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by

Takafumi Miyazaki (Tokyo)

1. Introduction. For positive integers r,m with r > 1 and m even, we
define integers A,B by A+B

√
−1 = (m+

√
−1 )r. Consider the Diophantine

equation

(1.1) |A|x + |B|y = (m2 + 1)z

in positive integers x, y and z. In 2012, Luca [Lu] proved that there are
only finitely many pairs of (r,m) such that equation (1.1) has a solution
(x, y, z) 6= (2, 2, r). This result is effective, namely he showed that there
exists an effectively computable constant c0 > 0 such that all such solutions
satisfy max{r,m, x, y, z} ≤ c0. The aim of this article is to show an explicit
refinement of that result with some simplifications and improvements. Our
main result is as follows.

Theorem 1.1. If r > 1074 or m > 1034, then equation (1.1) has no
solution other than (x, y, z) = (2, 2, r).

2. Preliminaries. In this section, we list the estimates for linear forms
in logarithms that we will need, in both complex and p-adic cases. Let α1, α2

be non-zero algebraic numbers. Write L = Q(α1, α2) and denote by D the
degree of L over Q.

First, we present lower bounds for linear forms in two complex logarithms
due to Laurent [La]. Consider the linear form

Λ = b1 logα1 − b2 logα2,
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where b1, b2 are positive integers, and logα1, logα2 are any determinations
of the logarithms of α1, α2 respectively. We assume |α1|, |α2| ≥ 1. Put

D′ = D/[R(α1, α2) : R].

For any algebraic number α, we define as usual the absolute logarithmic
height of α by

h(α) =
1

d

(
log c0 +

d∑
i=1

log max
{

1, |α(i)|
})
,

where c0 > 0 is the leading coefficient of the minimal polynomial of α over Z,
and α(1), . . . , α(d) are the conjugates of α in the field of complex numbers.

The following is the main result of [La].

Proposition 2.1 ([La, Theorem 1]). Let K be an integer ≥ 2, and let
L,R1, R2, S1, S2 be positive integers. Let ρ and µ be real numbers with ρ > 1
and 1/3 ≤ µ ≤ 1. Put

R = R1 +R2 − 1, S = S1 + S2 − 1, N = KL, g =
1

4
− N

12RS
,

σ =
1 + 2µ− µ2

2
, b =

(R− 1) b2 + (S − 1) b1
2

(K−1∏
k=1

k!
)−2/(K2−K)

.

Let H1, H2 be positive real numbers such that

Hi ≥ ρ|logαi| − log |αi|+ 2D′h(αi) (i = 1, 2).

Suppose

(I)

{
Card{α r1α s2 : 0 ≤ r < R1, 0 ≤ s < S1} ≥ L,
Card{rb2 + sb1 : 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L

and

(II) K(σL− 1) log ρ− (D′ + 1) logN

−D′(K − 1) log b− gL(RH1 + SH2) > ε(N),

where

ε(N) =
2 log

(
N !N−N+1(eN + (e− 1)N )

)
N

.

Then

|Λ′| ≥ ρ−µKL with Λ′ = Λmax

{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
.

We also rely on the following result of [La].

Proposition 2.2 ([La, Corollary 2, m = 10]). For algebraic numbers
α1, α2, suppose that α1, α2, logα1, logα2 are all real and positive. Assume
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further that α1, α2 are multiplicatively independent. Let H1, H2 be real num-
bers such that

Hi ≥ max
{

h(αi), (logαi)/D, 1/D
}

(i = 1, 2).

Put

b′ =
b1
DH2

+
b2
DH1

.

Then

log |Λ| ≥ −25.2D4H1H2

(
max{log b′ + 0.38, 10/D, 1}

)2
.

Next, we present lower bounds for linear forms in two p-adic logarithms,
due to Bugeaud and Laurent [BL] and Bugeaud [B]. Put

Γ = αb11 α
b2
2 − 1,

where b1, b2 are non-zero rational integers. We assume that α1, α2 are mul-
tiplicatively independent. Suppose that π is a prime ideal in the ring of
integers of L which does not divide the ideal (α1α2). Let fπ be its inertia
index. We denote by g the minimal positive integer such that both αg1 − 1
and αg2 − 1 belong to π.

