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A note on the article by F. Luca
“On the system of Diophantine equations
a’>+bv*=(m?+1)" and a® + Y = (m? + 1)*”

(Acta Arith. 153 (2012), 373-392)
by

TAKAFUMI M1vAzAKI (Tokyo)

1. Introduction. For positive integers r, m with » > 1 and m even, we
define integers A, B by A+B+/—1 = (m++/—1)". Consider the Diophantine
equation

(L1) AP + BJY = (m?+ 1)°

in positive integers z, y and z. In 2012, Luca [Lu| proved that there are
only finitely many pairs of (r,m) such that equation has a solution
(z,y,2) # (2,2,r). This result is effective, namely he showed that there
exists an effectively computable constant ¢y > 0 such that all such solutions
satisfy max{r,m,z,y, z} < ¢o. The aim of this article is to show an explicit
refinement of that result with some simplifications and improvements. Our
main result is as follows.

THEOREM 1.1. If r > 10™ or m > 103, then equation (1.1)) has no
solution other than (z,y,z) = (2,2,r).

2. Preliminaries. In this section, we list the estimates for linear forms
in logarithms that we will need, in both complex and p-adic cases. Let a1, as
be non-zero algebraic numbers. Write L = Q(a, a2) and denote by D the
degree of L over Q.

First, we present lower bounds for linear forms in two complex logarithms
due to Laurent [Lal]. Consider the linear form

A= b1 log g — b2 log ag,
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where by, by are positive integers, and log oy, log ae are any determinations
of the logarithms of «, g respectively. We assume |aq], |az] > 1. Put
D' = D/[R(a1,a2) : R].

For any algebraic number «, we define as usual the absolute logarithmic
height of a by

d
h(a) = %(log co + Zlog max{1, ]a(i)\}>,
i=1

where cg > 0 is the leading coefficient of the minimal polynomial of « over Z,
and oW, ..., a@ are the conjugates of « in the field of complex numbers.
The following is the main result of [Lal.

PrOPOSITION 2.1 ([Lal, Theorem 1]). Let K be an integer > 2, and let
L, Ry, Ry, 51,52 be positive integers. Let p and p be real numbers with p > 1
and 1/3 < p < 1. Put

1 N

R=Ri+R—1, S=S+8%~-1, N=KL g= - rs
K-1

1+ _(R=1)b+(S—1)h 2K

Let Hy, Hy be positive real numbers such that

H; > pllog ;| — log |a;| + 2D'h(ey;) (i = 1,2).

Suppose

0 {Card{a{a§:0§r<R1,O§s<Sl}2L,
Card{rby +sb1 : 0 <r < Rp,0<s< Sp} > (K —1)L

and

(II) K(oL—1)logp— (D' +1)log N
— D'(K —1)logb — gL(RH; + SH>) > (N),
where
() = 2log(N!NN+1](VeN + (e = 1)M)) '

Then

LSeLSIAl/(2b2) [ ReLRIAI/(201)
|A'| > pPEL with A’—Amax{ S¢ fe }

20y ’ 2b;
We also rely on the following result of [Laj.

ProprosITION 2.2 ([Lal, Corollary 2, m = 10]). For algebraic numbers
a1, g, suppose that aq,ao,log ay,logas are all real and positive. Assume
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further that a1, ag are multiplicatively independent. Let Hi, Ho be real num-
bers such that

H; > max{h(a;), (log;)/D,1/D} (i =1,2).

Put
by by

!/
b _DH2+DH1'

Then
log | A] > —25.2 D*H} Hy (max{log ¥’ + 0.38, 10/D, 1}).

Next, we present lower bounds for linear forms in two p-adic logarithms,

due to Bugeaud and Laurent [BL] and Bugeaud [B]. Put
P=abial -1,

where b1, by are non-zero rational integers. We assume that a;, as are mul-
tiplicatively independent. Suppose that 7 is a prime ideal in the ring of
integers of I which does not divide the ideal (ajaw). Let fr be its inertia
index. We denote by g the minimal positive integer such that both of — 1
and aj — 1 belong to 7.

