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1. Introduction. Let p, q, r ∈ Z≥2. The equation

(1.1) xp + yq = zr

is known as the generalized Fermat equation (or the Fermat–Catalan equa-
tion) with signature (p, q, r) (and unit coefficients). As in Fermat’s Last
Theorem, one is interested in integer solutions x, y, z. Such a solution
is called non-trivial if xyz 6= 0, and primitive if x, y, z are coprime. Let
χ = p−1 + q−1 + r−1. The parametrization of non-trivial primitive integer
solutions for (p, q, r) with χ ≥ 1 has now been completed [12]. The General-
ized Fermat Conjecture [9], [10] is concerned with the case χ < 1. It states
that the only non-trivial primitive integer solutions to (1.1) with χ < 1 are
given by

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072,

338 + 15490342 = 156133.

The Generalized Fermat Conjecture has been established for many signa-
tures (p, q, r), including several infinite families of signatures. For exhaustive
surveys see Cohen’s book [6, Chapter 14], or [1].

Many of the equations are solved using the modular approach to Dio-
phantine equations. If we restrict ourselves to Frey curves over Q and the
signature (p, q, r) with χ < 1 consisting of only primes, then the only signa-
tures (up to permutation) for which a Frey curve is known are given by

(l, l, l), (l, l, 2), (l, l, 3), (2, 3, l), (3, 3, l), (5, 5, l), (7, 7, l)
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where l is a prime (≥ 5, 5, 5, 7, 5, 2, 2 respectively to ensure that χ < 1). These
Frey curves are all already mentioned in [9]. For all but the last two signa-
tures, these Frey curves have been used to completely solve at least one Gen-
eralized Fermat equation (with unit coefficients, as always throughout this
paper). In fact, the first three cases have completely been solved. The (l, l, l)
case corresponds of course to Fermat’s Last Theorem [28] (with exponent
l ≥ 5), and the (l, l, 2) and (l, l, 3) cases have been solved for l ≥ 7 by Dar-
mon and Merel [11] using a modular approach and for l = 5 by Poonen [16]
using descent on elliptic curves and Jacobians of genus 3 cyclic covers of the
projective line. The (2, 3, l) case has only been solved (recall that we have
now restricted ourselves to primes l ≥ 7) for l = 7 using a combination of
the modular approach and explicit methods (including Chabauty–Coleman)
for determining Q-rational points on certain genus 3 curves (twists of the
Klein quartic); see [17]. Finally the (3, 3, l) case is solved for a set of prime
exponents l with Dirichlet density ≥ 0.628, and all l ≤ 109; see [5].

One feature that is common to the Frey curves associated to the first
five signatures is that evaluating the Frey curve at a trivial solution gives
either a singular curve, or an elliptic curve with complex multiplication. This
is one of the main reasons why the first three signatures can be dealt with
for all relevant prime exponents and why in the (3, 3, l) case so many prime
exponents l can be handled. In the latter case the main obstruction to solving
the equation completely is because of the Catalan solution (which is actually
only present for l = 2, but nevertheless still forms an obstruction for larger
primes l). The Catalan solution also forms an obstruction for the (2, 3, l)
case, but here there are many other difficulties.

The main reason why the Frey curves associated to signature (5, 5, l) or
(7, 7, l) have not been used before to completely solve a generalized Fermat
equation is probably that evaluating the Frey curve at a (primitive) trivial
integer solution does not always give a singular or CM curve. In fact, only
(±1)5 + (∓1)5 = 0l leads to a singular curve (throughout this paper, when
± or ∓ signs are present in a formula, they are meant to correspond in
the obvious way within the formula). The modular approach however still
gives a lot of non-trivial information. This allows us to combine the modular
approach with the method of Chabauty–Coleman and descent techniques to
solve three new cases of the generalized Fermat equations

x5 + y5 = zl,(1.2)

x7 + y7 = zl.(1.3)

In fact, the only values for which these equations have already been solved
are covered by the first three families of exponent triples: (5, 5, 2) and (5, 5, 3)
are solved by Poonen, (7, 7, 2) and (7, 7, 3) are solved by Darmon and Merel,
while the cases (5, 5, 5) and (7, 7, 7) are of course special cases of Fermat’s
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Last Theorem, and the modular method using a Frey curve for exponent
(l, l, l) works for these two special cases as well (of course there are classical
descent proofs: exponent 5 was first solved around 1825 independently by
Legendre and Dirichlet, exponent 7 was first solved around 1839 by Lamé).
We see that the first two open cases for (1.2) and (1.3) are the signatures
(5, 5, 7) and (7, 7, 5) respectively. In this paper we shall solve these equations,
as well as the equation with signature (5, 5, 19).

Theorem 1. Let l = 7 or l = 19. Then the only solutions to the equation

x5 + y5 = zl

in coprime integers x, y, z are (±1,∓1, 0), (±1, 0,±1), and (0,±1,±1).

Theorem 2. The only solutions to the equation

(1.4) x7 + y7 = z5

in coprime integers x, y, z are (±1,∓1, 0), (±1, 0,±1), and (0,±1,±1).

To prove Theorem 1, we exploit the fact that the associated Frey curve
evaluated at a primitive trivial integer solution with z = 0 gives a singular
curve in order to solve (1.2) when 5 | z for all primes l. For the remaining
case 5 - z, we relate primitive integer solutions of (1.2) with l = 7 and l = 19
to Q-rational points on a curve of genus 3 and 9 respectively, which we are
able to determine using Chabauty–Coleman. For Theorem 2, we relate prim-
itive integer solutions of (1.4) toK-rational points on genus 2 curves over the
totally real cubic fieldK = Q(ζ+ζ−1) where ζ is a primitive 7th root of unity.
Our factorization argument leads us in fact to 50 5-tuples of such genus 2
curves for which we need to determine the K-rational points for at least one
curve per 5-tuple. We shall use the modular approach to rule out all but two
of the 5-tuples of genus 2 curves. For the remaining two 5-tuples of curves,
we were able to determine enough K-rational points using the method of
Chabauty–Coleman to finish the proof of Theorem 2. We used the computer
package MAGMA [2] for all our calculations. The MAGMA scripts we refer to in
this paper are posted at www.few.vu.nl/~sdn249/sumsofpowers.html.

Many of our computations depend on class group and unit group compu-
tations, which become significantly faster under assumption of the general-
ized Riemann hypothesis for Dedekind zeta functions (abbreviated as GRH
from now on). As it turns out, assuming GRH, we can also deal with the
exponents (5, 5, 11), (5, 5, 13), and (7, 7, 11).

Theorem 3. Assume GRH. If l ∈ {11, 13}, then (1.2) has no non-trivial
primitive integer solutions. If l = 11, then (1.3) has no non-trivial primitive
integer solutions.
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2. Preliminaries

2.1. The method of Chabauty–Coleman. Chabauty–Coleman is a
method for bounding the number of K-rational points on a curve of genus
≥ 2 defined over a number field K, subject to certain conditions. We will
need Chabauty–Coleman for the proof of our Theorems 1–3, and so we pro-
vide in this section a brief sketch of the method. For details we recommend
the expository paper of McCallum and Poonen [15], as well as Wetherell’s
thesis [27], and Coleman’s original paper [7].

Let C/K be a smooth projective geometrically integral curve of genus
g ≥ 2, and let J be its Jacobian. It is convenient to suppose the existence
of K-rational points on C and fix one such point P0 ∈ C(K). We use P0 as
the base for our Abel–Jacobi embedding:

 : C → J, P 7→ [P − P0].

Let P be a prime of good reduction for C and denote by KP the P-adic com-
pletion of K. Write Ω(C/KP) for the KP-vector space of regular differentials
on C, and Ω(J/KP) for the corresponding space on J . Both these spaces
have dimension g, and the Abel–Jacobi embedding induces an isomorphism
∗ : Ω(C/KP) → Ω(J/KP); this is independent of the choice of the base
point P0, and we shall use it to identify the two spaces.

The method of Chabauty is based on the integration pairing

(2.1) Ω(C/KP)× J(KP)→ KP, (ω,D) 7→
D�

0

ω.

The Mordell–Weil group J(K) is contained in J(KP). Let r be its rank, and
write Ann(J(K)) for the KP-subspace of Ω(C/KP) that annihilates J(K)
in the above pairing. If r < g, then it has dimension at least g − r. Sup-
pose Ann(J(K)) is positive-dimensional and let ω be a non-zero differential
belonging to it. Denote by FP the residue class field of KP, let p be its char-
acteristic and let e denote the absolute ramification index of P. We scale ω
so that it reduces to a non-zero differential ω on the reduction C̃/FP. The
differential ω can be used to bound the number of K-rational points C(K).
In particular, if ω does not vanish at P ∈ C̃(FP) and e < p − 1, then there
is at most one K-rational point P on C that reduces to P modulo P.

Remark 2.1. In [21] a modified version of the above method is developed
where instead of the traditional r ≤ g − 1 condition of Chabauty–Coleman
the necessary condition of the new method is r ≤ [K : Q](g − 1). However,
as it turns out, the ‘classical’ Chabauty–Coleman method sketched above
suffices for our purposes.
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2.2. The modular approach. Our proofs will make heavy use of the
modular approach to Diophantine equations, involving Frey curves, mod-
ularity, Galois representations and level-lowering. For an introduction, the
reader can consult e.g. [6, Chapter 15] or [8, Chapter 2]. By a newform of
level N we will mean a cuspidal newform of weight 2 with respect to Γ0(N)
(so the character is trivial). A newform is always normalized by default
(i.e. the first Fourier coefficient of the expansion at the infinite cusp equals 1).

2.3. A standard factorization lemma. The following simple result
will be very useful when we are factorizing x5 + y5 and x7 + y7.

Lemma 2.2. Let p be an odd prime and x, y coprime integers. Write

Hp =
xp + yp

x+ y
.

Then g := gcd(x + y,Hp) = 1 or p. Consequently, g = p ⇔ p |xp + yp ⇔
p |Hp ⇔ p |x+ y. Moreover, p2 -Hp.

Proof. Let u = −(x+ y). Then using the binomial formula we get

Hp =
(y + u)p − yp

u
=

p∑
k=1

(
p

k

)
uk−1yp−k.

From the expression above we see that g | pyp−1. Since gcd(u, y) = gcd(x, y)
= 1, we get g | p. Furthermore, if p -u, then using p |

(
p
k

)
for k = 1, . . . , p− 1

we see that p -Hp. If p |u, then Hp ≡ pyp−1 (mod p2), which is non-zero
modulo p2 since p - y.

