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1. Introduction. Let [F, be a finite field of ¢ elements. For a positive
exponent k, Waring’s problem for I, is the question of how many summands
n are minimally needed to express every element of IF; in the form

n
§ : k

L
i=1

where z; € F, for all i. We define the Waring function g(k,q) to be that
minimal number of summands.
We shall prove the following results.

THEOREM 1.1. Let m be a positive integer and p,r primes such that p
18 a primitive root modulo v™. Then

p(r™) 1 m — Dp(r™
g<p,pw )) _ (p=Der™)
T 2

where ¢ is FEuler’s phi-function.

THEOREM 1.2. Let m be a positive integer and p,r odd primes such that
p is a primitive root modulo r™. Then

pmt V)r - pJ if r <p,

g<pso(r ) —1 p@(rm)> _ 4 4r
2rm
" Tml{]Zﬂ_ég)J if r > p.

We note that Theorems and generalize Theorems 1.2 and 1.3
respectively of [3], which cover the case m = 1. A prime p is a primitive root
modulo r™ for every m € Z, if p is a primitive root modulo 7? and r is an
odd prime (see [2, Theorem 9.10]). This makes it rather easy to find primes
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p, r satisfying our assumptions for all values m € Z,. For example a prime
p is a primitive root modulo 3™ for all m € Z, if and only if p = 2 (mod 9)
or p=>5 (mod9).

2. Proof of Theorem Put t = ™1, ¢ = p?0™) and k =
(g —1)/r™. Let v be a primitive element of the finite field F, and denote
¢ = ~*. Then ( is a primitive 7™th root of unity and all the nonzero kth
powers in the field F, are 1,¢,..., ¢"™~1. Since p is a primitive root mod-
ulo 7™, I, is in fact the smallest extension field of IF), containing ¢. Thus F, =
F,(¢) and the minimal polynomial of ¢ is the r™th cyclotomic polynomial
Dy () = Gy () = =D 4 2t + 1 (see for example [T, p. 65]).

We shall use the brief notation Z,, := Z/nZ for the integers modulo n.
A vector a = (ag,...,a,m_1) € Z;m will be called a representation for an
element a € Fy if

rm—1
(2.1) a= Z a;C’.
i=0
Since F; = F,((), every element a € F, has such a representation. Let Z
denote the smallest nonnegative integer in the equivalence class x € Z, for
any given class x. Obviously, we may then represent a as a sum of kth
powers in such a way that there are @; summands ¢’ for every i and the
total number of summands is
r’m—1
lalli =) a.
i=0
Using the terminology introduced in [3] we call a vector a € Z;m admis-
sible (with respect to || ||1) if |la||1 < ||b]|1 whenever b is a representation
for the same element a € F, as a. The solution g(k, ¢) for Waring’s problem
will now be the maximal value ||z||; for an admissible vector x € Z™.

A vector b = (bg,...,bym_1) is a representation for the same element
a as a vector a if and only if there exist co,...,ci—1 € Z, satisfying the
equation

r’m—1

r’m—1 t—1 rm—1 t—1
Z a;x’ = Z bx’ + Ppm (x) chxj = Z bt + chx]@rm (x)
i=0 i=0 §=0 i=0 j=0
in the polynomial ring Z,[x]. Here
BBy (&) = 20 + 2 o gD
for every j = 0,...,t — 1. We define subvectors a®,... alt"1) ¢ Ly, by

the equations a) = (aj,aitj, .-, ap_1y+;) and similarly for b. Also, let
e = (1,...,1) € Z;. Notice that a vector y € Zj, (i.e. in the case m = 1)
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is admissible if and only if [[y||1 < [y + ze|1 for every z € Z,. The vectors
a,b e Z;m represent the same element if and only if all subvectors satisfy

a® = b (mod (e)), where (e) denotes the submodule generated by e in
the free module Z;,.

It follows that a € Z;m is admissible if and only if each subvector
al) e Zy, is admissible. Moreover, the maximal norm for an admissible vec-
tor in Zy is (p — 1)(r — 1)/2 by [3, Theorem 2.5]. Thus the maximal norm for
an admissible vector a € Z;m is achieved precisely when all the subvectors
are admissible in Z;, of maximal norm, and it equals

t—1
; —-1)(r—1
lalh = 2_lla®l: R

3. Proof of Theorem We shall use the notations from the previous
section. Now all the (k/2)th powers in the field F, are 0, +1,+¢, ..., £¢"" L.
Suppose a € Iy is written as a sum of (k/2)th powers in the form

a—Za(+C’+Za —¢h,

where al(-+),al(-_) € Z, for every i. Putting a; = agﬂ - ag_) € Zp we
again get a representation of the form (2.1). The corresponding vector
a = (ag,...,aym_1) € Z;m will again also be called a representation for a.

For every x € Z, put
|z| = min{z,p — z}.

() (=)

There exist p different choices of a; ” and a; ’ that lead to the same value a;.
Among these choices the smallest p0551ble total number of summands +(*
is |a;|. To see this, note that if we choose ag_) arbitrarily then a§+) = aﬁ—al(_)

and
- *(_) *(_) > f < *(_) =
(), (= _Jata "t+a; " =a it0<a;, " <p-—a,
a " +a; "= ( )
i <p.
So instead of the norm ||a||; we are interested in the so-called Lee norm
r’m—1
lallz =" |ail.
i=0
Again the solution of Waring’s problem g(k/2, ¢) will be the maximal norm
of an admissible element; the only difference is that “admissible” is now with
respect to the Lee norm || [|2. The rest of the proof goes as before: again a
is admissible if and only if each subvector a(? is admissible and according
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to [3, Theorem 2.6] the maximal Lee norm of an admissible vector of Zj is

pr p .
o2 itr<p,
Pt —1 1\ {4 47‘J nrsp
g or P N pror .
——— ifr .
4 4p =P
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