More exact solutions to Waring's problem for finite fields

by
Keijo Kononen (Oulu)

1. Introduction. Let \mathbb{F}_{q} be a finite field of q elements. For a positive exponent k, Waring's problem for \mathbb{F}_{q} is the question of how many summands n are minimally needed to express every element of \mathbb{F}_{q} in the form

$$
\sum_{i=1}^{n} x_{i}^{k},
$$

where $x_{i} \in \mathbb{F}_{q}$ for all i. We define the Waring function $g(k, q)$ to be that minimal number of summands.

We shall prove the following results.
Theorem 1.1. Let m be a positive integer and p, r primes such that p is a primitive root modulo r^{m}. Then

$$
g\left(\frac{p^{\varphi\left(r^{m}\right)}-1}{r^{m}}, p^{\varphi\left(r^{m}\right)}\right)=\frac{(p-1) \varphi\left(r^{m}\right)}{2},
$$

where φ is Euler's phi-function.
Theorem 1.2. Let m be a positive integer and p, r odd primes such that p is a primitive root modulo r^{m}. Then

$$
g\left(\frac{p^{\varphi\left(r^{m}\right)}-1}{2 r^{m}}, p^{\varphi\left(r^{m}\right)}\right)= \begin{cases}r^{m-1}\left\lfloor\frac{p r}{4}-\frac{p}{4 r}\right\rfloor & \text { if } r<p \\ r^{m-1}\left\lfloor\frac{p r}{4}-\frac{r}{4 p}\right\rfloor & \text { if } r \geq p\end{cases}
$$

We note that Theorems 1.1 and 1.2 generalize Theorems 1.2 and 1.3 respectively of [3], which cover the case $m=1$. A prime p is a primitive root modulo r^{m} for every $m \in \mathbb{Z}_{+}$if p is a primitive root modulo r^{2} and r is an odd prime (see [2, Theorem 9.10]). This makes it rather easy to find primes

[^0]p, r satisfying our assumptions for all values $m \in \mathbb{Z}_{+}$. For example a prime p is a primitive root modulo 3^{m} for all $m \in \mathbb{Z}_{+}$if and only if $p \equiv 2(\bmod 9)$ or $p \equiv 5(\bmod 9)$.
2. Proof of Theorem 1.1. Put $t=r^{m-1}, q=p^{\varphi\left(r^{m}\right)}$ and $k=$ $(q-1) / r^{m}$. Let γ be a primitive element of the finite field \mathbb{F}_{q} and denote $\zeta=\gamma^{k}$. Then ζ is a primitive r^{m} th root of unity and all the nonzero k th powers in the field \mathbb{F}_{q} are $1, \zeta, \ldots, \zeta^{r^{m}-1}$. Since p is a primitive root modulo r^{m}, \mathbb{F}_{q} is in fact the smallest extension field of \mathbb{F}_{p} containing ζ. Thus $\mathbb{F}_{q}=$ $\mathbb{F}_{p}(\zeta)$ and the minimal polynomial of ζ is the r^{m} th cyclotomic polynomial $\Phi_{r^{m}}(x)=\Phi_{r}\left(x^{t}\right)=x^{(r-1) t}+\cdots+x^{t}+1$ (see for example [1, p. 65]).

We shall use the brief notation $\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$ for the integers modulo n. A vector $\boldsymbol{a}=\left(a_{0}, \ldots, a_{r^{m}-1}\right) \in \mathbb{Z}_{p}^{r^{m}}$ will be called a representation for an element $a \in \mathbb{F}_{q}$ if

$$
\begin{equation*}
a=\sum_{i=0}^{r^{m}-1} a_{i} \zeta^{i} . \tag{2.1}
\end{equation*}
$$