3. Proof of Theorem 1. In light of Lemma 2.2 it is natural to distin-
guish two cases: non-trivial primitive integer solutions to (1.2) with 5 - z on
the one hand, and those with 5 | z on the other hand. For the former case,
we relate non-trivial primitive integer solutions to (1.2) for some odd prime
l to determining Q-rational points on the hyperelliptic curve

(3.1) Cl : Y
2 = 20X l + 5.

Note that this curve has genus (l − 1)/2 and that

Cl(Q) ⊃ {∞, (1,±5)}.
Lemma 3.1. Let l be an odd prime. If

(3.2) Cl(Q) = {∞, (1,±5)},
then there are no non-trivial primitive integer solutions to (1.2) with 5 - z.

Proof. Suppose that x, y, z are non-zero coprime integers satisfying (1.2).
Then

(3.3) (x+ y)H5 = zl.
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For any odd prime p, we see that Hp is a symmetric binary form of even
degree in x, y, hence a binary form in x2 + y2 and (x + y)2. For p = 5 we
have explicitly

(3.4) 5(x2 + y2)2 = 4H5 + (x+ y)4.

We assume 5 - z. By Lemma 2.2 we have gcd(x + y,H5) = 1. Hence (3.3)
yields

(3.5) x+ y = zl1, H5 = zl2

where z1, z2 are coprime non-zero integers satisfying z = z1z2. Using iden-
tity (3.4) we have

5(x2 + y2)2 = 4zl2 + z4l1 .

Multiplying both sides by 5/z4l1 , we see that

P :=

(
z2
z41
,
5(x2 + y2)

z2l1

)
∈ Cl(Q).

Since z1 6= 0, we have P 6= ∞. If P = (1,±5), then we see that z2 = 1 and
z1 = ±1, which by (3.5) leads to xy = 0, a contradiction which proves the
lemma.

We expect that (3.2) holds for all primes l ≥ 7 (it holds for l = 5, but we
do not need this here). The cases we can prove at the present are summarized
as follows.

Proposition 3.2. If l = 7 or l = 19, then

Cl(Q) = {∞, (1,±5)}.

A proof, using 2-descent on hyperelliptic Jacobians and the method of
Chabauty–Coleman, is given in Section 3.1 below. In a similar fashion we can
reduce proving the non-existence of non-trivial primitive integer solutions
with 5 | z (to (1.2) for some odd prime l) to finding Q-rational points on a
twist of Cl; see Section 3.3. We can however deal with this case in a uniform
manner for all primes l ≥ 7 using the modular method; see Section 3.2.
Taking into account previously solved small exponent cases, we have in fact
a complete solution in the 5 | z case.

Proposition 3.3. Let l ≥ 2 be an integer. There are no non-trivial
primitive integer solutions to (1.2) with 5 | z.

Trivially, Lemma 3.1 and Propositions 3.2 and 3.3 together imply Theo-
rem 1.

3.1. Rational points on Cl. Let Jl denote the Jacobian of Cl and
gl = (l−1)/2 the genus of Cl (which equals the dimension of Jl). In order to
use Chabauty–Coleman to determine the Q-rational points on Cl for some l,
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it is necessary that the Chabauty condition, rank Jl(Q) < gl, is satisfied
and we need to compute a subgroup of finite index in the Mordell–Weil
group Jl(Q).

Before we go into the rank computations, we start with a description of
the torsion subgroup Jl(Q)tors of Jl(Q). The curve Cl, and hence its Jaco-
bian Jl, has good reduction away from 2, 5, l. For any odd prime p of good
reduction, the natural map

Jl(Q)tors → Jl(Fp)
is injective. In the rest of this section, l will always stand for a prime in the
range 7 ≤ l ≤ 19. Using MAGMA we find, for every prime l in our range, two
primes p1 6= p2 distinct from 2, 5, or l such that

gcd(#Jl(Fp1),#Jl(Fp2)) = 1.

This shows that for all these primes l we have Jl(Q)tors = {0}. To be concrete,
for l = 7, 11, 13, 17, 19 we can take (p1, p2) = (3, 43), (13, 23), (3, 53), (3, 103),
(7, 191) respectively.

As for the rank computations, MAGMA includes implementations by Nils
Bruin and Michael Stoll of 2-descent on Jacobians of hyperelliptic curves
over number fields; the algorithm is detailed in Stoll’s paper [25]. Using this
we were able to compute the 2-Selmer ranks of Jl/Q for the primes l in our
range (and no further, not even assuming GRH). The values are given in
Table 1 below together with the time it took to compute them on a machine

Table 1. Rank bounds for the Jacobian of Cl

l dimF2 Sel
(2)(Q, Jl) Time

7 1 0.4 s
11 2 3 s
13 2 23 s
17 2 4821 s ≈ 1.3 h
19 1 109819 s ≈ 30.5 h

with two Intel Xeon dual core CPUs at 3.0 GHz. We want to stress that the
MAGMA routine TwoSelmerGroup involved makes use of the pseudo-random
number generator of MAGMA. So the exact time also depends on the seed.
From the usual exact sequence

0→ Jl(Q)/2Jl(Q)→ Sel(2)(Q, Jl)→X(Q, Jl)[2]→ 0

together with the fact that Jl(Q) has no 2-torsion, we get

rank Jl(Q) = dimF2 Sel
(2)(Q, Jl)− dimF2 X(Q, Jl)[2](3.6)

≤ dimF2 Sel
(2)(Q, Jl).
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Let D = [(1, 5) −∞]; then D is a non-zero element of Jl(Q) and therefore
(remembering that Jl(Q)tors = {0}) has infinite order. This shows that

rank Jl(Q) ≥ 1.

In particular, we deduce from the 2-Selmer ranks of Jl/Q in Table 1 that for
l = 7, 19 we have rank Jl(Q) = 1 and D generates a subgroup of finite index
in Jl(Q).

Remark 3.4. Assume that X(Q, Jl) is finite. As Cl(Q) 6= ∅, it follows
from the work of Poonen and Stoll [18] that the Cassels–Tate pairing on
X(Q, Jl) is alternating, and so #X(Q, Jl) is a square. In this case, we
find from the equality in (3.6) that rank Jl(Q) and dimF2 Sel

(2)(Q, Jl) have
the same parity. Together with the fact that rank Jl(Q) ≥ 1 we now see
that we can read off rank Jl(Q) from Table 1 (still assuming the finiteness
of X(Q, Jl), or actually just of the 2-part).

Remark 3.5. Instead of using 2-descent on Jl/Q, we can also apply [24],
[26] to get an upper bound for rank Jl(Q) using (1− ζl)-descent on Jl/Q(ζl).
It turns out that for l = 7, 11 this gives the same upper bound for rank Jl(Q)
as given by Table 1 (namely 1 and 2 respectively). For l = 13, 17, 19, however,
the upper bounds obtained from (1− ζl)-descent are strictly larger than the
bounds given by Table 1.

For l = 7, 19 both the Chabauty condition is satisfied and we have explic-
itly found a subgroup of finite index in the Mordell–Weil group Jl(Q). We
are thus in a position to use the method of Chabauty–Coleman to determine
Cl(Q) for these l.

Proof of Proposition 3.2. Let l ∈ {7, 19} and let Jl denote, as before, the
Jacobian of Cl. We already know that rank Jl(Q) = 1 and D := [(1, 5)−∞]
∈ Jl(Q) generates a subgroup of finite index in Jl(Q). We shall apply the
method of Chabauty–Coleman, sketched in Section 2.1, with p = 3. A basis
for Ω(Cl/Q3) is given by Xi dX

Y with i = 0, 1, . . . , gl−1 = (l−3)/2. For l = 7
we find

D�

0

dX

Y
≡ 3 · 40,

D�

0

X
dX

Y
≡ 32 · 25,

D�

0

X2 dX

Y
≡ 32 · 13 (mod 35).

For l = 19 we find the following congruences modulo 35:(D�
0

Xk dX

Y

)8

k=0

≡ (3 · 43, 3 · 76, 3 · 16, 3 · 22, 3 · 65, 3 · 74, 32 · 17, 32 · 23, 32 · 22);

for hints on the evaluation of p-adic integrals see [27] (especially Sec-
tion 1.9). Using these values, one can easily approximate an explicit basis
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for Ann(Jl(Q)) in both cases. However, it is enough to notice that

ord3

(D�
0

dX

Y

)
= 1, ord3

(D�
0

Xgl−1 dX

Y

)
= 2.

Thus we can find some ωl ∈ Ann(Jl(Q)) of the form

ωl = 3αl
dX

Y
+Xgl−1dX

Y
, αl ∈ Z3, ord3(αl) = 0.

We reduce to obtain a differential on C̃l/F3,

ωl = Xgl−1dX

Y
.

The differential ωl does not vanish at any of the four points of Cl(F3):

Cl(F3) = {∞, (1, 1), (1, 2), (2, 0)}.
It follows that for each P̃ ∈ Cl(F3) there is at most one P ∈ Cl(Q) that
reduces to P̃ . Now the rational points ∞, (1, 5), and (1,−5) respectively
reduce to ∞, (1, 2), (1, 1).

To complete the proof it is sufficient to show that no Q-rational point
reduces to (2, 0). One way of showing this is to use the Mordell–Weil sieve [4].
Here is a simpler method. Note that (2, 0) lifts to (γ, 0) ∈ Cl(Q3) where γ
is the unique element in Q3 satisfying γl = −1/4. Now the divisor D′ =
(γ, 0)−∞ has order 2 in Jl(Qp), and hence belongs to the left-kernel of the
pairing (2.1). If there is a Q-rational point that reduces to (2, 0), then that
would force ωl to vanish at (2, 0). This completes the proof. Further details
can be found in our MAGMA script Chabauty55l.m.

3.2. A modular approach to x5+y5 = zl when 5 | z. The purpose of
this section is to give a proof of Proposition 3.3. Let (x, y, z) be a primitive
integer solution to (1.2) with z 6= 0 for some prime l ≥ 7 and assume 5 | z.
In this case Lemma 2.2 gives us gcd(x+ y,H5) = 5 and 52 -H5. Hence (3.3)
yields

5(x+ y) = zl1, H5 = 5zl2

where z1, z2 are coprime non-zero integers satisfying z = z1z2.
Kraus [14, pp. 329–330] has constructed a Frey curve for the equation

x5 + y5 = zl. Following Kraus, we associate to our solution (x, y, z) to (1.2)
the Frey elliptic curve

E′x,y : Y
2 = X3 + 5(x2 + y2)X2 + 5H5(x, y)X.