Let H1, H2 be real numbers such that

Hi ≥ max{h(αi), (log p)/Dπ} (i = 1, 2),

where p is the rational prime such that p belongs to π and Dπ = D/fπ. Put

b′ =
|b1|
H2

+
|b2|
H1

.

For α ∈ L\{0}, we denote by ordπ(α) the exponent of π in the factorization
of the fractional ideal generated by α inside L. The next proposition is
proven in [BL].

Proposition 2.3 ([BL, Théorème 3]). Under the above assumptions,

ordπ(Γ ) ≤ 24pgH1H2D
4
π

(p− 1)(log p)4
(
max{log b′+ log log p+ 0.4, (10/Dπ) log p, 10}

)2
.

Under the hypothesis of Proposition 2.3, we further suppose that both
α1 = a1 and α2 = a2 are rational integers. Then π = p. Assume that there
exists a real number E such that

1

p− 1
< E ≤ ordp(a

g
1 − 1).

Let H1, H2 be real numbers such that

Hi ≥ max{log |ai|, E log p} (i = 1, 2).

We put b′ = |b1|/H2 + |b2|/H1. The estimate below is obtained in [B].
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Proposition 2.4 ([B, Theorem 2]). Under the above assumptions, if
either p is odd, or p = 2 and ord2(a2 − 1) ≥ 2, then

ordp(Γ ) ≤ 36.1gH1H2

E3 (log p)4
(
max{log b′ + log(E log p) + 0.4, 6E log p, 5}

)2
and

ordp(Γ ) ≤ 53.8gH1H2

E3(log p)4
(
max{log b′ + log(E log p) + 0.4, 4E log p, 5}

)2
,

If p = 2 and ord2(a2 − 1) < 2, then

ord2(Γ ) ≤ 208H1H2(max{log b′ + 0.04, 10})2.

3. Proof of Theorem 1.1. Let r,m be positive integers with r > 1 and
m even. Define a, b and c by a = |A|, b = |B| and c = m2 + 1. We see that
a, b and c are co-prime integers such that a2 + b2 = cr with min{a, b, c} > 1.
Both the facts that gcd(a, b, c) = 1 and min{a, b, c} > 1 are easily shown
(cf. [Lu, Lemma 5(i) & (iv)]). Also, A,B satisfy

A2+B2 = (A+B
√
−1)(A−B

√
−1) = (m+

√
−1)r(m−

√
−1)r = (m2+1)r.

Our proof is organized in several stages below.

3.1. Elementary estimates for variables

Lemma 3.1. Let (x, y, z) be a solution to (1.1). Put

X := max{x, y}, ∆ := rX − 2z.

Then:

(i) ∆ ≥ 0. Moreover, if ∆ = 0, then (x, y, z) = (2, 2, r).
(ii) If ∆ > 0, then

∆ >
log min{a, b}

log c
.

Proof. (i) Since a, b < cr/2 and c ≥ 5, we have

cz < 2 max{ax, by} ≤ 2 max{a, b}X < 2crX/2,

and so c2z < 4crX < crX+1.

Suppose ∆ = 0, that is, z = rX/2. Then X > 1 by [Lu, Lemma 5(v)].
Since aX + bX ≥ ax + by = crX/2 = (a2 + b2)X/2, we find X = 2, and
(x, y, z) = (2, 2, r).

(ii) Reducing (1.1) modulo a and b, we have c|ry−2z| ≡ 1 (mod a) and
c|rx−2z| ≡ 1 (mod b), respectively. These together give the desired inequal-
ity.
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3.2. Upper bound for X in terms of r and c

Lemma 3.2. Let (x, y, z) be a solution to (1.1). Then

X < 50 r2(log c)2(log(69 r2 log c))2.

Proof. We only consider the case where r is odd (the case where r is even
can be dealt with similarly). By the definition of a and b, we easily observe
a ≡ 0 (mod m) and b ≡ ±1 (mod m2); in particular, a is even, a ≥ m and
b ≥ m2 − 1. We will consider the cases ax < by/2 and ax ≥ by/2 separately.

First, we suppose ax < by/2. Then

x <
log b

2 log a
y <

log(m2 + 1)

4 logm
ry < 0.6 ry (> y).

Put Λ := z log c− y log b (> 0). Since Λ < exp(Λ) − 1 = axb−y < b−y/2, we
have

logΛ < − log b

2
y.