Let Hy, H> be real numbers such that

H; > max{h(a;), (logp)/D=} (i =1,2),
where p is the rational prime such that p belongs to = and D, = D/ f,. Put

b b
gDl ol
Hy H;
For a € L\{0}, we denote by ord,(«) the exponent of 7 in the factorization
of the fractional ideal generated by « inside L. The next proposition is

proven in [BL].
ProprosITION 2.3 ([BL, Théoreme 3]). Under the above assumptions,
24pgH, Hy D
ord, (I) < 179—121
(p—1)(logp)
Under the hypothesis of Proposition we further suppose that both

a1 = a1 and as = ao are rational integers. Then m = p. Assume that there
exists a real number F such that

(max{log b + loglog p + 0.4, (10/Dy) log p, 10})2.

1
]f]_ < FE < Ordp(a'gll — 1)
Let Hy, Hs be real numbers such that

H; > max{log |a;|, Flogp} (i=1,2).

We put b’ = |b1|/Hz + |b2|/H1. The estimate below is obtained in [B].
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PrOPOSITION 2.4 ([B, Theorem 2]). Under the above assumptions, if
either p is odd, or p =2 and orda(ag — 1) > 2, then

36.1gH H:
ord,(I") < g

< W(max{log b + log(FElogp) + 0.4, 6E log p, 5})2

and

53.8gH1H2
d () < 2209711712
1) < i log )t

If p=2 and orda(az — 1) < 2, then
orde(I") < 208 Hy Hy(max{log b’ + 0.04, 10})?.

(max{logt’ + log(E logp) + 0.4, 4E log p, 5})2,

3. Proof of Theorem Let r, m be positive integers with r > 1 and
m even. Define a,b and ¢ by a = |A|, b = |B| and ¢ = m? + 1. We see that
a,b and c are co-prime integers such that a? +b? = ¢” with min{a, b,c} > 1.
Both the facts that ged(a,b,¢) = 1 and min{a,b,c} > 1 are easily shown
(cf. [Lul, Lemma 5(i) & (iv)]). Also, A, B satisfy

A2+ B2 = (A+BV-1)(A-=BvV-1) = (m+vV—-1)"(m—v=1)" = (m*+1)".

Our proof is organized in several stages below.

3.1. Elementary estimates for variables

LEMMA 3.1. Let (x,y,z) be a solution to (1.1). Put
X :=max{z,y}, A:=rX—2z.
Then:

(i) A > 0. Moreover, if A =0, then (x,y,z) = (2,2,r).
(ii) If A >0, then
- log min{a, b}

A
log c

Proof. (i) Since a,b < ¢"/? and ¢ > 5, we have
¢ < 2max{a®, b} < 2max{a,b}* < 2X/2,

and so ¢?* < 4% < XL

Suppose A = 0, that is, z = rX/2. Then X > 1 by [Lu, Lemma 5(v)].
Since a¥ + bX > a® + b = X2 = (a® + b¥*)¥/2, we find X = 2, and
(z,y,2) = (2,2,7).

(ii) Reducing modulo @ and b, we have ¢¥=2?l = 1 (mod @) and
clre=2zl =1 (mod b), respectively. These together give the desired inequal-
ity. m
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3.2. Upper bound for X in terms of r and ¢
LEMMA 3.2. Let (z,y, z) be a solution to (1.1). Then
X < 5072 (log c)?(log (6972 log c))?.

Proof. We only consider the case where r is odd (the case where r is even
can be dealt with similarly). By the definition of a and b, we easily observe
a =0 (mod m) and b = +1 (mod m?); in particular, a is even, a > m and
b > m? — 1. We will consider the cases a® < b9/2 and a® > by/2 separately.