Since $\mathbb{F}_{q}=\mathbb{F}_{p}(\zeta)$, every element $a \in \mathbb{F}_{q}$ has such a representation. Let \bar{x} denote the smallest nonnegative integer in the equivalence class $x \in \mathbb{Z}_{p}$ for any given class x. Obviously, we may then represent a as a sum of k th powers in such a way that there are \bar{a}_{i} summands ζ^{i} for every i and the total number of summands is

$$
\|\boldsymbol{a}\|_{1}=\sum_{i=0}^{r^{m}-1} \bar{a}_{i} .
$$

Using the terminology introduced in [3] we call a vector $\boldsymbol{a} \in \mathbb{Z}_{p}^{r^{m}}$ admissible (with respect to $\left\|\|_{1}\right.$) if $\| \boldsymbol{a}\left\|_{1} \leq\right\| \boldsymbol{b} \|_{1}$ whenever \boldsymbol{b} is a representation for the same element $a \in \mathbb{F}_{q}$ as \boldsymbol{a}. The solution $g(k, q)$ for Waring's problem will now be the maximal value $\|\boldsymbol{x}\|_{1}$ for an admissible vector $\boldsymbol{x} \in \mathbb{Z}_{p}^{r^{m}}$.

A vector $\boldsymbol{b}=\left(b_{0}, \ldots, b_{r^{m}-1}\right)$ is a representation for the same element a as a vector \boldsymbol{a} if and only if there exist $c_{0}, \ldots, c_{t-1} \in \mathbb{Z}_{p}$ satisfying the equation

$$
\sum_{i=0}^{r^{m}-1} a_{i} x^{i}=\sum_{i=0}^{r^{m}-1} b_{i} x^{i}+\Phi_{r^{m}}(x) \sum_{j=0}^{t-1} c_{j} x^{j}=\sum_{i=0}^{r^{m}-1} b_{i} x^{i}+\sum_{j=0}^{t-1} c_{j} x^{j} \Phi_{r^{m}}(x)
$$

in the polynomial ring $\mathbb{Z}_{p}[x]$. Here

$$
x^{j} \Phi_{r^{m}}(x)=x^{j}+x^{t+j}+\cdots+x^{(r-1) t+j}
$$

for every $j=0, \ldots, t-1$. We define subvectors $\boldsymbol{a}^{(0)}, \ldots, \boldsymbol{a}^{(t-1)} \in \mathbb{Z}_{p}^{r}$ by the equations $\boldsymbol{a}^{(j)}=\left(a_{j}, a_{t+j}, \ldots, a_{(r-1) t+j}\right)$ and similarly for \boldsymbol{b}. Also, let $\boldsymbol{e}=(1, \ldots, 1) \in \mathbb{Z}_{p}^{r}$. Notice that a vector $\boldsymbol{y} \in \mathbb{Z}_{p}^{r}$ (i.e. in the case $m=1$)
is admissible if and only if $\|\boldsymbol{y}\|_{1} \leq\|\boldsymbol{y}+z \boldsymbol{e}\|_{1}$ for every $z \in \mathbb{Z}_{p}$. The vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{p}^{r^{m}}$ represent the same element if and only if all subvectors satisfy $\boldsymbol{a}^{(i)} \equiv \boldsymbol{b}^{(i)}(\bmod (\boldsymbol{e}))$, where (\boldsymbol{e}) denotes the submodule generated by \boldsymbol{e} in the free module \mathbb{Z}_{p}^{r}.

It follows that $\boldsymbol{a} \in \mathbb{Z}_{p}^{r^{m}}$ is admissible if and only if each subvector $\boldsymbol{a}^{(i)} \in \mathbb{Z}_{p}^{r}$ is admissible. Moreover, the maximal norm for an admissible vector in \mathbb{Z}_{p}^{r} is $(p-1)(r-1) / 2$ by [3, Theorem 2.5]. Thus the maximal norm for an admissible vector $\boldsymbol{a} \in \mathbb{Z}_{p}^{r^{m}}$ is achieved precisely when all the subvectors are admissible in \mathbb{Z}_{p}^{r} of maximal norm, and it equals

$$
\|\boldsymbol{a}\|_{1}=\sum_{i=0}^{t-1}\left\|\boldsymbol{a}^{(i)}\right\|_{1}=t \cdot \frac{(p-1)(r-1)}{2}
$$