We apply Proposition 2.2 with (α1, α2) = (c, b) and (b1, b2) = (z, y). Then

logΛ ≥ −25.2(log b)(log c)(max{log b′ + 0.38, 10})2,
where b′ = y/log c+ z/log b. It follows that

y

log c
< 50.4(max{log b′ + 0.38, 10})2.

This inequality together with b′ < 2y/log c + 1 (since cz < 2by) implies
y/log c < 5040, and so X < 0.6 ry < 3024 r log c.

Second, we suppose ax ≥ by/2. Then

y ≤ 2 log a

log b
x <

2 log(m2 + 1)r/2

log(m2 − 1)
x < 1.5 rx.

Hence, we may assume x > 1. Since cz = ax + by < 2a2x < 2crx < crx+1,
we find z ≤ rx. Note that y is even if b ≡ 3 (mod 4) (which can be seen by
reducing (1.1) modulo 4). Put Γ := czb−y − 1. We will apply Proposition
2.4 with (α1, α2) = (c, (−1)(b−1)/2b), (b1, b2) = (z,−y) and p = 2. Since
g = 1, we may take E = 2 and (H1, H2) = (log c, log(b+ 1)). It follows from
3 ≤ b < cr/2 and ord2(Γ ) ≥ x that

x ≤ 36.1 r(log c)2

8(log 2)3 log 3

(
max{log b′ + log(2 log 2) + 0.4, 12 log 2}

)2
,

where b′ = y/log c+ z/log(b+ 1). Observe that

b′ <
1.5 rx

log c
+

rx

log(b+ 1)
<

2.7 r

log c
x.

We may assume

x ≥ 211

2.7(log 2) exp(0.4)

log c

r
.
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Write

s =
5.4(log 2) exp(0.4) r

log c
x.

Then s/(log s)2 < 69 r2 log c (≥ 444), from which we have

s < 276 r2(log c)(log(69 r2 log c))2.

Hence, X < 1.5 rx < 50 r2(log c)2(log(69 r2 log c))2.

3.3. Lower bounds for X in terms of r and c

Lemma 3.3. Let (x, y, z) 6= (2, 2, r) be a solution to (1.1). Then:

(i) X ≥ 2
√
c− 1/r2. Moreover, if min{x, y} ≥ 4, then X ≥ 2(c− 1)/r2.

(ii) If c > 1068 and r < c1/3, then X ≥ 2(c− r3
√
c− 1− 1)/r2.

Proof. Clearly, we may assume m > 2. The proof proceeds along similar
lines to that of [Lu, Lemma 8].

We only consider the case where r is even (the case of r odd can be dealt
with similarly). Then

A =
(m+

√
−1)r + (m−

√
−1)r

2
= (−1)r/2

(
1−

(
r

2

)
m2 + · · ·

)
,

B =
(m+

√
−1)r − (m−

√
−1)r

2
√
−1

= (−1)r/2
(
rm−

(
r

3

)
m3 + · · ·

)
.

Write a = εA and b = ηB, where ε, η ∈ {1,−1}. Then, reducing modulo m4,
we find

ax = εx(−1)rx/2
(

1−
(
r

2

)
m2 + · · ·

)x
≡ ε1

(
1−

(
r

2

)
m2x

)
(mod m4),

by = ηy(−1)ry/2my

(
r −

(
r

3

)
m2 + · · ·

)y
≡ η1 ry−1my

(
r −

(
r

3

)
m2y

)
(mod m4),

cz = (m2 + 1)z ≡ m2z + 1 (mod m4),

where ε1 = εx(−1)rx/2 and η1 = ηy(−1)ry/2. It follows from (1.1) that

ε1

(
1−

(
r

2

)
m2x

)
+ η1r

y−1my

(
r −

(
r

3

)
m2y

)
≡ m2z + 1 (mod m4).

This implies ε1 ≡ 1 (mod m), and so ε1 = 1, since m > 2. Hence,

−
(
r

2

)
m2x+ η1r

y−1my

(
r −

(
r

3

)
m2y

)
≡ m2z (mod m4).