First, we suppose a® < b¥/2. Then

logb - log(m? + 1)

2loga 4logm
Put A := zlogc — ylogh (> 0). Since A < exp(A) — 1 = a®b ¥ < b~¥/2, we
have

ry < 0.6ry (>vy).

1
log A < —%by

We apply Proposition [2.2) with (a1, a2) = (¢, b) and (b1, b2) = (z,y). Then
log A > —25.2(log b)(log ¢) (max{log b’ + 0.38, 10})?,
where b/ = y/log ¢ + z/logb. It follows that
IL < 50.4(max{log b’ + 0.38, 10})2.
o
This inequality together with ¥ < 2y/loge + 1 (since ¢ < 2bY) implies
y/log ¢ < 5040, and so X < 0.6ry < 3024 rlogc.
Second, we suppose a* > b¥/2. Then

2 r/2
< 210gam - 2log(m* + 1)

r < 1.5rx.

logb log(m? — 1)

Hence, we may assume x > 1. Since ¢ = a® + b¥ < 2a%* < 2¢"% < "+,
we find z < rz. Note that y is even if b = 3 (mod 4) (which can be seen by
reducing modulo 4). Put I := ¢*b~¥ — 1. We will apply Proposition
with (ay,2) = (¢, (=1)®=D/2p) (by,by) = (2,—y) and p = 2. Since
g =1, we may take F = 2 and (H;, H2) = (logc,log(b+1)). It follows from
3<b<c/?and orde(I") > x that

17(logc)?
3617 (logc) (max{logd’ + log(2log 2) + 0.4, 12log 2})2’

~ 8(log2)3log 3
where b’ = y/log ¢+ z/log(b+ 1). Observe that
,  lbrzx rT 2.7r

<
log ¢ + log(b+1) " logc .
We may assume
o1 log c
2.7(log 2) exp(0.4) r
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Write
5.4(log 2) exp(0.4) r
x
logc
Then s/(log s)? < 6972 logc (> 444), from which we have
s < 27672 (log ¢)(log(69 7 log ¢))?.
Hence, X < 1.57rz < 507%(log ¢)?(log(69721og c))?. m

3.3. Lower bounds for X in terms of r and ¢

LEMMA 3.3. Let (z,y,2) # (2,2,7) be a solution to (1.1)). Then:

(i) X > 2v/c—1/r% Moreover, if min{x,y} > 4, then X > 2(c—1)/r?.
(ii) If ¢ > 10% and r < /3, then X > 2(c — r3ye — 1 —1)/r2.

Proof. Clearly, we may assume m > 2. The proof proceeds along similar
lines to that of [Lu, Lemma 8§].

We only consider the case where 7 is even (the case of r odd can be dealt
with similarly). Then

A_(m+wﬁﬂygon_ViDT_04yﬂ<y_@>mykn>’

B:(m+v—1) _(m_\'_l) :(_l)r/Q rm — r m3+ )
2v/—1 3

Write a = €A and b = nB, where €, € {1, —1}. Then, reducing modulo m?,

we find

o = F(—1)/2 (1 _ <;)m2 4. >x = (1 _ (;)m%) (mod m?),
W:W@UW%ﬂG—<9m%P“Y
(e (o) s

= (m?+1)°=m?2+1 (mod m?),

where €; = €*(—1)"/2 and 1, = n¥(—1)"%/2. It follows from (T.I]) that

€1 <1 - (;) m2x> + Y imY (1" - <;> m2y) =m?z+1 (mod m?).

This implies ¢; = 1 (mod m), and so €; = 1, since m > 2. Hence,

- <£) m?x 4 mr? " ImY (T - <;> m2y> =m?z (mod m?).

This congruence yields:
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r =0 (mod m) ify=1,

-1
z+7ﬁ(7ﬂ2)x—r250(modm2) ity =2,

1 -1
(3.1) z—l-r(T2)JJ—mr3m:0(modm2) ity =3,

-1
z—l—7ﬂ(r2)x50(modm2) ity > 4.