Since we are assuming that 5 | z, we have 5 |H5(x, y). So the quadratic twist
over Q(

√
−5) given by the following model has integer coefficients:

Ex,y : Y
2 = X3 − (x2 + y2)X2 +

H5(x, y)

5
X.
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We record some of the invariants of Ex,y:

c4 = 24 · 5−1 · (2x4 + 3x3y + 7x2y2 + 3xy3 + 2y4) ∈ Z,
c6 = 25 · 5−1 · (x2 + y2)(x4 + 9x3y + 11x2y2 + 9xy3 + y4) ∈ Z,
∆ = 24 · 5−3 · (x+ y)4H2

5 = 24 · 5−5 · (z21z2)2l ∈ Z,

j =
28 · (2x4 + 3x3y + 7x2y2 + 3xy3 + 2y4)3

(x+ y)4H2
5

.

Lemma 3.6. The conductor N and minimal discriminant ∆min of Ex,y
satisfy

• N = 2α5Rad{2,5}(z) where α ∈ {1, 3, 4} and Rad{2,5}(z) is the product
of the distinct primes not equal to 2 or 5 dividing z;
• if 2 - z, then ∆min = ∆, and if 2 | z, then ∆min = ∆/212.

Proof. Recall that x, y are coprime. The resultant of x5 + y5 and 2x4 +
3x3y + 7x2y2 + 3xy3 + 2y4 is 55. Thus any prime p 6= 2, 5 dividing z cannot
divide c4 and divides ∆, and must therefore be a prime of multiplicative
reduction. Using 5 | z, we see that 5 |∆ and 5 - c4. So 5 is also a prime of
multiplicative reduction. Thus the conductor N is 2α5Rad{2,5}(z) for some
α ∈ Z≥0. We also see that the model for Ex,y is minimal at any prime p 6= 2.

If 2 - z, then ord2(∆) = 4, ord2(c6) = 5, and ord2(c4) ≥ 5. So in this
case the model for Ex,y is minimal at 2, and a straightforward application
of Tate’s algorithm [22, Section IV.9] gives α ∈ {3, 4}. Finally, if 2 | z, then
ord2(∆) ≥ 32 and ord2(c4) = 4. A straightforward application of Tate’s
algorithm shows that the model for Ex,y is not minimal at 2 and we get a
new model E′ that is integral at 2 with ord2(∆

′) = ord2(∆) − 12 ≥ 20 and
ord2(c

′
4) = ord2(c4)−4 = 0. So in this case Ex,y has multiplicative reduction

at 2 and ∆min = ∆/212.

For a prime l we write ρx,yl for the Galois representation on the l-torsion
of Ex,y:

ρx,yl : Gal(Q/Q)→ Aut(Ex,y[l]).

Lemma 3.7. For primes l ≥ 7 the representation ρx,yl is irreducible.

Proof. Since Ex,y has a rational 2-isogeny, a reducible ρx,yl (for an odd
prime l) would give rise to a non-cuspidal Q-rational point on the mod-
ular curve X0(2l). By work of Mazur et al. (see e.g. [8, Section 2.1.2])
this is impossible for primes l ≥ 11, and is only possible for l = 7 if
j ∈ {−33 · 53, 33 · 53 · 173}. Using our explicit formula for the j-invariant
of Ex,y we easily check that that there are no [x : y] ∈ P1(Q) giving rise to
one of these two values for j.
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Now applying modularity and level lowering we deduce the following.

Lemma 3.8. For primes l ≥ 7 the Galois representation ρx,yl arises from
a newform f of level N = 2α5 where α ∈ {1, 3, 4}.

Proof. By [3] we see that ρx,yl is modular of level N(Ex,y). Since by
Lemma 3.7, ρx,yl is also irreducible, we deduce by level lowering [19], [20]
that ρx,yl is modular of level N(Ex,y)/M where M is the product of all
primes p ‖N(Ex,y) with l | ordp(∆min(Ex,y)). The possible values forN(Ex,y)
and ∆min(Ex,y) can be read off from Lemma 3.6.

We used MAGMA to compute the newforms at these levels; MAGMA uses
Stein’s [23] algorithms for this. We found respectively 0, 1, and 2 newforms
at these levels, which are all rational. The (strong Weil) elliptic curves E0

corresponding to these newforms are E40a1, E80a1, and E80b1, where the
subscript denotes the Cremona reference. We wrote a short MAGMA script
Modular55l.m which contains these, as well as the remaining computations
of this section. Comparing traces of Frobenius as usual, gives the following.

Lemma 3.9. Suppose that ρx,yl ' ρE0
l for some prime l ≥ 7 and some E0

as above. Let p 6= 2, 5 be a prime.

• If p - z, then ap(E0) ≡ ap(Ex,y) (mod l).
• If p | z, then ap(E0) ≡ ±(1 + p) (mod l).

Proof. See e.g. [6, Propositions 15.2.2 and 15.2.3] or [8, Theorem 36].

We will now finish our intended proof.

Proof of Proposition 3.3. By Lemma 3.8 and the determination of new-
forms of level 2α5 where α ∈ {1, 3, 4}, we know that ρx,yl ' ρE0

l for some
prime l ≥ 7 and E0 one of E40a1, E80a1, E80b1. We will eliminate these three
possibilities for E0, which then proves the proposition. Let p 6= 2, 5 denote
a prime and define the sets

Ap := {p+ 1−#Ea,b(Fp) : a, b ∈ Fp, a5 + b5 6= 0}, Tp := Ap ∪ {±(1 + p)}.
Obviously, if p - z, then ap(Ex,y) ∈ Ap. Hence by Lemma 3.9 we have

(3.7) ap(E0) ≡ t (mod l) for some t ∈ Tp.
We compute

T3 = {±2,±4}.
However, E40a1 and E80a1 have full 2-torsion, and so a3(E40a1) = a3(E80a1)
= 0. Thus for l ≥ 7 prime and E0 one of E40a1 or E80a1, we see that (3.7)
with p = 3 does not hold, and consequently ρx,yl 6' E0. To deal with the
remaining case E0 = E80b1, we compute

T43 = {−44,−10,−8,−6,−2, 0, 2, 4, 6, 8, 12, 44}, a43(E80b1) = 10.
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Now (3.7) does not hold for any prime l ≥ 7, except for l = 17. So from now
on let l = 17. We deal with this case using the method of Kraus. For a prime
p ≡ 1 (mod l), let (F∗p)l denote the non-zero lth powers in Fp and define the
sets

A′p,l := {p+ 1−#Ea,b(Fp) : a, b ∈ Fp, 5(a+ b) ∈ (F∗p)l, H5(a, b)/5 ∈ (F∗p)l},
T ′p,l := A′p,l ∪ {±2}.

Now take p = 6 · 17 + 1 = 103. Since we are assuming ρx,y17 ' ρE0
17 (with

E0 = E80b1), Lemma 3.9 tells us that

(3.8) a103(E80b1) ≡ t (mod 17) for some t ∈ T ′103,17.
We compute

T ′103,17 = {−6,±2}, a103(E80b1) = −14,
and conclude that (3.8) does not hold, which completes the proof.

3.3. Necessity of the modular approach. Proving the non-existence
of non-trivial primitive integer solutions to (1.2) with 5 | z for some odd
prime l can be reduced to finding Q-rational points on the hyperelliptic
curve

Dl : Y
2 = 4X l + 52l−5.

Note that this curve has genus (l − 1)/2 and that

Dl(Q) ⊃ {∞}.
Lemma 3.10. Let l be an odd prime. If

(3.9) Dl(Q) = {∞},
then there are no non-trivial primitive integer solutions to (1.2) with 5 | z.

Proof. In this case Lemma 2.2 gives us gcd(x + y,H5) = 5 and 52 -H5.
Hence (3.3) yields

5(x+ y) = zl1, H5 = 5zl2

where z1, z2 are coprime non-zero integers satisfying z = z1z2. Using iden-
tity (3.4) we see that

5(x2 + y2)2 = 20zl2 + 5−4z4l1 .

Multiplying both sides by 52l−1/z4l1 gives(
5l(x2 + y2)

z2l1

)2

= 4

(
52z2
z41

)l
+ 52l−5.

Thus

P =

(
52z2
z41

,
5l(x2 + y2)

z2l1

)
∈ Dl(Q).

Since z1 6= 0, we have P 6=∞. This proves the lemma.
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Upper bounds for rank Jac(Dl)(Q) are given by the 2-Selmer ranks of
Jac(Dl)/Q; see Table 2. For l = 7 and l = 13 (and, assuming GRH, also for
l = 17) we conclude that rank Jac(Dl)(Q) = 0, so it is easy to determine
Dl(Q) for these values of l. Since our focus is on l = 7, 19, we give the details
for l = 7.

Remark 3.11. Instead of using 2-descent on Jac(Dl)/Q, we can also
apply [24], [26] to get an upper bound for rank Jac(Dl)(Q) using (1 − ζl)-
descent on Jac(Dl)/Q(ζl). It turns out that for l = 11 this gives the same
upper bound for rank Jac(Dl)(Q) as given by Table 2 (namely 3). For l =
7, 13, 17, 19, however, the upper bounds obtained from (1 − ζl)-descent will
be strictly larger than the bounds given by Table 2 (but one does not need
to assume GRH).

Table 2. Rank bounds for the Jacobian of Dl

l dimF2 Sel
(2)(Q, Jac(Dl)) (a) Time

7 0 1.4 s
11 3 2093 s
13 0 264613 s ≈ 3.1 days
17 0∗ 240 s
19 1∗ 723 s
(a) The ∗ indicates that the result is conditional on GRH.

Lemma 3.12. The only Q-rational point on D7 is the single point at
infinity.

Proof. Let J denote the Jacobian of D7. We shall show that J(Q) = {0}.
Since the Abel–Jacobi map

D7 → J, P 7→ [P −∞],

is injective, it will follow that D7(Q) = {∞}.
First we determine the torsion subgroup J(Q)tors of J(Q). The curve D7,

and hence its Jacobian J , has good reduction away from 2, 5, 7. For any
(necessarily odd) prime p of good reduction, the natural map

J(Q)tors → J(Fp)

is injective. Using MAGMA we find that

#J(F3) = 28, #J(F43) = 39929.

Since gcd(28, 39929) = 1, we deduce that J(Q)tors = {0}.
We have already seen that rank J(Q) = 0. It follows that J(Q) = {0},

which completes the proof.
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Let r := rank Jac(D19)(Q). We see from Table 2 that r ≤ 1 under the
assumption of GRH. Assuming the finiteness of X(Q, Jac(D19)) in addition
to GRH leads to r = 1. So in order to use the method of Chabauty–Coleman
to determine D19(Q), we must first of all prove that r = 1 (if true. . . ) and
next find a Q-rational point of infinite order on Jac(D19). Both tasks seem
quite challenging at the moment.

We conclude that the modular method is not necessary to prove Theo-
rem 1 for the case l = 7, but that for l = 19 we really do need it at this
point.