This congruence yields:
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(3.1)



r ≡ 0 (mod m) if y = 1,

z +
r(r − 1)

2
x− r2 ≡ 0 (mod m2) if y = 2,

z +
r(r − 1)

2
x− η1 r3m ≡ 0 (mod m2) if y = 3,

z +
r(r − 1)

2
x ≡ 0 (mod m2) if y ≥ 4.

(i) As in the proof of [Lu, Lemma 8], we can observe that the left-hand
side of the congruence in (3.1) for y = 2 is non-zero. Hence, congruences
(3.1) with Lemma 3.1(i) imply

r2X

2
≥ z +

r(r − 1)

2
X ≥ m (=

√
c− 1).

Also, if y 6= 3, then we can replace the rightmost side above by m2 (= c−1).

(ii) Assume c > 1068 and r < c1/3. It suffices to show that the left-hand

side of the congruence in (3.1) for y = 3 is non-zero. If z + r(r−1)
2 x = r3m,

then the proof of (i) and Lemma 3.2 yield

√
c− 1 ≤ X

2r
< 25 r(log c)2(log(69 r2 log c))2

< 25 c1/3(log c)2(log(69 c2/3 log c))2,

which contradicts the assumption c > 1068.

3.4. Lower bounds for r in terms of c

Lemma 3.4. Assume c > 1068. Let (x, y, z) 6= (2, 2, r) be a solution to
(1.1). Then r > c1/6.01. Moreover, if min{x, y} ≥ 4, then r > c1/4.66.

Proof. We may assume r < c1/3. Then Lemmata 3.2 and 3.3(ii) imply

c− r3
√
c− 1− 1 < 25 r4(log c)2(log(69 r2 log c))2.

Combining this inequality with the assumption c > 1068, we have r > c1/6.01.
Similarly, if min{x, y} ≥ 4, then c−1 < 25 r4(log c)2(log(69 r2 log c))2, which
implies r > c1/4.66.

3.5. Prime factors of c

Lemma 3.5. Let (x, y, z) 6= (2, 2, r) be a solution to (1.1). Then:

(i) r < 4 · 105 c. Moreover, if c > 1068, then r < 5341 c.
(ii) Assume c > 1068. Let p be any prime factor of c. If min{x, y} ≥ 4,

then p > c1/4.66/76000.

Proof. By [Lu, Lemma 5(v)], we know x 6= y. As in the proof of [Lu,
Lemma 7(iii)], we see that

Γ := α4r|x−y| 2−4|x−y| − 1 ≡ 0 (mod βdr/2e),
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where α = m +
√
−1 and β = m −

√
−1. Let p be any prime factor of

c = m2 + 1. Since p ≡ 1 (mod 4), we can write p = ππ̄ with π 6= π̄, where π
is a prime in Z[

√
−1 ], and π̄ is the complex conjugate of π. We may assume

that π divides β. We will apply Proposition 2.3 with (α1, α2) = (α, 2) and
(b1, b2) = (4r|x − y|,−4|x − y|). Observe that Dπ = 2 and g is a divisor of
p− 1. We may take (H1, H2) = ((log c)/2, (log p)/2). It follows that

r ≤ 192 p log c

(log p)3
(
max{log b′ + log log p+ 0.4, 5 log p}

)2
,

where b′ = 8r|x−y|/log p+8|x−y|/log c. We may assume r ≥ 5341 c. Then,
from Lemma 3.2, we see that

b′ · (log p) · exp(0.4) <
8X(r + 1)

log p
· (log p) · exp(0.4)

< 400 exp(0.4) r2(r + 1)(log c)2(log(69 r2 log c))2 < r5.

Hence,

(3.2)
r

(log r)2
≤ 4800 p log c

(log p)3
.

Since 5 ≤ p ≤ c, we have r/(log r)2 < 4800 c/(log c)2. Write r = Cc. Then
C < 4800(1 + (log C)/log c)2. Since c ≥ 5, we have C < 4 · 105, which can be
replaced by C < 5341 if c > 1068.

(ii) By Lemma 3.4, we may assume p < r. With the notation in (i), we
see from Lemmata 3.2 and 3.4 that b′ · (log p) · exp(0.4) < r5, and so (3.2)
holds. Write c1/4.66 = C′p. Then C′ < 22368(1 + (log C′)/log p)3. Since p ≥ 5,
we have C′ < 4 · 107. Hence, p > c1/4.66/(4 · 107) > 107, and so C′ < 1.2 · 105.
Repeating this process twice, we obtain C′ < 76000.