(i) As in the proof of [Lu, Lemma 8], we can observe that the left-hand
side of the congruence in (3.1]) for y = 2 is non-zero. Hence, congruences
(3.1) with Lemma [3.1fi) imply

r?X r(r—1)
Tzeri

X>m(=+ve—1).

Also, if y # 3, then we can replace the rightmost side above by m? (= c—1).
(ii) Assume ¢ > 109 and 7 < ¢!/3. Tt suffices to show that the left-hand

side of the congruence in (3.1)) for y = 3 is non-zero. If z + @ x =1rm,
then the proof of (i) and Lemma 3.2 yield

X
Ve—1< o < 25 r(log ¢)?(log(69 7 log c))?
< 25¢3(log ¢)?(log(69 ¢*/ log ¢))?,
which contradicts the assumption ¢ > 10®. u

3.4. Lower bounds for r in terms of ¢

LEMMA 3.4. Assume ¢ > 10%. Let (z,y,2) # (2,2,7) be a solution to
[T1). Then r > c¢'/501. Moreover, if min{xz,y} > 4, then r > ¢'/*66,

Proof. We may assume r < ¢'/3. Then Lemmata and (ii) imply

c—1r3/ec—1—1<25r%logc)?(log(6972log c))?.

068 1/6.01

Combining this inequality with the assumption ¢ > 10°°, we have r > ¢
Similarly, if min{xz, y} > 4, then c—1 < 25r*(log c¢)?(log(69 72 log c))?, which

implies 7 > ¢1/466,

3.5. Prime factors of ¢

LEMMA 3.5. Let (z,y,2) # (2,2,7) be a solution to (1.1)). Then:

(i) 7 < 4-10° c. Moreover, if ¢ > 109 then r < 5341 c.
(i) Assume c > 10%8. Let p be any prime factor of c. If min{z,y} > 4,
then p > /496 /76000.

Proof. By [Lu, Lemma 5(v)], we know x # y. As in the proof of [Lul
Lemma 7(iii)], we see that

[ = a4T|$—y| 2_4‘33—2," —1=0 (HlOd B[r/ﬂ),
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where « = m + /=1 and 8 = m — /—1. Let p be any prime factor of
c=m?+ 1. Since p = 1 (mod 4), we can write p = 77 with 7 # 7, where 7
is a prime in Z[y/—1], and 7 is the complex conjugate of 7. We may assume
that 7 divides 5. We will apply Proposition with (a1, a2) = (a,2) and
(b1,b2) = (4r|x — y|, —4|z — y|). Observe that D = 2 and g is a divisor of
p — 1. We may take (Hi, Ha) = ((logc)/2, (logp)/2). It follows that
192plogc
(logp)?

where O’ = 8r|z —y|/logp+ 8|z —y|/log c. We may assume r > 5341 c. Then,
from Lemma [3.2] we see that

8X(r+1)
— . (1 . A4
logp (logp) - exp(0.4)

< 400 exp(0.4) 72 (r + 1)(log ¢)*(log(69 r? log ¢))? < r°.

(max{logh + loglog p + 0.4, 5log p})*,

v - (logp) - exp(0.4) <

Hence,

r 4800 plog ¢
(logr)? = (logp)?

Since 5 < p < ¢, we have 7/(logr)? < 4800 ¢/(logc)?. Write 7 = Cc. Then
C < 4800(1 + (logC)/log c)?. Since ¢ > 5, we have C < 4 - 105, which can be
replaced by C < 5341 if ¢ > 10%8.