4. Proof of Theorem 2. In this section we shall be concerned with
the primitive integer solutions to (1.3) for primes l 6= 2, 3, 7. Although ulti-
mately we will only be able to (unconditionally) determine all the solutions
if l = 5, we will take a more general approach. The reason for doing this
is threefold. First of all, it is simply not much more work to consider more
values of l. Second, while we do not fully determine (unconditionally) all
primitive integer solutions to (1.3) for any prime l ≥ 11, we do obtain many
other partial results for l ≥ 11, which may be interesting in their own right.
Finally, in Section 5 we solve (1.3) for l = 11 assuming GRH, for which we
lay the foundations here.

4.1. Initial factorizations for x7+y7 = zl. Let (x, y, z) be a primitive
integer solution to (1.3) for some prime l 6= 2, 3, 7 and suppose that z 6= 0.
Recall that

H7(x, y) =
x7 + y7

x+ y
= x6 − x5y + x4y2 − x3y3 + x2y4 − xy5 + y6.

By Lemma 2.2, gcd(x+ y,H7(x, y)) = 1 or 7 and 72 -H7(x, y). Thus we can
again subdivide into two cases:

• If 7 - z, then

(4.1) x+ y = zl1, H7(x, y) = zl2, z = z1z2,

where z1, z2 are non-zero, coprime integers.
• If 7 | z, then

(4.2) 7(x+ y) = zl1, H7(x, y) = 7zl2, z = z1z2,

where z1, z2 are non-zero, coprime integers.

These factorizations do not seem to be sufficient to enable us to solve the
problem. Henceforth, ζ will denote a primitive 7th root of unity, L = Q(ζ)
and O = Z[ζ] the ring of integers of L. The class number of O is 1 and the
unit rank is 2. The unit group is in fact

{±ζi(1 + ζ)r(1 + ζ2)s : 0 ≤ i ≤ 6, r, s ∈ Z}.
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Moreover, 7 ramifies as 7O = (1 − ζ)6O. Now H7(x, y) = Norm(x + ζy).
From (4.1) and (4.2) we have

• If 7 - z, then
(4.3) x+ ζy = (1 + ζ)r(1 + ζ2)sβl, 0 ≤ r, s ≤ l − 1,

for some β ∈ Z[ζ].
• If 7 | z, then

(4.4) x+ ζy = (1− ζ)(1 + ζ)r(1 + ζ2)sβl, 0 ≤ r, s ≤ l − 1,

for some β ∈ Z[ζ].
Thus we have 2l2 ≥ 50 cases to consider. In the next section we will use

the modular approach to reduce the number of cases to just two for many
values of l, e.g. l = 5, 11.

4.2. A modular approach to x7 + y7 = zl. Consider the subset of
primes

L7 := {primes l : l 6= 2, 3, 7 and l < 100}.
The purpose of this section is to prove the following proposition.

Proposition 4.1. Let (x, y, z) be a primitive integer solution to (1.3)
with z 6= 0 and l ∈ L7. If 7 - z, then (4.3) holds with r = s = 0. If 7 | z, then
(4.4) holds with r = s = 0.

Let (x, y, z) be a primitive integer solution to (1.3) with z 6= 0 for some
prime l ≥ 5, l 6= 7. Kraus [14, pp. 329–330] constructed a Frey curve for the
equation x7+y7 = zl. Following Kraus, we associate to our solution (x, y, z)
to (1.3) the Frey elliptic curve

Ex,y : Y
2 = X3 + a2X

2 + a4X + a6,

where

a2 = −(x− y)2, a4 = −2x4 + x3y − 5x2y2 + xy3 − 2y4,

a6 = x6 − 6x5y + 8x4y2 − 13x3y3 + 8x2y4 − 6xy5 + y6.

We record some of the invariants of Ex,y:

c4 = 24 · 7(x4 − x3y + 3x2y2 − xy3 + y4),(4.5)

c6 = −25 · 7(x6− 15x5y+15x4y2− 29x3x3 +15x2y4− 15xy5 + y6),(4.6)

∆ = 24 · 72H7(x, y)
2, j =

28 · 7(x4 − x3y + 3x2y2 − xy3 + y4)3

H7(x, y)2
.(4.7)

Lemma 4.2. The conductor N and minimal discriminant ∆min of Ex,y
satisfy

• N = 2α72Rad(z2) where α = 2 or 3 and Rad(z2) is the product of the
distinct primes dividing z2 (and 2, 7 - z2);

• ∆min = ∆.
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Proof. Recall that x, y are coprime. The resultant of H7(x, y) and
x4 − x3y + 3x2y2 − xy3 + y4 is 72. Thus any prime p 6= 2, 7 dividingH7(x, y)
cannot divide c4 and divides ∆, and must therefore be a prime of multiplica-
tive reduction. We know that H7(x, y) = 7zl2 or H7(x, y) = zl2. Moreover,
72 -H7(x, y), so 7 - z2. Thus the conductor N is Rad(z2) up to powers of 2
and 7. We also see that the model for Ex,y is minimal at any prime p 6= 2, 7.

Now ord7(∆) = 4 or 2. Hence the model for Ex,y is minimal at 7.
Since 7 | c4, we see that Ex,y has additive reduction at 7, and so ord7(N) = 2.

Finally, as x, y are coprime we quickly get ord2(c4) = 4, ord2(c6) = 5 as
well as ord2(∆) = 4. Thus the model for Ex,y is also minimal at 2 and we
conclude that ∆min = ∆. Note that Ex,y = Ey,x. Without loss of generality
we may suppose that either x is even or z is even. Applying Tate’s algorithm
[22, Section IV.9] shows the following:

(a) if 2 | z, then ord2(N) = 3;
(b) if 2 ‖x, then ord2(N) = 3;
(c) if 4 |x, then ord2(N) = 2.

This completes the proof.

We shall write ρx,yl for the Galois representation on the l-torsion of Ex,y:

ρx,yl : Gal(Q/Q)→ Aut(Ex,y[l]).

Lemma 4.3. For l = 5 or primes l ≥ 11 the representation ρx,yl is irre-
ducible.

Proof. If l = 11 or l ≥ 17, then, by work of Mazur et al. on the Q-rational
points of X0(l), the irreducibility follows by checking that the j-invariant of
Ex,y does not belong to an explicit list of 11 values; see e.g. [8, Theorem 22].

Now let l ∈ {5, 13} and suppose that ρx,yl is reducible. Then the
j-invariant of Ex,y must be in the image of X0(l)(Q) under the j map
X0(l)→ X(1). In [8, Section 3.2] this j map is given explicitly as

(4.8) j =

{
(t2 + 10t+ 5)3/t if l = 5,
(t4 + 7t3 + 20t2 + 19t+ 1)3(t2 + 5t+ 13)/t if l = 13.

In other words, this equation must have a Q-rational solution t where j is
the j-invariant of Ex,y. It is clear from (4.7) that ord2(j) = 8. It is easy to see
that this is impossible from (4.8). This completes the proof. Alternatively,
the irreducibility for l ∈ {5, 13} follows immediately from [8, Theorem 60
and Table 3.1] with F (u, v) = u3 − u2v − 2uv2 + v3 and the remark that
F (x2 + y2, xy) = H7(x, y).

Using Lemmata 4.2 and 4.3 we can apply modularity [3] and level low-
ering [19], [20] as usual, to deduce the following.
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Lemma 4.4. For a prime l 6= 2, 3, 7, the Galois representation ρx,yl arises
from a newform f of level N = 2α72 where α = 2 or 3.

We again used MAGMA to compute the newforms at these levels. We found
respectively 3 and 8 newforms (up to Galois conjugacy) there. Of these,
2 and 6 respectively are rational newforms and therefore correspond to el-
liptic curves. We wrote a short MAGMA script Modular77l.m which contains
them, as well as the remaining computations of this section. Our first step
is to eliminate as many of the newforms above as possible.

Lemma 4.5. Suppose ρx,yl arises from a newform

(4.9) f = q +
∑
i≥2

ai(f)q
i.

Let K = Q(a2(f), a3(f), . . . ) be the number field generated by the coefficients
of f . Let p 6= 2, 7 be prime. If K 6= Q, we also impose p 6= l.

• If p - z2, then l |NormK/Q(ap(Ex,y)− ap(f)).
• If p | z2, then l |NormK/Q((p+ 1)2 − ap(f)2).
Proof. This follows from comparing traces of Frobenius; see e.g. [6, Pro-

positions 15.2.2 and 15.2.3] or [8, Theorem 36].

Specializing Ex,y at a trivial primitive integer solution with xy = 0 (i.e.
(x, y) = (±1, 0) or (0,±1)) yields E196a1, and specializing at a trivial primi-
tive integer solution with z = 0 (i.e. (x, y) = (±1,∓1)) yields E392c1. Using
the basic congruences from the lemma above, we can quickly eliminate all
the (Galois conjugacy classes of) newforms at the levels 196 and 392 for all l
simultaneously, except of course the two newforms corresponding to the two
elliptic curves we just obtained by specialization of Ex,y.

Lemma 4.6. For a prime l 6= 2, 3, 7, the Galois representation ρx,yl arises
from E196a1 or E392c1.

Proof. By Lemma 4.4 we see that ρx,yl arises from a newform f of level
2α72 where α = 2 or 3. Let p 6= 2, 7 denote a prime and define the sets

Ap := {p+ 1−#Ea,b(Fp) : a, b ∈ Fp, H7(a, b) 6= 0},

Tp :=

{
Ap if p 6≡ 1 (mod 7),
Ap ∪ {±(1 + p)} if p ≡ 1 (mod 7).

Obviously, if p - z2, then ap(Ex,y) ∈ Ap. Furthermore, p ≡ 1 (mod 7) if and
only if p splits completely in Z[ζ] if and only ifH7(a, b) = 0 for some a, b ∈ Fp
not both zero (for this last step we use p 6= 7). So we deduce from Lemma 4.5
that for any prime p 6= 2, 7,

(4.10) l |NormK/Q(ap(f)− t) for some t ∈ Tp
or, in case K 6= Q, that l = p.
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If f is not rational, then we compute that a3(f) ∈ {±
√
2,±
√
8} and

T3 = {−1, 3}. In this case (4.10) with p = 3 reduces to l = 7, hence l = 7 or
l= p=3. Since l=3, 7 are values outside our consideration, we conclude that
we have eliminated the possibility that ρx,yl arises form a non-rational new-
form. Similarly, for any rational newform f (of level 2α72 where α ∈ {2, 3})
not corresponding to either of E196a1, E392c1, we can find a single prime
p ≤ 23, p 6= 2, 7, such that (4.10) does not hold for any prime l 6= 2, 3, 7.
To be specific, for the rational newforms corresponding to an elliptic curve
whose isogeny class has Cremona reference one of 196b, 392a, 392b, 392f we
can take p = 3, and for the isogeny classes given by 392e, 392d we can take
p = 11, 13 respectively.

