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On a Diophantine problem of Bennett

by

Yang Hai (Xi’an) and P. G. Walsh (Ottawa)

1. Introduction. In problem D23 of [3], Bennett asked for the com-
plete set of solutions in integers x, y, z all greater than 1 to the Diophantine
equation

x2 − 1
y2 − 1

= (z2 − 1)2.

We reformulate the problem as follows. For a positive integer y > 1, define
εy = y+

√
y2 − 1, and for k ≥ 1, let εky = Tk+Uk

√
y2 − 1. Bennett’s question

can then be rephrased as determining all y, k, z for which

(1.1) Uk = z2 − 1,

where Uk is the sequence derived from y as above, which is why y is sup-
pressed in (1.1). Equations such as (1.1) were studied in [8], where in partic-
ular, the equation Uk = cz2± 1 was completely solved for any even positive
integer c.

The purpose of the present paper is to further the results in [8] by sim-
ilarly dealing with the case of odd values of c. In so doing, not only can
one solve the problem of Bennett, but in fact prove somewhat more than
that. However, in the process of considering these problems, we arrived at
a difficult case, whose solution eludes us. This will be elaborated on in the
later part of the introduction.

Theorem 1.1. For any odd positive integer c > 1, the equation Uk =
cz2 ± 1 has at most one solution in positive integers k, z. In the case c = 1,
the solution in positive integers (k, z) = (3, 2y) to Uk = z2 − 1 exists for all
positive integers y, and a second solution exists to Uk = z2 ± 1 only when
y is of the form 2t2 + 2t or 2t2 + 2t + 1. In both of these cases, the second
solution is given by (k, z) = (2, 2t+ 1).
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Theorem 1.1 not only provides an affirmative answer to the question of
Bennett, but somewhat more. For reference purposes, we state the following,
which is an immediate consequence of Theorem 1.1.

Corollary 1.1. If x > 1, y > 1, z > 0 are integers satisfying

x2 − 1
y2 − 1

= (z2 ± 1)2,

then there is a positive integer t for which (x, y, z) is one of

(4t3 − 2t, t, 2t), (2(2t2 + 2t)2 − 1, 2t2 + 2t, 2t+ 1),

(2(2t2 + 2t+ 1)2 − 1, 2t2 + 2t+ 1, 2t+ 1).

One can similarly consider the case that the sequence Uk is replaced
by uk, defined as follows. Let y ≥ 1 be a positive integer, and let βy =
y +

√
y2 + 1, and for k ≥ 1, define

βk = tk + uk
√
y2 + 1.

We are unable to prove a result as strong as Theorem 1.1, but we can prove
enough in order to obtain an analogue of Corollary 1.1.

Theorem 1.2. All positive integer solutions to

x2 + 1
y2 + 1

= (z2 ± 1)2

are given by
(x, y, z) = (4t3 + 3t, t, 2t),

where t is a positive integer.

Given the statements in Corollary 1.1 and Theorem 1.2, it is natural to
consider the more general equation

x2 ± 1
y2 ± 1

= (z2 ± 1)2.

In order to solve this completely, there are two remaining cases, one which
is trivial to solve, and one which seems to be quite difficult to deal with.
The first case is the equation

x2 + 1
y2 − 1

= (z2 ± 1)2,

which has no solutions in positive integers x, y > 1, and z, simply be-
cause

√
y2 − 1 has a very short period in its continued fraction expansion,

which implies that there are no units of norm −1 in any order of the form
Z[
√
y2 − 1].
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On the other hand, the second case, which is the equation
x2 − 1
y2 + 1

= (z2 ± 1)2,

appears to be resistant to the methods we use to prove Corollary 1.1 and
Theorem 1.2, primarily because of the absence of suitable identities which
will be used in the proofs of the above results. Therefore, we can only state
the following as an open problem.

Open Problem. Determine the set of integer solutions x > 1, y > 0,
z > 0 to

x2 − 1
y2 + 1

= (z2 ± 1)2.

2. Preliminaries. We state here a number of results which will be used
in the proofs of the theorems stated above. For a positive integer y > 1,
define

εy = y +
√
y2 − 1,

and for k ≥ 1,
εky = Tk + Uk

√
y2 − 1.

Similarly, define

τy =
√
y + 1 +

√
y − 1√

2
,

and for k ≥ 1 odd, let

τky =
Ak
√
y + 1 +Bk

√
y − 1√

2
.

Note that τ2
y = εy.

Lemma 2.1.

(1) If a prime p divides Ak or Bk for some k, then p does not divide Ti
for any i ≥ 1.

(2) If P and Q denote the set of primes dividing some term in the se-
quence {Ak} and {Bk} respectively, then P and Q are disjoint.

(3) Tk is odd for all even indices k, and if 2a properly divides T1, then
2a properly divides Tk for all odd k.

(4) Uk is odd for all odd k. If a > 1, 2a properly divides k, and 2b properly
divides y, then 2a+b properly divides Uk.

