hausdorff dimension, [ | the integer part of a real number and cl the
closure of a subset of (0, 1] respectively.

2. Proof of the Theorem. The aim of this section is to prove the main
result of this paper.

In what follows we often make use of the code space. Let {M,,n > 1}
be a sequence of positive numbers such that My > 1, My < My, for any
k> 1. For any n > 1, let

D, ={(o1,...,00) e N" : kM < 01, < (k+ 1)Mj, for all 1 < k < n}.

Define
D=|JDn. (Do=0).
n=0

For any o = (01,...,0,) € Dy, we use J, to denote the following closed
subinterval of (0, 1]:
[(n+2) My 41]
J, = U {ze(0,1]:di(z) = 01,...,dn(x) = On,dni1(z) = k},

k=[(n+1)M,41]+1

and call it an n-order interval.
Define

3) = U
n=0oc€D,
It is obvious that
(4) E={ze (0,1 : nM,, < d,(z) < (n+1)M,, for all n > 1}.
Proof of the Theorem. We divide the proof into two parts:

PARTI: @ > 1. For any n > 1, let M,, = o™. Now we estimate the length
of J, for any o € D,,. Since for any (n + 1)a"*! <k < (n+2)a™"!,

Hz € (0,1] : di(x) = 01,...,dn(x) = 0p, dpi1(z) =k}

1 (1
Co1...op\k—1 k)’

we have
[(n+2) My, 1]
1 1 1
Js| = B
11 Z 01...an(k—1 k>
k=[(n+1)Mp1]+1
Therefore

(5) (n_|_ 2)7(n+2)af(n+1)(n+2)/2af(n+1) < |J0'| < af(n+1)(n+2)/2‘
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Let p be a mass distribution supported on E such that for any n > 0
and o € D,,

1
) = Dy =1).
(6) 1(Jo) D (#Do = 1)
By the definition of D,,, it is easy to check that
(7) C—nan(n—i—l)/Q < ttDn < CnO{n(n—i-l)/27

where c is a positive constant which does not depend on n.
For any x € F, we prove that

(8) lim inf 28 HB@ 1))
r—0 log

)

where B(x,r) denotes the open ball with center at x and radius r.
For r < a3, choose n > 3 such that

—n(n+1)/2 < o~ (n=1)n/2
9) ! <r<a .

By (5), B(z,r) can intersect at most 4n"a"~! (n — 2)-order intervals, thus

by (6) and (7),
1 B 1 n—2,—(n=2)(n—1)/24,n,n—1
lim inf M > lim inf og(c il )

r—0 logr n—o00 ]og a—n(n+1)/2

=1.
By [2], Proposition 2.3, (see also [1], Proposition 4.9) we have dimy E = 1.
Since E C A(a), we have dimyg A(«a) = 1.

PART II: o = 1. The proof of this part is very similar to Part I; we just
give an outline.
For any n > 1, let

M, = <1+ \/iﬁ)n

Then as in Part I, we have

(10) (n+2)<n+2><ﬁ<1 )) <1+

k=1

g
me ()

0 ol )

For any z € F, r < (Hizl(l + 1/vE)¥)~1, choose n > 3 such that

o () <=(I05))
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By (10), B(z,r) can intersect at most 4n™(1+1/y/n — 1)" =1 (n—2)-order
intervals, thus by (6) and (11), we have

1 B
(13)  liminf 284 B@. 7))
r—0 logr

i) ) )
o n N 1 :
o (I (1 7))

Since {(141/y/n)V™, n > 1} is an increasing sequence such that for any
n>1,

1\ V"
(14) 23(1+ﬁ> <e,
and
(15) 1+L+L+...+izgx*1/2d:c:2n1/2—2,
V2 V3 Vi
we have
n%fwzl,

completing the proof of the Theorem.
COROLLARY 1. For any k > 1, dimyg A = 1.

Proof. For any k > 1, choose M > e*. Let M,, = M" for any n > 1.
Then E C Ag. By the proof of the Theorem, we have dimy F = 1, thus

From the proof of the Theorem, we can also get the following corollaries
immediately.

COROLLARY 2. For anyn > 2 and o > 1, let

o T dnJrl(x) _
B(a) = {xe (0, 1] nh_}n;o dn(@) -1 =a,.
Then
dimy B(a) = 1.
COROLLARY 3. The Hausdorff dimension of the set where (2) fails is 1.
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