So far we have not distinguished between the cases 7 - z and 7 | z. To refine
the lemma above with respect to these two cases we can use the following.

Lemma 4.7. Let E1, E2 be elliptic curves over Q with potentially good re-
duction at a prime p ≥ 5. If gcd

(
12, ordp(∆(E1))

)
6= gcd

(
12, ordp(∆(E2))

)
,

then for all primes l 6= 2, p we have ρE1
l 6' ρ

E2
l .

Proof. This follows by comparing images of inertia; see e.g. [13].

We can now strengthen Lemma 4.6 as follows.

Lemma 4.8. Let l 6= 2, 3, 7 be prime. If 7 - z, then ρx,yl arises from E196a1.
If 7 | z, then ρx,yl arises from E392c1.

Proof. Considering F := x4 − x3y + 3x2y2 − xy3 + y4 modulo 7, we
deduce that 7 |F if and only if 7 |H7. Since 72 -H7, we find from the in-
variants of Ex,y that ord7(j) ≥ 1, so Ex,y has potentially good reduction
at 7. Furthermore, if 7 - z, then ord7(∆) = 2, and if 7 | z, then ord7(∆) = 4.
The curves E196a1 and E392c1 also have potentially good reduction at 7, and
finally ord7(∆(E196a1)) = 2 and ord7(∆(E392c1)) = 4. The assertion follows
from Lemma 4.7.

Remark 4.9. To prove Lemma 4.8 we used image of inertia arguments.
It turns out that one can also eliminate E196a1 when 7 | z for, say, l < 100
with a simple application of Kraus’ method. The curve E392c1 (when 7 - z) is
not susceptible to this method.

We now turn our attention to a result involving the exponents (r, s)
in (4.3) and (4.4), after which we will complete the proof of Proposition 4.1.

Lemma 4.10. Let E0/Q be an elliptic curve, let p 6= 2, 7 be prime, let
l 6= 2, 3, 7 be prime, and let g ∈ {1, 7}. Denote by Ag(E0, p) the set of
(a, b) ∈ F2

p − {0, 0} such that (a + b)g and H7(a, b)/g are both lth powers
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in Fp, and

• either H7(a, b) 6= 0 and ap(E0) ≡ ap(Ea,b) (mod l),
• or H7(a, b) = 0 and ap(E0)

2 ≡ (p+ 1)2 (mod l).

Let P1, . . . ,Pm be the prime ideals of Z[ζ] dividing p. Write κi for the residue
class field Z[ζ]/Pi and πi for the corresponding natural map

πi : Z[ζ]/pZ[ζ]→ κi.

Denote by Bg(E0, p) the set of pairs (µ, η) with 0 ≤ µ, η < l such that there
exists (a, b) ∈ Ag(E0, p) with

πi

(
a+ bζ

(1− ζ)ord7(g)(1 + ζ)µ(1 + ζ2)η

)
an lth power in κi for i = 1, . . . ,m.

(a) If Ex,y arises from E0 and 7 - z, then (4.3) holds for some (r, s) in
B1(E0, p).

(b) If Ex,y arises from E0 and 7 | z, then (4.4) holds for some (r, s) in
B7(E0, p).

Proof. Let g := gcd(x+ y,H7(x, y)). By Lemma 4.5 and (4.1) and (4.2)
we see that if ρx,yl arises from E0, then (x, y) ≡ (a, b) (mod l) for some
(a, b) ∈ Ag(E0, p). The statement now follows directly by taking into account
that the factorization of x7 + y7 in Z[ζ] yields (4.3) and (4.4).

Proof of Proposition 4.1. Let (x, y, z) be a primitive integer solution
to (1.3) with l ∈ L7. We know that for some 0 ≤ r, s < l we have (4.3)
if 7 - z and (4.4) if 7 | z. Moreover, from Lemma 4.8 we know that ρx,yl arises
from E196a1 if 7 - z and from E392c1 if 7 | z. By Lemma 4.10, for any prime
p 6= 2, 7, if 7 - z, then

(r, s) ∈ B1(E196a1, p),

and if 7 | z, then
(r, s) ∈ B7(E392c1, p).

We wrote a short MAGMA script to compute Bg(E0, p). We found that for every
prime l ∈ L7 there exist primes p1, p2 such that

B1(E196a1, p1) = (0, 0) and B7(E392c1, p2) = (0, 0).

This proves the proposition (see the MAGMA script Modular77l.m for more
details).

4.3. The hyperelliptic curves. Assume l ∈ L7 and let (x, y, z) be a
primitive integer solution to x7 + y7 = zl with z 6= 0. Then according to
Proposition 4.1 we have

(4.11) x+ ζy = εβl, d(x+ y) = zl1
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where β ∈ Z[ζ] and

(d, ε) =

{
(1, 1) if 7 - z,
(7, 1− ζ) if 7 | z.

Let θ = ζ + ζ−1 and K = Q(θ); this is the totally real cyclic cubic subfield
of L. The Galois conjugates of θ are θ1, θ2, θ3, which in terms of ζ are given
by

θ1 = ζ + ζ−1, θ2 = ζ2 + ζ−2, θ3 = ζ3 + ζ−3.

Note that
θ1 = θ, θ2 = θ2 − 2, θ3 = −θ2 − θ + 1.

Let
µ = NormL/K(ε), γ = NormL/K(β).

Taking norms in (4.11) down to K we obtain

(4.12) x2 + θxy + y2 = µγl, d(x+ y) = zl1

where γ ∈ OK and

(d, µ) =

{
(1, 1) if 7 - z,
(7, 2− θ) if 7 | z.

Let µ1 = µ, µ2, µ3 denote the conjugates of µ that correspond respec-
tively to θ 7→ θj for j = 1, 2, 3. Likewise let γ1, γ2, γ3 be the corresponding
conjugates of γ. Then

x2 + θ1xy + y2 = µ1γ
l
1, x2 + θ2xy + y2 = µ2γ

l
2, x2 + θ3xy + y2 = µ3γ

l
3.

Furthermore, recall that

(x+ y)2 = d−2z2l1 where d =

{
1 if 7 - z,
7 if 7 | z.

The left-hand sides of the previous four equations are symmetric binary
quadratic forms over K. Since such forms obviously form a 2-dimensional
vector space over K, there exist linear relations between the four forms. We
calculate

(x+ y)2 + θ2(x
2+ θ1xy+ y2) + θ3(x

2+ θ2xy+ y2) + θ1(x
2+ θ3xy+ y2) = 0,

(x+ y)2 + θ3(x
2+ θ1xy+ y2) + θ1(x

2+ θ2xy+ y2) + θ2(x
2+ θ3xy+ y2) = 0.

This yields nice equations for a curve in projective 3-space in the coordinates
z21 , γ1, γ2, γ3:

d−2z2l1 + θ2µ1γ
l
1 + θ3µ2γ

l
2 + θ1µ3γ

l
3 = 0,

d−2z2l1 + θ3µ1γ
l
1 + θ1µ2γ

l
2 + θ2µ3γ

l
3 = 0.

We can eliminate one of the γi, say γ3, to get

(4.13) (θ2 − θ1)d−2z2l1 + (θ22 − θ1θ3)µ1γl1 + (θ2θ3 − θ21)µ2γl2 = 0.
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And a projective plane curve in the coordinates γ1, γ2, γ3 is quickly obtained
as

(4.14) (θ2 − θ3)µ1γl1 + (θ3 − θ1)µ2γl2 + (θ1 − θ2)µ3γl3 = 0.

Remark 4.11. Let α1, α2, α3 be non-zero elements in a field F of char-
acteristic 0 and consider the non-singular plane projective curve over F de-
termined by the equation

(4.15) α1u
l + α2v

l + α3w
l = 0.

Using the identity

(α1u
l − α2v

l)2 = (α1u
l + α2v

l)2 − 4α1α2(uv)
l,

we deduce from (4.15) that

(α1u
l − α2v

l)2 = −4α1α2(uv)
l + α2

3w
2l.

By dividing both sides by α2
3w

2l, we see that(
uv

w2
,
α1u

l − α2v
l

α3wl

)
∈ C(F )

where C is the genus (l − 1)/2 hyperelliptic curve determined by

C : Y 2 = −4ηX l + 1, η = α1α2/α
2
3.

Obviously, by permuting the indices, we find that F -rational points on (4.15)
also give rise to F -rational points on the hyperelliptic curves given by the
equation above with η = α2α3/α

2
1 and η = α3α1/α

2
2 respectively.

Define
α1 := (θ2 − θ1)d−2, α2 := (θ22 − θ1θ3)µ1, α3 := (θ2θ3 − θ21)µ2;
α′1 := (θ2 − θ3)µ1, α′2 := (θ3 − θ1)µ2, α′3 := (θ1 − θ2)µ3;

η1 := α2α3/α
2
1, η2 := α3α1/α

2
2, η3 := α1α2/α

2
3, η4 := α′1α

′
2/α

′2
3 .

Then we see that Remark 4.11 above leads toK-rational points on the curves

Y 2 = −4ηiX l + 1

for i = 1, 2, 3, 4 and the two possibilities for (d, µ). More precisely, if 7 - z,
then(

γ1γ2
z41

,
α2γ

l
1 − α3γ

l
2

α1z2l1

)
∈ Cl,1(K),

(
γ2z

2
1

γ21
,
α3γ

l
2 − α1z

2l
1

α2γl1

)
∈ Cl,2(K),(

z21γ1
γ22

,
α1z

2l
1 − α2γ

l
1

α3γl2

)
∈ Cl,3(K),

(
γ1γ2
γ23

,
α′1γ

l
1 − α′2γl2
α′3γ

l
3

)
∈ Cl,4(K)

where Cl,i denotes the genus (l − 1)/2 hyperelliptic curve given by

Cl,i : Y
2 = −4ηiX l + 1, (µ, d) = (1, 1), i = 1, 2, 3, 4.
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If 7 | z, then similarly(
γ1γ2
z41

,
α2γ

l
1 − α3γ

l
2

α1z2l1

)
∈ Dl,1(K),

(
γ2z

2
1

γ21
,
α3γ

l
2 − α1z

2l
1

α2γl1

)
∈ Dl,2(K),

(
z21γ1
γ22

,
α1z

2l
1 − α2γ

l
1

α3γl2

)
∈ Dl,3(K),

(
γ1γ2
γ23

,
α′1γ

l
1 − α′2γl2
α′3γ

l
3

)
∈ Dl,4(K)

where Dl,i denotes the genus (l − 1)/2 hyperelliptic curve given by

Dl,i : Y
2 = −4ηiX l + 1, (µ, d) = (2− θ, 7), i = 1, 2, 3, 4.