3.6. Accurate estimates for log a and log b

Lemma 3.6. Assume c > 1068. Let (x, y, z) 6= (2, 2, r) be a solution to
(1.1). Then

max

{
r

2
log c− log a,

r

2
log c− log b

}
< 17.04(log c)3.

Proof. Write

log a− (r/2) log c = log |Γ | − log 2 (< 0),

where Γ = γr + 1 with γ = m−
√
−1

m+
√
−1 . We may assume |Γ | < 1/3. Then

there exists a non-negative integer j with j ≤ r + 2 such that |Γ | ≥ |Λ|/2
with Λ := r log γ − j log(−1), where the former log denotes the principal
determination of the logarithm, and the latter denotes a determination such
that log(−1) = ±π

√
−1. We define θ ∈ [0, π/2] by tan θ = 2m

m2+1
. If j = 0,

then log |Λ| = log(rθ) > −0.4 log c, where the last inequality follows from
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Lemma 3.4. Hence, we may assume j > 0. We will apply Proposition 2.1
with (α1, α2) = (γ,−1) and (b1, b2) = (r/d0, j/d0), where d0 = gcd(r, j).
For this, we choose the parameters as follows:

L = log c, ρ = 4.07, µ = 0.93, K = dLH1H2e,
R1 = dL/2e, S1 = 2, R2 = dLH2e, S2 = d

(
1 + (K − 1)L

)
/R2e,

where we take (H1, H2) = (ρ|log γ|+log c, ρπ). Let us check both conditions
(I) and (II). The first inequality in (I) clearly holds. Also, using c > 1068

and r < 5341 c by Lemma 3.5(i), we can verify (II). It remains to establish
the second inequality in (I). For this, we will show r/d0 > R2. Suppose
r/d0 ≤ R2 = dLH2e. Then since (r/d0)θ is very small, we see from Lemma
3.4 that

log |Λ| = log d0 + log |(r/d0) log γ − (j/d0) log(−1)|
≥ log(r/(ρπ log c)) + log |(r/d0)θ ± (j/d0)π| > 18 + log 3,

which is clearly absurd. Hence, b1 = r/d0 > R2. Now, we suppose that

ub2 + vb1 = u′b2 + v′b1

for some integers u, u′, v, v′ such that 0 ≤ u, u′ < R2 and 0 ≤ v, v′ < S2.
This implies b2(u − u′) ≡ 0 (mod b1), and so u − u′ ≡ 0 (mod b1), as
gcd(b1, b2) = 1. Since b1 > R2 and |u− u′| < R2, we find u = u′, and v = v′.
This shows that the second inequality in (I) holds.

Then, we have

−µ(log ρ)KL ≤ log |Λ/d0|+ log max

{
LSeLS|Λ|/(2j)

2j/d0
,
LReLR|Λ|/(2r)

2r/d0

}
≤ log |Λ|+ log(LT ) +

LT |Λ|
2b3d0

− log(2b3)

< log |Λ|+ log(LT ) +
LT

3
− log 2,

where (T, b3) ∈ {(R, r/d0), (S, j/d0)}. Since L > 68 log 10, we find

R = dL/2e+ dLH2e − 1 < (1/2 +H2)L+ 1 < 6.3L,

S = d
(
1 + (K − 1)L

)
/R2e+ 1 < KL/R2 + 2 < LH1 + 1/H2 + 2 < 1.01L2.

Hence, log |Λ| is greater than

− µ(log ρ)dLH1H2eL− log(1.01L3)− 1.01L3

3
+ log 2

> −
(

1.001πµρ log(ρ) +
µ(log ρ)

L2
+

log(1.01L3)

L3
+

1.01

3
− log 2

L3

)
L3

> −17.03L3.

Similarly, we have the desired estimate for log b.
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3.7. Bounding X and ∆

Lemma 3.7. Assume c > 1068. Let (x, y, z) 6= (2, 2, r) be a solution to
(1.1). Then:

(i) X < 7 · 109 log c. Moreover, if min{x, y} < 4, then X < 2522 log c.
(ii) ∆ < 34.2(log c)2X.