(ii) By Lemma we may assume p < r. With the notation in (i), we
see from Lemmata and that v’ - (logp) - exp(0.4) < r°, and so (3.2)
holds. Write ¢1/466 = C’p. Then C’ < 22368(1+ (logC’)/log p)®. Since p > 5,
we have C’ < 4-107. Hence, p > ¢'/4%6 /(4.107) > 107, and so ' < 1.2-10°.
Repeating this process twice, we obtain C' < 76000. m

(3.2)

3.6. Accurate estimates for loga and logb

LEMMA 3.6. Assume ¢ > 109, Let (z,y,2) # (2,2,7) be a solution to
(1.1). Then

max{; logc —loga, g log ¢ — log b} < 17.04(log C)3~

Proof. Write
loga — (r/2)logc =log|I'| —log2 (< 0),

where I' = 7" 4+ 1 with v = g;\/}i We may assume |I’| < 1/3. Then

there exists a non-negative integer j with j < r + 2 such that |I'| > |A|/2
with A := rlog~y — jlog(—1), where the former log denotes the principal
determination of the logarithm, and the latter denotes a determination such
that log(—1) = +my/—1. We define 6 € [0,7/2] by tanf = mQQT-I' If j =0,
then log [A| = log(rf) > —0.4 log ¢, where the last inequality follows from
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Lemma [3.4] Hence, we may assume j > 0. We will apply Proposition
with (a1, 0) = (v,—1) and (b1,be) = (r/do, j/do), where dy = ged(r, j).
For this, we choose the parameters as follows:

L=loge, p=4.07, n=0.93, K = [LHH,],

Ry =[L/2], S1 =2, Ry =[LH>], S2=[(1+ (K —1)L)/Rs],
where we take (Hi, Ha) = (p|log | +1logc, p). Let us check both conditions
(I) and (IT). The first inequality in (I) clearly holds. Also, using ¢ > 1058
and 7 < 5341 ¢ by Lemma [3.5(i), we can verify (II). It remains to establish

the second inequality in (I). For this, we will show r/dy > Ry. Suppose
r/dyp < Ry = [LH3]. Then since (r/dy)f is very small, we see from Lemma

[3.4] that
log |A] = log do + log|(r/do)log v — (j/do) log(—1)]
> log(r/(pmloge)) + log|(r/do)0 = (j/do)m| > 18 + log 3,
which is clearly absurd. Hence, by = r/dy > Rs. Now, we suppose that
ubs + vby = ulbz + v’b1
for some integers u,u’,v,v" such that 0 < u,u’ < Ry and 0 < v,v" < Ss.
This implies bo(u — u') = 0 (mod b1), and so u — v’ = 0 (mod by), as
ged(by, b2) = 1. Since by > Ry and |u —u/| < Ra, we find u = v/, and v = v'.
This shows that the second inequality in (I) holds.
Then, we have

LS|A|/(25) LR|A[/(2r)
—u(log p) KL <log|A/dy| + log max{ LSe Lfe }

2j/d0 ’ 27’/d0
LT|A|
2bsdy

<log |A| +log(LT) + log(2b3)

LT
< log |A]| +log(LT) + - - log 2,
where (T,b3) € {(R,r/dp), (S,7j/dp)}. Since L > 68log 10, we find
R = (L/Q—‘ + {LH2~| —1< (1/2+H2)L+ 1<6.3L,
S=[(1+(K—-1)L)/Ry] +1< KL/Ry+2< LHy+1/H+2 < 1.01 L*.

Hence, log |A] is greater than

1.01L3
— u(log p)[LHHy| L — log(1.01 L3) — + log 2
p(logp) log(1.01L3) 1.01 log2) .4
>—<1.0017r,up10g(,0)+ 72 + 3 + 5 T I8 L

> —17.03 L3.

Similarly, we have the desired estimate for logb. =
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3.7. Bounding X and A
LEMMA 3.7. Assume ¢ > 1098, Let (z,y,2) # (2,2,7) be a solution to

(1.1). Then:
(i) X < 7-10%logc. Moreover, if min{x,y} < 4, then X < 2522logc.
(i) A < 34.2(logc)?X.