The possible values of ηi are given explicitly in Table 3. Note that if 7 | z,
then η2 = −η3, hence Dl,2 ' Dl,3.

Table 3. Values of ηi

(µ, d) η1 η2 η3 η4

(1, 1) 2θ2 + θ − 5 −5θ2 + 4θ + 3 −θ2 − 3θ − 2 θ2 − 3

(2− θ, 7) 74(20θ2 +11θ− 46) 7−3(−θ2 +4θ+3) 7−3(θ2− 4θ− 3) 20θ2 +11θ− 45

Next, we note that there must be a linear dependence between the sym-
metric binary quadratic forms (x − y)2, (x + y)2, and x2 + θxy + y2. It is
given by

(θ − 2)(x− y)2 = −4(x2 + θxy + y2) + (θ + 2)(x+ y)2.

Using (x+ y)2 = d−2z2l1 and x2 + θxy + y2 = µγl, we get

(4.16)
(
x− y
x+ y

)2

=
−4µd2

θ − 2

(
γ

z21

)l
+
θ + 2

θ − 2
.

So if 7 - z, then

(4.17)
(
γ

z21
,
x− y
x+ y

)
∈ Cl,0(K)

where Cl,0 denotes the genus (l − 1)/2 hyperelliptic curve given by

Cl,0 : Y
2 = 7−1(4θ2 + 12θ + 16)X l + 7−1(−4θ2 − 12θ − 9).

If 7 | z, then (
γ

z21
,
x− y
x+ y

)
∈ Dl,0(K)

where Dl,0 denotes the genus (l − 1)/2 hyperelliptic curve given by

Dl,0 : Y
2 = 142X l + 7−1(−4θ2 − 12θ − 9).
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Thus we have reduced our problem to determining the K-rational points
on two genus (l− 1)/2 curves: one of the Cl,i and one of the Dl,i. Note that

Cl,i(K) ⊃



{∞, (1,±1)} if i = 0,
{∞, (0,±1), (1,±(2θ2 − 5))} if i = 1,
{∞, (0,±1), (1,±(2θ2 − 2θ − 1))} if i = 2,
{∞, (0,±1), (1,±(2θ + 3))} if i = 3,
{∞, (0,±1), (1,±(2θ2 + 2θ − 3))} if i = 4;

(4.18)

Dl,i(K) ⊃


{∞} if i = 0,
{∞, (0,±1)} if i = 1, 2, 3,
{∞, (0,±1), (1,±(6θ2 + 4θ − 13))} if i = 4.

(4.19)

Lemma 4.12. Let l ∈ L7.

• If for at least one i ∈ {0, 1, 2, 3, 4} equality holds in (4.18), then there
are no non-trivial primitive integer solutions to x7+ y7 = zl with 7 - z.
• If for at least one i ∈ {0, 1, 2, 3, 4} equality holds in (4.19), then there
are no non-trivial primitive integer solutions to x7+ y7 = zl with 7 | z.

Proof. Let (x, y, z) be a non-trivial primitive integer solution to (1.3).
We have seen that this gives rise to a P = (X,Y ) ∈ Cl,i(K) for all i ∈
{0, 1, 2, 3, 4} if 7 - z, and it gives rise to a P = (X,Y ) ∈ Dl,i(K) for all
i ∈ {0, 1, 2, 3, 4} if 7 | z. Obviously, P 6= ∞ and X 6= 0. So the first part
of the lemma (i.e. the 7 - z case) follows if we prove that X 6= 1, and the
second part of the lemma (i.e. the 7 | z case) follows if we prove that X 6= 1
for i = 4. Let γ = γ1, γ2, γ3, z1 be as before. Note that they are non-zero
pairwise coprime algebraic integers in K = Q[θ] and of course z1 ∈ Z. Also
note that the roots of unity in Z[θ] are ±1. For i = 0, 1, 2, 3, 4 we have
respectively

X =
γ

z21
,
γ1γ2
z41

,
γ2z

2
1

γ21
,
z21γ1
γ22

,
γ1γ2
γ23

.

Furthermore, recall that

x2 + θxy + y2 = µγl

where µ = 1 if 7 - z, and µ = 2− θ if 7 | z.
Let us assume that 7 - z. From the condition X = 1 we now see that

z21 = 1 and that the γi are units. If i = 0, then we get γ = 1. If i = 1,
then we get 1 = γ1γ2 = Norm(γ)/γ3 = ±1/γ3, hence γ = ±1. If i = 2,
then γ2 = γ21 , and from the Galois action we see that γ82 = γ2, which implies
γ2 = 1 and hence γ = 1. If i = 3, then similarly to the previous case we get
γ = 1. Finally, if i = 4, then 1 = γ1γ2/γ

2
3 = Norm(γ)/γ33 = ±1/γ33 , which

implies γ3 = ±1 and hence γ = ±1. In all cases we see that γ = ±1, so
x2 + θxy + y2 = ±1.
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Since x, y,∈ Z, we get xy = 0, a contradiction which proves the first part of
the lemma.

Now assume 7 | z. We let i = 4. The condition X = 1 implies, as before,
that γ = ±1. This gives us

x2 + θxy + y2 = ±(2− θ).
The integer solutions are (x, y) = (±1,∓1), hence z = 0, a contradiction
which proves the second part of the lemma.

Remark 4.13. We know of at least one instance where equality does not
hold in (4.19), namely

(4.20) D13,1(K) ⊃ {∞, (0,±1), (7−1(3θ2 + 2θ − 2),±(4θ2 + 6θ + 1))}.
It is of course a simple matter to check that the pair of ‘new’ points does
not come from a non-trivial primitive integer solution to (1.3), from which
we conclude that equality in (4.20) implies the non-existence of non-trivial
primitive integer solutions to (1.3) with 7 | z and l = 13. Although it seems
very likely that indeed this equality holds, proving it still remains quite a
challenge.

Remark 4.14. Instead of finding the full set S of K-rational points on
one of the Cl,i or Dl,i in order to apply Lemma 4.12, it can be convenient to
use extra (local) information so that the same conclusion can be obtained by
finding a specific subset of S satisfying extra (local) conditions. For example,
let P be the prime above 7; then for j = 1, 2, 3 we have x2 + θjxy + y2 ≡
(x + y)2 (mod P). So for a primitive integer solution to (1.3) with 7 - z we
deduce, using γ1, γ2, γ3, z1 as before, that γl1 ≡ γl2 ≡ γl3 ≡ (z21)

l (mod P).
Since l 6= 2, 3 and 7 - z, we obtain respectively

(4.21) γ1 ≡ γ2 ≡ γ3 ≡ z21 (mod P), γ1γ2γ3z
2
1 6≡ 0 (mod P).

We note that Cl,i for i = 1, 2, 3, 4 has good reduction at P. Now the local
information (4.21) implies that our solution gives rise to a point P̃i on the
reduction C̃l,i/F7 where

P̃i = (1, 3), (1, 4), (1, 0), (1, 2)

for i = 1, 2, 3, 4 respectively. Therefore define, for i = 1, 2, 3, 4,

Cl,i(K)′ := {P ∈ Cl,i(K) : P (mod P) = P̃i}.
For the curve Cl,0 we see, by (4.17), that any P ∈ Cl,0(K) that comes from
a solution to (1.3) has second coordinate in Q, where by convention we say
that ∞ has second coordinate in Q. Therefore define

Cl,0(K)′ := {P ∈ Cl,0(K) : P has second coordinate in Q}.
We arrive at the following refined version of the first part of Lemma 4.12.
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Lemma 4.15. Let l ∈ L7. If for at least one i ∈ {0, 1, 2, 3, 4} we have

Cl,i(K)′ =



{∞, (1,±1)} if i = 0,
{(1, 2θ2 − 5)} if i = 1,
{(1,−2θ2 + 2θ + 1)} if i = 2,
{(1,±(2θ + 3))} if i = 3,
{(1, 2θ2 + 2θ − 3)} if i = 4,

then there are no non-trivial primitive integer solutions to x7 + y7 = zl with
7 - z.

Similar remarks apply to Dl,0 and Dl,4.

4.4. Rational points on Cl,i and Dl,i. The curves Cl,i for i = 0, . . . , 4
and Dl,4 contain a K-rational point P = (X,Y ) with X = 1. We can check
that D := [P −∞] is a point of infinite order on the Jacobian. Upper bounds
for the ranks of the Jacobians of the C5,i and theD5,i can be found in Tables 4
and 5 respectively. We conclude that

rank Jac(C5,1)(K) = rank Jac(C5,2)(K) = rank Jac(C5,3)(K) = 1,

rank Jac(D5,4)(K) = 1, rank Jac(D5,2)(K) = 0.

We see that we are in a good position to solve (1.3) for l = 5. For the
case 7 - z the candidates C5,1, C5,2, and C5,3 seem equally promising at this
point; we choose to work with C5,3. For the case 7 | z, the curves D5,1 and
D5,2 are both good candidates, but obviously D5,2 is the easier one to work
with, since its Jacobian has rank zero.

Table 4. Rank bounds for the Jacobian of C5,i

C dimF2 Sel
(2)(K, Jac(C)) Time

C5,0 2 1545 s
C5,1 1 1667 s
C5,2 1 1700 s
C5,3 1 1928 s
C5,4 2 571 s

Table 5. Rank bounds for the Jacobian of D5,i

D dimF2 Sel
(2)(K, Jac(D)) Time

D5,0 1 79083 s ≈ 22.0 h
D5,1 1 89039 s ≈ 24.7 h

D5,2 (' D5,3) 0 102817 s ≈ 28.6 h
D5,4 1 1838 s
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Proposition 4.16. We have

C5,3(K)′ = {(1,±(2θ + 3))}, D5,2(K) = {∞, (0,±1)}.

Proof. We will first determine C5,3(K)′ and write for now J := Jac(C5,3).
Let P± := (1,±(2θ + 3)) ∈ C5,3(K) and D := [P+ − ∞] ∈ J(K). Then,
as remarked before, D has infinite order. Since we need this fact in the
proof, we will supply details here. Using explicit computations in MAGMA it is
straightforward to check this, but it can actually easily be shown ‘by hand’
as follows. Note that C5,3, and hence J , has good reduction at the prime
P above 7; denote the reductions by C̃5,3 and J̃ respectively. The points
P± reduce to a single Weierstrass point P̃ = (1, 0) ∈ C̃5,3(F7). Thus the
reduction D̃ of D has order 2 in J̃(F7). Since the hyperelliptic polynomial
f := −4η3X5 +1 in the defining equation for C5,3 is irreducible, we see that
#J(K)tors is odd. This implies that any elements of J(K) whose reduction
modulo a prime of good reduction has even order cannot be torsion, in
particular D has infinite order.