3. Proof of Theorem 1.2. We shall use the notations from the previous section. Now all the $(k / 2)$ th powers in the field \mathbb{F}_{q} are $0, \pm 1, \pm \zeta, \ldots, \pm \zeta^{r^{m}-1}$. Suppose $a \in \mathbb{F}_{q}^{*}$ is written as a sum of $(k / 2)$ th powers in the form

$$
a=\sum_{i=0}^{r^{m}-1} a_{i}^{(+)} \zeta^{i}+\sum_{i=0}^{r^{m}-1} a_{i}^{(-)}\left(-\zeta^{i}\right)
$$

where $a_{i}^{(+)}, a_{i}^{(-)} \in \mathbb{Z}_{p}$ for every i. Putting $a_{i}=a_{i}^{(+)}-a_{i}^{(-)} \in \mathbb{Z}_{p}$ we again get a representation of the form (2.1). The corresponding vector $\boldsymbol{a}=\left(a_{0}, \ldots, a_{r^{m}-1}\right) \in \mathbb{Z}_{p}^{r^{m}}$ will again also be called a representation for a. For every $x \in \mathbb{Z}_{p}$ put

$$
|x|=\min \{\bar{x}, p-\bar{x}\} .
$$

There exist p different choices of $a_{i}^{(+)}$and $a_{i}^{(-)}$that lead to the same value a_{i}. Among these choices the smallest possible total number of summands $\pm \zeta^{i}$ is $\left|a_{i}\right|$. To see this, note that if we choose $a_{i}^{(-)}$arbitrarily then $a_{i}^{(+)}=a_{i}+a_{i}^{(-)}$ and

$$
\bar{a}_{i}^{(+)}+\bar{a}_{i}^{(-)}= \begin{cases}\bar{a}_{i}+\bar{a}_{i}^{(-)}+\bar{a}_{i}^{(-)} \geq \bar{a}_{i} & \text { if } 0 \leq \bar{a}_{i}^{(-)}<p-\bar{a}_{i} \\ \bar{a}_{i}+\bar{a}_{i}^{(-)}-p+\bar{a}_{i}^{(-)} \geq p-\bar{a}_{i} & \text { if } p-\bar{a}_{i} \leq \bar{a}_{i}^{(-)}<p\end{cases}
$$

So instead of the norm $\|\boldsymbol{a}\|_{1}$ we are interested in the so-called Lee norm

$$
\|\boldsymbol{a}\|_{2}=\sum_{i=0}^{r^{m}-1}\left|a_{i}\right| .
$$

Again the solution of Waring's problem $g(k / 2, q)$ will be the maximal norm of an admissible element; the only difference is that "admissible" is now with respect to the Lee norm $\left\|\|_{2}\right.$. The rest of the proof goes as before: again \boldsymbol{a} is admissible if and only if each subvector $\boldsymbol{a}^{(i)}$ is admissible and according
to [3, Theorem 2.6] the maximal Lee norm of an admissible vector of \mathbb{Z}_{p}^{r} is

$$
g\left(\frac{p^{r-1}-1}{2 r}, p^{r-1}\right)= \begin{cases}\left\lfloor\frac{p r}{4}-\frac{p}{4 r}\right\rfloor & \text { if } r<p \\ \left\lfloor\frac{p r}{4}-\frac{r}{4 p}\right\rfloor & \text { if } r \geq p\end{cases}
$$

References

[1] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math. Appl. 20, Cambridge Univ. Press, Cambridge, 1997.
[2] K. H. Rosen, Elementary Number Theory and Its Applications, 4th ed., AddisonWesley, Reading, MA, 2000.
[3] A. Winterhof and C. van de Woestijne, Exact solutions to Waring's problem for finite fields, Acta Arith. 141 (2010), 171-190.

Keijo Kononen
Department of Mathematical Sciences
University of Oulu
P.O. Box 3000

FIN-90014 Oulun yliopisto, Finland
E-mail: keijo.kononen@oulu.fi

[^0]: 2010 Mathematics Subject Classification: Primary 11P05.
 Key words and phrases: cyclotomic polynomial, equations over finite fields, exact values, Waring's problem.