Proof. We only consider the case where ax < by (the remaining case can
be dealt with similarly). Since cz < 2by, we see |z log c − y log b| < log 2.
Therefore, Lemma 3.6 gives∣∣∣∣(ry2 − z

)
log c

∣∣∣∣ =

∣∣∣∣(r2 log c− log b

)
y − (z log c− y log b)

∣∣∣∣ < 17.1(log c)3y,

which together with Lemma 3.4 implies

(3.3) ry < (2 + 10−5)z.

Put Λ := z log c − y log b. Observe Λ ∈ (0, 1). Then, as in the proof of
Lemma 3.2, Proposition 2.2 tells us that

|logΛ| < 12.6 r(log c)2(max{log b′ + 0.38, 10})2,
where b′ = y/log c+ z/log b (< (2y+ 0.02)/log c). On the other hand, we see
from Lemma 3.6 that

|logΛ| > y log b− x log a = r(log c)(y − x)/2 +R (> 0),

where |R| < 34.1(log c)3X. Hence,

(3.4) |x− y| < 25.2(log c)(max{log s, 10})2 +
68.2(log c)2

r
X,

where

s =
2 exp(0.38)

log c
(X + 0.01).

(i) First, let us consider the case min{x, y} < 4. Inequality (3.4) implies(
1− 68.2(log c)2

r

)
X < 3 + 25.2(log c)(max{log s, 10})2.

Since r > c1/6.01 by Lemma 3.4, we have s < 73.77(max{log s, 10})2. Hence,
s < 7377 and X < 2522 log c.

Next, we assume min{x, y} ≥ 4. Then r > c1/4.66 by Lemma 3.4. Let p
be any prime factor of c. Put Γ := a4xb−4y − 1. We apply Proposition 2.4
with (α1, α2) = (a4, b4) and (b1, b2) = (x,−y). Observe that g is a divisor of
|x− y| (≥ 1), and set E = r1 := dr/2e. We may take H1 = H2 = 2r log c. It
follows from ordp(Γ ) ≥ z that

z ≤ 215.2 r2(log c)2g

r31(log p)4
(
max{log b′′ + log(r1 log p) + 0.4, 4r1 log p}

)2
,
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where b′′ = (x+ y)/(2r log c). From Lemmata 3.2 and 3.4, we see that

b′′ · (r1 log p) · exp(0.4) <
X

r log c
· (r1 log p) · exp(0.4)

< 37.5 r2(log c)2
(

log(69 r2 log c)
)2
< 52r.

Hence, Lemma 3.5(ii) yields

z <
6886.4(log c)2

(log(c1/4.66/76000))2
rg < 3.4 · 105r|x− y|.(3.5)

In view of (3.3)–(3.5), we have

(3.6) y < 1.73 · 107(log c)(max{log s, 10})2 + 0.46X.

Since Lemma 3.6 gives

x <
log b

log a
y <

r/2

r/2− 17.03(log c)2
y < (1 + 3 · 10−9) y,

it follows from (3.6) that s < 3.3 · 107(max{log s, 10})2. Hence, s < 1.9 · 1010

and X < 7 · 109 log c.

(ii) The desired estimate for ∆ follows easily from cz > min{a, b}X to-
gether with Lemmata 3.1(i) and 3.6.

3.8. The end of the proof. We assume r > 1074 or m > 1034. Suppose
that there exists a solution (x, y, z) 6= (2, 2, r) to (1.1). By Lemma 3.5(i), we
have c > 1068. We will consider the cases min{x, y} ≥ 4 and min{x, y} < 4
separately.

Suppose min{x, y} ≥ 4. By Lemmata 3.3(i) and 3.7(i), we have

c− 1 < 3.5 · 109r2 log c.

Since ∆ > 0 by Lemma 3.1(i), we see that Lemmata 3.1(ii), 3.6 and 3.7 yield

1

2

√
c− 1

3.5 · 109 log c
− 17.04(log c)2 < ∆ < 239.4 · 109(log c)3,

which gives c < 1048, a contradiction.

Suppose min{x, y} < 4. By Lemmata 3.3(i) and 3.7(i), we have
√
c− 1 < 1261 r2 log c.

As in the preceding case, we find

1

2

√ √
c− 1

1261 log c
− 17.04(log c)2 < 86252.4(log c)3,

which gives c < 1057, a contradiction. This completes the proof of Theo-
rem 1.1.
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