Now we will apply Chabauty–Coleman with the prime P. A basis for
Ω(C5,3/KP) is given by XidX/Y with i = 0, 1. We have explicitly 2D =
[P+−P−], which also has infinite order of course. We note that the rational
function X − 1 does not reduce to a local uniformizer at P̃ , but the function
T := Y + Y0 does, where Y0 := 2θ + 3. We compute 2Y dY = −20η3X4dX,
so

XidX

Y
= Xi dY

−10η3X4
=

dT

−10η3X4−i .

Furthermore, (with the obvious choice for the 5th root) around P− we have

X−1 =

(
Y 2 − 1

−4η3

)−1/5
=

(
1 +

T 2 − 2Y0T

−4η3

)−1/5
= 1+

−θ+2

10
T +

13θ2− 17θ+2

100
T 2 +

287θ2− 274θ− 103

1000
T 3 + · · · ∈ K[[T ]].

Formal integration allows us to calculate to high enough P-adic precision

ci :=

2D�

0

Xi dX

Y
=

P+�

P−

Xi dX

Y
=

2Y0�

0

dT

−10η3X4−i .

We note vP(c0) = vP(c1) = 1. Now ω := (−c1/c0 +X)dX/Y ∈ Ann(J(K))
and the function

f(T ) :=

T�

0

(−c1/c0 +X(T ′)) dT ′

−10η3X(T ′)4

vanishes for T ∈ Y0OKP
such that (X(T ), Y (T )) ∈ C5,3(K), which have

to reduce mod P to P̃ . The Strassmann bound for the power series in t of
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f(Y0t) can be computed to be 3. The zeroes t = 0 and t = 2 correspond
to the points P− and P+ respectively. The third solution occurs at t = 1,
which corresponds to the unique Hensel lift of P̃ to a P-adic Weierstrass
point. This last point is not K-rational (since f is irreducible over K), so we
conclude that C5,3(K)′ = {P±}. Further details can be found in our MAGMA
script Chabauty77l.m.

Determining D5,2(K) is straightforward, since J := Jac(D5,2) has rank 0.
The number of points on the reduction of J at the prime above p for
p = 3, 11 can be calculated to equal 730 and 1882705 respectively. Their
gcd equals 5. Since [(0, 1)−∞] ∈ J(K) is non-trivial, it must be a point of
order 5 generating J(K). The Abel–Jacobi map

D5,2(K)→ J(K), P 7→ [P −∞],

is injective. The points n[(0, 1) −∞] for n = 2, 3 cannot be represented as
[P −∞] for some P ∈ D5,2(K). This shows that D5,2(K) = {∞, (0,±1)}.

Obviously, the proposition above together with Lemmata 4.12 and 4.15
implies Theorem 2.

Remark 4.17. With a bit more work it is possible to determine C5,3(K)
completely, as well as C5,1(K), C5,2(K), and D5,4(K). In an earlier version
of this paper we only dealt with the curves C5,4 and D5,4, so we had to
determine C5,4(K) as well. For this curve it is in fact possible to find an-
other independent K-rational point on the Jacobian and use Chabauty over
number fields [21] to determine C5,4(K) on this genus 2 curve of rank 2
over K.

5. Results assuming GRH. The purpose of this section is to prove
Theorem 3. There are however many other, unconditional, results in this
section, which can be interesting in their own right. When a result is condi-
tional on GRH, we shall clearly state so. We shall start with the equation
x7+y7 = zl, since the treatment is a direct continuation of the previous sec-
tion. After this, the equation x5+y5 = zl will be revisited. In the final section
we shall briefly discuss the possibility of making the results unconditional.

5.1. The equation x7+y7 = zl for l = 11, 13. As in the l = 5 case, we
can check that for l ∈ {11, 13} theK-rational points on Cl,i for i = 0, 1, 2, 3, 4
and Dl,4 give rise to a point of infinite order on their Jacobians. Assume
GRH. Rank bounds for the Jacobians of the Cl,i and theDl,i with l ∈ {11, 13}
can be found in Tables 6 and 7 respectively. We want to stress again that
because of the pseudo-random number generator involved in computing the
ranks, the computation time also depends (really heavily this time) on the
seed. We conclude from the tables that

rank Jac(C11,3)(K) = 1, rank Jac(D11,4)(K) = 1,



92 S. R. Dahmen and S. Siksek

and of course

rank Jac(D11,0)(K) = 0, rank Jac(D13,2)(K) = 0.

Table 6. (GRH) Rank bounds for the Jacobian of Cl,i

C dimF2 Sel
(2)(K, Jac(C)) Time

C11,0 4 10481 s ≈ 2.9 h
C11,1 3 4226 s ≈ 1.2 h
C11,2 2 7207 s ≈ 2.0 h
C11,3 1 3604 s ≈ 1.0 h
C11,4 2 14816 s ≈ 4.1 h
C13,0 2 10508 s ≈ 2.9 h
C13,1 2 365096 s ≈ 4.2 days
C13,2 2 108629 s ≈ 30.2 h
C13,3 4 107770 s ≈ 29.9 h
C13,4 3 119062 s ≈ 33.1 h

Table 7. (GRH) Rank bounds for the Jacobian of Dl,i

D dimF2 Sel
(2)(K, Jac(D)) Time

D11,0 0 6419 s ≈ 1.8 h
D11,1 1 7550 s ≈ 2.1 h

D11,2 (' D11,3) 2 12010 s ≈ 3.3 h
D11,4 1 1800 s ≈ 0.5 h
D13,0 2 469263 s ≈ 5.4 days
D13,1 3 91258 s ≈ 25.3 h

D13,2 (' D13,3) 0 43182 s ≈ 12.0 h
D13,4 3 10225 s ≈ 2.8 h

We see that we are in a good position to solve (1.3) for l = 11, but that
we have insufficient information to treat the 7 - z case when l = 13.

Proposition 5.1. Assuming GRH, we have

C11,3(K)′ = {(1,±(2θ + 3))}, D11,0(K) = {∞}.
Proof. The proof that C11,3(K)′ = {(1,±(2θ + 3))} is analogous to our

proof that C5,3(K)′ = {(1,±(2θ+3))} given in Proposition 4.16. Details can
be found in our MAGMA script Chabauty77l.m.

Since rank Jac(D11,0)(K) = 0 we can get D11,0(K) = {∞} from the fact
that Jac(D11,0)(K)tors is trivial. This last statement follows from observing
that the defining equation for D11,0 shows that #Jac(D11,0)(K)tors is odd
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and counting points on the reduction of Jac(D11,0)modulo the prime above 5
and a prime above 13.

Corollary 5.2. Assuming GRH, there are no non-trivial primitive in-
teger solutions to (1.3) for l = 11.

5.2. The equation x5 + y5 = zl revisited. Instead of just working
over Q, like we did in Section 3, we shall use the factorization of Hp over
Q(ζp) and Q(ζp+ ζ−1p ), like we did in Section 4, but now with p = 5 instead
of p = 7 of course.

5.2.1. Initial factorizations for x5 + y5 = zl. Let (x, y, z) be a primitive
integer solution to (1.2) with 5 - z for some prime l > 5. Recall that

H5(x, y) =
x5 + y5

x+ y
= x4 − x3y + x2y2 − xy3 + y4.

By Lemma 2.2, gcd(x+ y,H5(x, y)) = 1, and consequently

x+ y = zl1, H5(x, y) = zl2, z = z1z2

where z1, z2 are non-zero, coprime integers.
Let ζ denote a primitive 5th root of unity, L = Q(ζ) and O = Z[ζ] be

the ring of integers of L. The class number of O is 1 and the unit rank is 1.
The unit group is in fact

{±ζi(1 + ζ)r : 0 ≤ i ≤ 4, r ∈ Z}.
Moreover, 5 ramifies as 5O = (1− ζ)4O. Now H5(x, y) = Norm(x+ ζy). We
have

(5.1) x+ ζy = (1 + ζ)rβl, 0 ≤ r ≤ l − 1,

for some β ∈ Z[ζ]. Thus we have l cases to consider. Using a modular ap-
proach, we can reduce the number of cases to just 1 for many values of l,
e.g. l = 11, 13, 17.

5.2.2. A modular approach to x5 + y5 = zl when 5 - z. Consider the set

L5 := {primes l : 5 < l < 100}.
Proposition 5.3. Let (x, y, z) be a primitive integer solution to (1.2)

with 5 - z and l ∈ L5. Then (5.1) holds with r = 0.

The proof is very much analogous to that of Proposition 4.1. So we just
describe the main steps. We use the Frey curve

Ex,y : Y
2 = X3 − 5(x2 + y2)X2 + 5H5(x, y)X.

Write ρx,yl for the Galois representation on the l-torsion of Ex,y. Since Ex,y
is a quadratic twist of the Frey curve from Section 3.2 (which is also denoted
as Ex,y there), the irreducibility of ρx,yl for primes l ≥ 7 follows directly
from Lemma 3.7. Now a straightforward computation of the conductor and
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minimal discriminant of Ex,y, and an application of modularity [3] and level
lowering [19], [20] as usual, yield the following lemma.

Lemma 5.4. For a prime l ≥ 7, the Galois representation ρx,yl arises
from a newform f of level N = 2α52 where α = 1, 3, or 4.

There are respectively 2, 5, and 8 newforms at these levels, which all
happen to be rational. Specializing Ex,y at a trivial primitive integer solution
with xy = 0 (i.e. (x, y) = (±1, 0) or (0,±1)) yields E200b1, and specializing
at (x, y) = (±1,±1) (which does not correspond to a solution) yields E400d2.
Note that in the latter case we have H5(x, y) = 1. By comparing traces of
Frobenius as usual (including the method of Kraus for some small values
of l), we can eliminate all but two of the 15 newforms for all primes l ≥ 7.
The two exceptions are of course the two newforms corresponding to the two
elliptic curves we just obtained by specialization of Ex,y. We note that in
the case p | z it is convenient to strengthen ap(E0) ≡ ±(1 + p) (mod l) to
ap(E0) ≡ ap(Ex,y)(1 + p) (mod l).

Lemma 5.5. For a prime l ≥ 7, the Galois representation ρx,yl arises
from either E200b or E400d.

By a basic application of Kraus’ method we are able to eliminate the
possibility of E400d for all l ∈ L5 except l = 7, 11, 19. These remaining three
cases can be dealt with using an analogue of Lemma 4.10.

Lemma 5.6. For l ∈ L5, the Galois representation ρx,yl does not arise
from E400d.

To finish the proof of Proposition 5.3 we now only have to deal with E200b,
which is possible using again the analogue of Lemma 4.10. Computational
details can be found in the second part of the MAGMA script Modular55l.m.