Proof. We only consider the case where a” < bY (the remaining case can
be dealt with similarly). Since ¢* < 2bY, we see |zlogc — ylogh| < log2.
Therefore, Lemma [3.6| gives

@—z loge
5 g

which together with Lemma [3.4] implies
(3.3) ry < (24 107°)z.

Put A := zlogc — ylogb. Observe A € (0,1). Then, as in the proof of
Lemma [3.2] Proposition [2.2] tells us that

llog A| < 12.67(log ¢)?(max{log b’ + 0.38,10})?,

where /' = y/logc+ z/logb (< (2y+0.02)/log ¢). On the other hand, we see
from Lemma [3.6] that

[log A| > ylogb — zloga = r(loge)(y —x)/2+ R (> 0),
where |R| < 34.1(log ¢)? X. Hence,

= Kglogc— logb)y — (zlogc — ylogh)| < 17.1(log c)3y,

68.2(log c)?

(3.4) |z — y| < 25.2(log ¢)(max{log s, 10})? + "

X,

where
s 2exp(0.38)
logc
(i) First, let us consider the case min{z,y} < 4. Inequality implies
<1 ~ 68.2(log c)?
r

(X +0.01).

>X < 3+ 25.2(log ¢)(max{log s,10})?.

Since 7 > /691 by Lemma we have s < 73.77(max{log s, 10})2. Hence,
s < 7377 and X < 2522logc.

Next, we assume min{z,y} > 4. Then r > ¢'/4% by Lemma Let p
be any prime factor of c¢. Put I' := a**b~% — 1. We apply Proposition
with (a1, a2) = (a*,b*) and (b1, b2) = (x, —y). Observe that g is a divisor of
|z —y| (> 1), and set E = ry := [r/2]. We may take H; = Hy = 2rlogec. It
follows from ord,(I") > z that

215.27%(log c)?g
r{(logp)*

(max{log v’ + log(rq log p) + 0.4, 4r1 log p})z,
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where V" = (z + y)/(2rlogc). From Lemmata 3.2 and we see that

V' - (r1logp) - exp(0.4) <

(1 - exp(0.4
Toge (r11ogp) - exp(0.4)

< 37.57%(log c)?(log (697 log c)) 2 <52
Hence, Lemma [3.5{(ii) yields
6886.4(log c)?

(3.5) (Tog (/465 176000))2 rg < 3.4-10°r|x — y|.
In view of 7, we have
(3.6) y < 1.73 - 107 (log ¢)(max{log s, 10})? + 0.46 X.
Since Lemma [3.6] gives
logb r/2

<(1+3-107*
logay r/2—17.03(logc)2y (1+ )y

it follows from (3.6]) that s < 3.3-107(max{log s, 10})2. Hence, s < 1.9-10%°
and X < 7-10%loge.

(ii) The desired estimate for A follows easily from ¢* > min{a,b}* to-
gether with Lemmata 3.1} E( ) and |3.6} . "

3.8. The end of the proof. We assume r > 1074 or m > 1034, Suppose

that there exists a solution (x,y, z) # (2,2,7) to . By Lemma [3.5(i), we
have ¢ > 10%. We will consider the cases min{z, y} >4 and mln{x, y} <4

separately.
Suppose min{z,y} > 4. By Lemmatau and |3 - we have

c—1<35-10%2loge.
Since A > 0 by Lemma[3.1f(i), we see that Lemmata [3.1]ii), [3.6] and [3.7] yield
1 c—1
3.5-10%logc
048

—17.04(logc)? < A < 239.4-10°(log ¢)?,
which gives ¢ < 1 a contradiction.

Suppose min{z,y} < 4. By Lemmatau and (3 - we have
Ve—1<1261r%loge.

As in the preceding case, we find

1 ve—1
1261logc
057

— 17.04(log ¢)? < 86252.4(log c)?,

which gives ¢ < 1
rem [I11

, a contradiction. This completes the proof of Theo-
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