(5) For all odd k ≥ 1, gcd(Tk, Uk+1) = gcd(Tk, Uk−1) = T1.
(6) For all k ≥ 0, U2k+1 + 1 = 2TkUk+1 and U2k+1 − 1 = 2Tk+1Uk.
(7) For all k ≥ 1, U2k + 1 = A2k−1B2k+1 and U2k − 1 = A2k+1B2k−1.

Proof. (1) The fact that τ2
y = εy implies that AkBk = 2δUk for odd k,

where δ = 0, 1 depending on whether y is odd or even respectively. Therefore,
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if p divides one of Ak or Bk, then p divides Uk. Note that k is odd. If p were
to divide Ti say, then the identity U2i = 2TiUi implies that p divides U2i,
which further implies that p divides (Uk, U2i) = Ugcd(k,2i). Since k is odd,
gcd(k, 2i) is odd, and so Ugcd(k,2i) divides Ui, showing that p divides Ui,
contradicting the fact that gcd(Ti, Ui) = 1.

(2) Assume that p divides both Ai and Bj . Then p also divides Aij and
Bij , contradicting the fact that gcd(Ak, Bk) = 1.

(3), (4) This is well known and can be found in the seminal paper of
Lehmer [4].

(5) We refer to Lemma 1 in [8].
(6) We refer to the proof of Theorem 1 in [8].
(7) It can be seen that

U2k =
ε2ky − ε−2k

y

εy − ε−1
y

,

and that

A2k−1B2k+1 =
(
τ2k−1
y + τ−2k+1

y

τy + τ−1
y

)(
τ2k+1
y − τ−2k−1

y

τy − τ−1
y

)
,

and the result follows by simplifying the latter expression, and using τ2
y = εy.

Lemma 2.2.

(1) The quartic equation aX4 − bY 4 = 2 has at most one solution in
positive integers X,Y for any given positive integers a, b.

(2) The quartic equation a2X4 − bY 2 = 1 has at most one solution in
positive integers X,Y for any given positive integers a > 1, b > 1.

(3) The quartic equation aX2 − bY 4 = 1 has at most one solution in
positive integers X,Y for any given positive integers a > 1, b.

(4) If y is even, then the only possible squares in {Bk} are B1 and B3.
If y is odd, then only square in {Bk} is B1.

Proof. (1) If a is odd, this follows from the main result in [6]. If a = 2, it
follows from Ljunggren’s theorem on X4− dY 2 = 1, and Cohn’s refinement
of it in [2]. If a > 2 is even, then it follows from Ljunggren’s theorem in [5]
on aX2 − bY 4 = 1. Alternatively, the reader may refer to Theorem 15 on
p. 274 of [7].

(2) This is the main result in [1].
(3) This is the main result in [5].
(4) If y is even, then this is the main result in [6], while if y is odd, then

it follows from the main result in [5].

3. Proof of Theorem 1.1. The proof of Theorem 1 in [8], precisely
as given there, can be used to show that the equation U2k+1 = cx2 ± 1 has
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at most one solution in integers k ≥ 0 and x > 0. Therefore, in order to
complete the proof, we need only deal with the two cases

(3.1) U2k = cx2
1 ± 1, U2l = cx2

2 ± 1,

and

(3.2) U2k = cx2
1 ± 1, U2l+1 = cx2

2 ± 1.

For (3.1), we consider the particular case

(3.3) U2k = cx2
1 − 1, U2l = cx2

2 − 1,

as the proof for the other possibilities works in exactly the same manner.
Now, (3.3) together with the identity U2i+1 = A2i−1B2i+1 shows that there
are positive integers a, b, A,B, u, v, z, w, with c = ab = AB, for which

A2k−1 = au2, B2k+1 = bv2, A2l−1 = Az2, B2l+1 = Bw2.

By (2) of Lemma 2.1, the sets of prime factors dividing terms in {Ai} and
{Bi} are disjoint, and so it follows that a = A and b = B. Therefore,
(X,Y ) = (u, v) and (z, w) are two solutions in positive integers to the quartic
equation

a2(y + 1)X4 − b2(y − 1)Y 4 = 2,

which is not possible by (1) of Lemma 2.2.
We now deal with (3.2). Assume first that k, l, x1, x2 are solutions to

U2k = cx2
1 − 1, U2l+1 = cx2

2 + 1.

Then, by (6) and (7) of Lemma 2.1,

U2k + 1 = A2k−1B2k+1 = cx2
1, U2l+1 − 1 = 2TlUl+1 = cx2

2.

Therefore, since TlUl+1 is even, l must be odd, and there are integers a, b,
A,B, u, v, z, w, with c = ab = AB, for which either

A2k−1 = au2, B2k+1 = bv2, Tl = 2AT1z
2, Ul+1 = BT1w

2,

or

A2k−1 = au2, B2k+1 = bv2, Tl = AT1z
2, Ul+1 = 2BT1w

2.

