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1. Introduction. Let Fq be a finite field of q elements. For a positive
exponent k, Waring’s problem for Fq is the question of how many summands
n are minimally needed to express every element of Fq in the form

n∑
i=1

xk
i ,

where xi ∈ Fq for all i. We define the Waring function g(k, q) to be that
minimal number of summands.

We shall prove the following results.

Theorem 1.1. Let m be a positive integer and p, r primes such that p
is a primitive root modulo rm. Then

g

(
pϕ(rm) − 1

rm
, pϕ(rm)

)
=

(p− 1)ϕ(rm)
2

,

where ϕ is Euler’s phi-function.

Theorem 1.2. Let m be a positive integer and p, r odd primes such that
p is a primitive root modulo rm. Then

g

(
pϕ(rm) − 1

2rm
, pϕ(rm)

)
=


rm−1

⌊
pr

4
− p

4r

⌋
if r < p,

rm−1

⌊
pr

4
− r

4p

⌋
if r ≥ p.

We note that Theorems 1.1 and 1.2 generalize Theorems 1.2 and 1.3
respectively of [3], which cover the case m = 1. A prime p is a primitive root
modulo rm for every m ∈ Z+ if p is a primitive root modulo r2 and r is an
odd prime (see [2, Theorem 9.10]). This makes it rather easy to find primes
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p, r satisfying our assumptions for all values m ∈ Z+. For example a prime
p is a primitive root modulo 3m for all m ∈ Z+ if and only if p ≡ 2 (mod 9)
or p ≡ 5 (mod 9).

2. Proof of Theorem 1.1. Put t = rm−1, q = pϕ(rm) and k =
(q − 1)/rm. Let γ be a primitive element of the finite field Fq and denote
ζ = γk. Then ζ is a primitive rmth root of unity and all the nonzero kth
powers in the field Fq are 1, ζ, . . . , ζrm−1. Since p is a primitive root mod-
ulo rm, Fq is in fact the smallest extension field of Fp containing ζ. Thus Fq =
Fp(ζ) and the minimal polynomial of ζ is the rmth cyclotomic polynomial
Φrm(x) = Φr(xt) = x(r−1)t + · · ·+ xt + 1 (see for example [1, p. 65]).

We shall use the brief notation Zn := Z/nZ for the integers modulo n.
A vector a = (a0, . . . , arm−1) ∈ Zrm

p will be called a representation for an
element a ∈ Fq if

(2.1) a =
rm−1∑
i=0

aiζ
i.

Since Fq = Fp(ζ), every element a ∈ Fq has such a representation. Let x̄
denote the smallest nonnegative integer in the equivalence class x ∈ Zp for
any given class x. Obviously, we may then represent a as a sum of kth
powers in such a way that there are āi summands ζi for every i and the
total number of summands is

‖a‖1 =
rm−1∑
i=0

āi.

Using the terminology introduced in [3] we call a vector a ∈ Zrm

p admis-
sible (with respect to ‖ ‖1) if ‖a‖1 ≤ ‖b‖1 whenever b is a representation
for the same element a ∈ Fq as a. The solution g(k, q) for Waring’s problem
will now be the maximal value ‖x‖1 for an admissible vector x ∈ Zrm

p .
A vector b = (b0, . . . , brm−1) is a representation for the same element

a as a vector a if and only if there exist c0, . . . , ct−1 ∈ Zp satisfying the
equation

rm−1∑
i=0

aix
i =

rm−1∑
i=0

bix
i + Φrm(x)

t−1∑
j=0

cjx
j =

rm−1∑
i=0

bix
i +

t−1∑
j=0

cjx
jΦrm(x)

in the polynomial ring Zp[x]. Here

xjΦrm(x) = xj + xt+j + · · ·+ x(r−1)t+j

for every j = 0, . . . , t − 1. We define subvectors a(0), . . . ,a(t−1) ∈ Zr
p by

the equations a(j) = (aj , at+j , . . . , a(r−1)t+j) and similarly for b. Also, let
e = (1, . . . , 1) ∈ Zr

p. Notice that a vector y ∈ Zr
p (i.e. in the case m = 1)
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is admissible if and only if ‖y‖1 ≤ ‖y + ze‖1 for every z ∈ Zp. The vectors
a, b ∈ Zrm

p represent the same element if and only if all subvectors satisfy
a(i) ≡ b(i) (mod (e)), where (e) denotes the submodule generated by e in
the free module Zr

p.
It follows that a ∈ Zrm

p is admissible if and only if each subvector
a(i) ∈ Zr

p is admissible. Moreover, the maximal norm for an admissible vec-
tor in Zr

p is (p− 1)(r − 1)/2 by [3, Theorem 2.5]. Thus the maximal norm for
an admissible vector a ∈ Zrm

p is achieved precisely when all the subvectors
are admissible in Zr

p of maximal norm, and it equals

‖a‖1 =
t−1∑
i=0

‖a(i)‖1 = t · (p− 1)(r − 1)
2

.

3. Proof of Theorem 1.2. We shall use the notations from the previous
section. Now all the (k/2)th powers in the field Fq are 0,±1,±ζ, . . . ,±ζrm−1.
Suppose a ∈ F∗q is written as a sum of (k/2)th powers in the form

a =
rm−1∑
i=0

a
(+)
i ζi +

rm−1∑
i=0

a
(−)
i (−ζi),

where a
(+)
i , a

(−)
i ∈ Zp for every i. Putting ai = a

(+)
i − a

(−)
i ∈ Zp we

again get a representation of the form (2.1). The corresponding vector
a = (a0, . . . , arm−1) ∈ Zrm

p will again also be called a representation for a.
For every x ∈ Zp put

|x| = min{x̄, p− x̄}.

There exist p different choices of a(+)
i and a(−)

i that lead to the same value ai.
Among these choices the smallest possible total number of summands ±ζi

is |ai|. To see this, note that if we choose a(−)
i arbitrarily then a(+)

i = ai+a
(−)
i

and

ā
(+)
i + ā

(−)
i =

{
āi + ā

(−)
i + ā

(−)
i ≥ āi if 0 ≤ ā(−)

i < p− āi,
āi + ā

(−)
i − p+ ā

(−)
i ≥ p− āi if p− āi ≤ ā(−)

i < p.

So instead of the norm ‖a‖1 we are interested in the so-called Lee norm

‖a‖2 =
rm−1∑
i=0

|ai|.

Again the solution of Waring’s problem g(k/2, q) will be the maximal norm
of an admissible element; the only difference is that “admissible” is now with
respect to the Lee norm ‖ ‖2. The rest of the proof goes as before: again a
is admissible if and only if each subvector a(i) is admissible and according
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to [3, Theorem 2.6] the maximal Lee norm of an admissible vector of Zr
p is

g

(
pr−1 − 1

2r
, pr−1

)
=


⌊
pr

4
− p

4r

⌋
if r < p,⌊

pr

4
− r

4p

⌋
if r ≥ p.
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