5.2.3. The hyperelliptic curves. Let θ = ζ + ζ−1 and K = Q(θ); this is
the totally real quadratic subfield of L. The Galois conjugates of θ are θ1, θ2,
which in terms of ζ are given by

θ1 = ζ + ζ−1, θ2 = ζ2 + ζ−2.

Note that
θ1 = θ, θ2 = −1− θ.

Let
γ = NormL/K(β).

Taking norms in (5.1) with r = 0 down to K we obtain

x2 + θxy + y2 = γl.

Let γ1 = γ and γ2 denote the conjugates of γ that correspond respectively
to θ 7→ θj for j = 1, 2. Then

x2 + θ1xy + y2 = γl1, x2 + θ2xy + y2 = γl2.
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Furthermore, recall that
(x+ y)2 = z2l1 .

The left-hand sides of the previous three equations are symmetric binary
quadratic forms over K, hence linearly dependent. We calculate

(x+ y)2 + θ2(x
2 + θ1xy + y2) + θ1(x

2 + θ2xy + y2) = 0.

In terms of the coordinates z21 , γ1, γ2 we get

z2l1 + θ2γ
l
1 + θ1γ

l
2 = 0.

Using Remark 4.11, we see that(
z21γ1
γ22

,
z2l1 − θ2γl1
θ1γl2

)
∈ Cl,1(K)

where Cl,1 is the genus (l − 1)/2 hyperelliptic curve given by

(5.2) Cl,1 : Y
2 = −4η1X l + 1, η1 = θ2/θ

2
1 = −2θ − 3.

The linear dependence between the symmetric binary quadratic forms
(x− y)2, (x+ y)2, and x2 + θxy + y2 is given by

(θ − 2)(x− y)2 = −4(x2 + θxy + y2) + (θ + 2)(x+ y)2.

Using (x+ y)2 = z2l1 and x2 + θxy + y2 = γl, we get

(5.3)
(
x− y
x+ y

)2

=
−4

(θ − 2)

(
γ

z21

)l
+
θ + 2

θ − 2
.

We compute −4/(θ − 2) = 4(θ + 3)/5 and (θ + 2)/(θ − 2) = −(4θ + 7)/5.
Hence

P :=

(
γ

z21
,
x− y
x+ y

)
∈ Cl,0(K)

where Cl,0 is the genus (l − 1)/2 hyperelliptic curve given by

(5.4) Cl,0 : 5Y
2 = (4θ + 12)X l − (4θ + 7).

Note that in fact the second coordinate of P lies in Q. Furthermore, since 5
is a square in K, the factor 5 in front of Y 2 above could easily be absorbed
by rescaling Y (by a factor of 2θ + 1). However, this would spoil the nice
feature of the curve that the points of our interest have second coordinate
lying in Q.

Regarding K-rational points on the curves Cl,0 and Cl,1, we note that

(5.5) Cl,i(K) ⊃
{ {∞, (1,±1)} if i = 0,
{∞, (0,±1), (1,±η1)} if i = 1.

As in (the first part of) Lemma 4.12, we have the following.
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Lemma 5.7. Let l ∈ L5. If for i=0 or i = 1 equality holds in (5.5), then
there are no non-trivial primitive integer solutions to x5+ y5 = zl with 5 - z.

Let P be the prime above 5. We note that Cl,1 has good reduction at P.
Define

Cl,1(K)′ := {P ∈ Cl,i(K) : P (mod P) = (1, 2)}.
As in the x7 + y7 = zl case, define as well

Cl,0(K)′ := {P ∈ Cl,0(K) : P has second coordinate in Q}.
Completely similarly to Remark 4.14, we arrive at a refinement of Lemma 5.7.

Lemma 5.8. Let l ∈ L5. If for i = 0 or i = 1 we have

Cl,i(K)′ =

{ {∞, (1,±1)} if i = 0,
{(1, 2θ + 3)} if i = 1,

then there are no non-trivial primitive integer solutions to x5 + y5 = zl with
5 - z.

5.2.4. Rational points on Cl,i. For i = 0, 1 let Jl,i := Jac(Cl,i). For
l = 11, 13, 17 it is easy to check that

[(1, 1)−∞] ∈ Jl,0(K), [(1, η1)−∞] ∈ Jl,1(K)

are points of infinite order. Assume GRH. For these values of l we also
computed upper bounds for the ranks of Jl,0(K) and Jl,1(K); see Table 8.

Table 8. (GRH) Rank bounds for the Jacobians of Cl,0 and Cl,1

l dimF2 Sel
(2)(K, Jac(Cl,0)) Time dimF2 Sel

(2)(K, Jac(Cl,1)) Time
11 1 55 s 2 145 s
13 2 178 s 1 175 s
17 4 2178 s 2 13087 s

We conclude that J11,0(K) and J13,1(K) both have rank 1 and that there
is an explicit generator for a finite index subgroup for both of them. Hence,
we are again in a position to apply Chabauty–Coleman.

Lemma 5.9. Assuming GRH, we have
C11,0(K)′ = {∞, (1,±1)},
C13,1(K)′ = {(1, 2θ + 3)}.

Proof. We start by determining C11,0(K)′ using Chabauty–Coleman with
the prime P above 3. The curve C11,0 has good reduction at P. This re-
duction, denoted C̃11,0, contains ten F9-rational points, but the subset of
F9-rational points whose second coordinate is F3-rational consists only of
the four points ∞, (1,±1), (X̃0, 0) where X̃0 ∈ F9 with X̃2

0 = −1. If we
show that for each P̃ = ∞, (1,±1) we have a unique lift to P ∈ C11,0(K)
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and that (X̃0, 0) does not lift to a point in C11,0(K) it will then follow that
C11,0(K)′ = {∞, (1,±1)}.

A basis for Ω(C11,0/KP) is given by XidX/Y for i = 0, 1, . . . , 4. We can
compute

ci :=

D�

0

Xi dX

Y
, i = 0, 1, . . . , 4,

to high enough P-adic precision and find e.g. vP(c2) = vP(c4) = vP(c4− c2)
= vP(c4 + c2) = 1. Write u :=−c2/c4 and let ω := (X2+uX4)dX/Y . Then
we see that ω ∈ Ann(Jac(C11,0)(K)) and it reduces to a differential ω̃ on
C̃11,0/F9. Since vP(u) = vP(c2)− vP(c4) = 0, we see that ω̃ does not vanish
at ∞. Similarly, since vP(1 + u) = vP(c4 − c2)− vP(c4) = 0, we see that ω̃
does not vanish at (1,±1). Finally, since vP(−1 + u) = vP(c4 + c2)− vP(c4)
= 0, we see that ω̃ does not vanish at (X̃0, 0). Consequently, for each
P̃ = ∞, (1,±1) we have a unique lift to P ∈ C11,0(K). The point (X̃0, 0)
Hensel-lifts uniquely to a Weierstrass point (X0, 0) ∈ C11,0(Kp), which is not
K-rational. This finishes the first part of the reasoning, as in the proof of
Proposition 3.2.

Next we determine C13,1(K)′ using Chabauty–Coleman with the prime
P above 5. The curve C13,1 has good reduction at P, denoted C̃13,1. Let
T = X − 1 be a uniformizer at P = (1, 2θ + 3). A basis for Ω(C13,1/KP) is
given by T idT/Y for i = 0, 1, . . . , 5. We can compute

ci :=

D�

0

T i
dT

Y
, i = 0, 1, . . . , 5,

to high enough P-adic precision and find that vP(c0) = 1 and vP(ci) = 2 for
i = 1, . . . , 5. Therefore it is impossible to find an ω ∈ Ann(Jac(C13,1)(K))

with good reduction at P which is non-vanishing at P̃ ∈ C̃13,1(F5). Let us
define instead ω := (T − c1/c5T 5)dT/Y . Then ω ∈ Ann(Jac(C13,1)(K)) and
the reduction mod P has vanishing order 1 at P̃ . On can indeed check that
the Strassmann bound for the function

t 7→
πt�

0

(
T − c1

c5
T 5

)
dT

Y

(with π a suitable uniformizing parameter) equals 2. By construction it has
a double zero at t = 0, hence the only lift of P̃ to C13,1(K) is P . This means
C13,1(K)′ = {(1, 2θ + 3)}. Further details can be found in our MAGMA script
Chabauty55l.m.

We note that it should not be much harder to determine C11,0(K) and
C13,1(K) completely. But since it is not necessary for our purposes, we will
not pursue this.
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Corollary 5.10. Under GRH, there are no non-trivial primitive integer
solutions to (1.2) for l ∈ {11, 13}.

5.3. Making the results unconditional. Full GRH is of course not
necessary, we ‘only’ need to obtain certain class and unit group informa-
tion unconditionally in order to carry out 2-descent on the four Jacobians
involved. For a hyperelliptic curve defined over a number field K given by
an equation of the form y2 = f(x) where f(x) ∈ K[x] is irreducible over K,
it suffices to have available the class and unit group information for the
number field L := K[x]/f(x) (or possibly only certain relative informa-
tion for the extension L/K). For example in the case of x5 + y5 = zl with
l ∈ {11, 13} the field L = Ll coming from the curve C11,0 for l = 11 and
C13,1 for l = 13 is given by Ll = Q[t]/gl(t) with g11(t) := t22 + 2t11 − 4
and g13(t) = t26 + 22t13 − 4. Assuming GRH, either MAGMA or PARI/GP can
compute the class and unit group information for these two fields rather
quickly. In particular, we find that the class group is trivial for both fields
(assuming of course GRH). It suffices in fact to know that our conditional
unit group is a finite index 2-saturated subgroup of the (unconditional) unit
group. This will be easy to check and reduces the problem to verifying that
the class groups of the fields L11 and L13 are trivial. This is something that
can be parallelized and apparently the class group verification for at least
L11 and probably also for L13 is within the reach of current technology (but
the actual verification, especially for L13, would in practice of course take
considerable effort, time, and computer power). For x7 + y7 = z11 we are
looking at number fields of (absolute) degree 33, and verifying class group
information is probably not doable in practice at the moment. The case
where 7 | z might actually be solved using a Hilbert modular approach. We
did not pursue this, however, since we are not able to treat the case 7 - z
unconditionally anyway.

Alternatively, we might be able to use partial results on BSD for abelian
varieties over number fields. The four Jacobians J involved, for which we
need to determine the rank unconditionally, all have CM (over a cyclotomic
extension) and are defined over a totally real number field. For such abelian
varieties, the partial BSD result ‘if analytic rank ≤ 1, then analytic rank =
algebraic rank’ seems within reach; see e.g. [29]. If on top of this, we are able
to compute LJ(1) in the rank 0 case and L′J(1) in the three rank 1 cases
to high enough precision to conclude that these four values are non-zero,
then we have made our results unconditional. However, the computations of
LJ(1) and L′J(1) do not seem to be easier than the class group computations
at the moment.
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