If p is a prime dividing A, then by (1) of Lemma 2.1, p does not divide
A2k−1B2k+1, which implies that p is not a divisor of either a or b. Since
c = ab = AB, it follows that A = 1, and so by (5) of Lemma 2.1, either
Tl = 2T1z

2 or Tl = T1z
2. The former possibility cannot happen since by

(3) of Lemma 2.1, the same power of 2 properly divides both T1 and Tl,
and so Tl = T1z

2. By (2) of Lemma 2.2, it follows that l = 1, and hence
cx2

2 = 2TlUl+1 = 2T1U2 = 2y(2y) = 4y2, forcing c = 1. The case

U2k = cx2
1 + 1, U2l+1 = cx2

2 + 1

can be dealt with in exactly the same manner.
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Assume now that k > 0, l ≥ 0, x1 > 0, x2 > 0 are integer solutions to

U2k = cx2
1 − 1, U2l+1 = cx2

2 − 1.

Then again by (6) and (7) of Lemma 2.1,

U2k − 1 = A2k+1B2k−1 = cx2
1, U2l+1 − 1 = 2Tl+1Ul = cx2

2.

Tl+1Ul is therefore even, from which it follows by (3) and (4) of Lemma 2.1
that l must be even. Arguing precisely as in the previous case, we deduce that
there is a positive integer z for which either Tl+1 = 2T1z

2 or Tl+1 = T1z
2,

which by (3) of Lemma 2.1 implies that Tl+1 = T1z
2. By (2) of Lemma 2.2, it

follows that l = 0. The original equation becomes U2l+1 = U1 = 1 = cx2
2−1,

which implies that cx2
2 = 0, a contradiction. The same argument also shows

that the simultaneous equations

U2k = cx2
1 + 1, U2l+1 = cx2

2 − 1

do not have solutions in positive integers.
The completion of the proof of Theorem 1.1 now only requires that we

deal with the case c = 1.
Assume that k, x is a solution to U2k+1 = x2 − 1. Then by (6) of

Lemma 2.1,
U2k+1 + 1 = 2TkUk+1 = x2,

and (3) and (4) of Lemma 2.1 imply that k is odd. By (5) of Lemma 2.1,
and the fact that the same power of 2 properly divides Tk and T1, it follows
that Tk = T1u

2 for some integer u, which by (2) of Lemma 2.2 implies that
k = 1, and hence that x = 2y.

Assume that k, x is a solution to U2k+1 = x2 + 1. Then by (6) of
Lemma 2.1,

U2k+1 − 1 = 2Tk+1Uk = x2,

and in this case k must be even. It follows just as above that Tk+1 = T1u
2,

forcing k = 0, which in turn implies that x = 0, a contradiction.
Assume that k, x is a solution to U2k = x2+1. Then by (7) of Lemma 2.1,

U2k − 1 = A2k+1B2k−1 = x2,

it follows that A2k+1 and B2k−1 are squares. By (4) of Lemma 2.2, B2k−1

can be a square for only k = 1 or k = 2. If k = 2, then A2k+1 = A5, and
it is easy to verify that A5 = 4y2 − 2y − 1, which can never be a square,
since y > 1. So, the only possibility is k = 1. For the case k = 1, it is easy
to verify that A3 = 2y− 1 and B1 = 1, and these are both squares precisely
when y = 2t2 + 2t+ 1 for some integer t.

Assume that k, x is a solution to U2k = x2−1. Then by (7) of Lemma 2.1,

U2k + 1 = A2k−1B2k+1 = x2,
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and it follows that A2k−1 and B2k+1 are both squares. By (4) of Lemma 2.2,
B2k+1 can be a square only for k = 0 and k = 1, and so the only possibility
is k = 1, for otherwise A2k−1 = A−1. In this case, A1 = 1 and B3 = 2y + 1
are squares precisely when y = 2t2 + 2t for some integer t.

4. Proof of Theorem 1.2. We will use analogous statements to (3)–(7)
in Lemma 2.1. A solution to

x2 + 1
y2 + 1

= (z2 ± 1)2

is equivalent to the existence of an odd index 2i+1 for which u2i+1 = z2±1. It
can proved, similar to (6) of Lemma 2.1, that u2i+1±1 is one of 2tiui+1 with
i odd, or 2ti+1ui with i even. Therefore, either z2 = 2tiui+1 with i odd, or
z2 = 2ti+1ui with i even. Also, for i odd, gcd(ti, ui+1) = t1, while for i even,
gcd(ti+1, ui) = t1. Furthermore, 2 properly divides t1 and ti to the same
power in the first case, and 2 properly divides t1 and ti+1 to the same power
in the second case. We deduce that there is an integer u for which ti = t1u

2

in the first case, and ti+1 = t1u
2 in the second case. By (3) of Lemma 2.2,

i = 1 in the first case, and i + 1 = 1 in the second case. We therefore see
that the second case cannot occur, for otherwise it follows that z = 0. So,
the only possibility is i = 1, which gives u2i+1 = u3 = 4y2 + 1 = z2 ± 1.
Therefore, z = 2y, x = t3 = 4y3 + 3y, and the result follows by simply
setting y to be a parameter t.
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