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On the limit distribution of Frobenius numbers
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Andreas Strömbergsson (Uppsala)

1. Introduction. We denote by N̂d the set of integer vectors in Rd

with positive coprime coefficients (viz. the greatest common divisor of all
coefficients is one). Given a = (a1, . . . , ad) ∈ N̂d, the Frobenius number
g(a) = g(a1, . . . , ad) is defined as the largest integer which is not repre-
sentable as a non-negative integer combination of a1, . . . , ad. The problem
of computing g(a) is known as the Frobenius problem or the coin exchange
problem, and it has been studied extensively (see, e.g., [23] and [16, Prob-
lem C7]).

In the majority of problems related to Frobenius numbers, it is more
convenient to consider the function

f(a) = f(a1, . . . , ad) = g(a1, . . . , ad) + a1 + · · ·+ ad.(1.1)

Clearly, f(a) is the largest integer which is not a positive integer combination
of a1, . . . , ad.

In the case of two variables, d = 2, the Frobenius number is given by
Sylvester’s formula ([23, Theorem 2.1.1]),

g(a1, a2) = a1a2 − a1 − a2 (viz., f(a1, a2) = a1a2).(1.2)

For d ≥ 3 no explicit formula is known. Arnold [4]–[6] asked about the behav-
ior of g(a1, . . . , ad) for a “random” large vector (a1, . . . , ad) ∈ Rd. Davison
had previously asked similar questions for d = 3, in [11, Sec. 5]. Recently
Marklof [19] obtained a definitive result for arbitrary d ≥ 3, generalizing
previous results by Bourgain and Sinai [9] in the case d = 3 (cf. also Shchur,
Sinai and Ustinov [32]):

Theorem 1 (Marklof [19]). Given d ≥ 3, there exists a continuous non-
increasing function Ψd : R≥0 → R≥0 with Ψd(0) = 1, such that for any
bounded set D ⊂ Rd

≥0 with non-empty interior and boundary of Lebesgue
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measure zero, and any R ≥ 0,

(1.3) lim
T→∞

1

#(N̂d ∩ TD)
#
{
a ∈ N̂d ∩ TD :

f(a)
(a1 · · · ad)1/(d−1)

> R

}
= Ψd(R).

For arbitrary d ≥ 3, Li [18, Thm. 1.3] has recently obtained an effective
version of Theorem 1, where (1.3) is proved to hold with a power convergence
rate (with respect to T ).

d = 3

R

d = 4

R

d = 5

R

d = 6

R

Fig. 1. Experimental graphs of the density functions ψd(R) = − d
dR
Ψd(R) of the limit

distribution in Theorem 1, for d = 3, 4, 5, 6. The graphs were obtained by computing
(a1 · · · ad)−1/(d−1)f(a) for 1.2 · 106 integer vectors a picked at random in bNd ∩ [0, T ]d

with T = 1015, and collecting the results into bins of width 0.01 along the R-axis. The
computations of f(a) were performed using the Frobby software package by Roune [28];
cf. also [29]. We repeated the computations using other random seeds and/or changing
T to 1014, as well as to 1013, 1012, 1011 in some cases, and the resulting graphs were
consistently found to be practically indistinguishable, except for d = 3 and R very near 2.
For d = 3 also the graph of the exact function in (1.7) is drawn (the dotted curve, which
is distinguishable from the experimental graph only for R very near 2).

Marklof also proved an explicit formula for Ψd(R), namely that Ψd(R)
equals the probability that the simplex

∆ = {x ∈ Rd−1
≥0 : x · e ≤ 1}, e := (1, . . . , 1),(1.4)
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has covering radius larger than R with respect to a random lattice L ⊂ Rd−1

of covolume one. In other words ([19, Thm. 2]),

Ψd(R) = µd−1({L ∈ Xd−1 : ρ(L) > R}),(1.5)

where Xd−1 is the set of all lattices L ⊂ Rd−1 of covolume one, µd−1 is
Siegel’s measure ([33]) on Xd−1, normalized to be a probability measure,
and ρ(L) is the covering radius of ∆ with respect to L, viz.

ρ(L) = inf{ρ > 0 : L+ ρ∆ = Rd−1}.(1.6)

In the special case d = 3, Ustinov [37] (cf. also [36]) proved a more precise
version of (1.3), where the averaging is performed over only two of the
three arguments a1, a2, a3, and the limit is obtained with a power rate of
convergence. Ustinov in fact gave a completely explicit formula for the limit
density ψ3(R) = − d

dRΨ3(R) in terms of elementary functions:

ψ3(R) =



0 (0 ≤ R ≤
√

3),
12
π

(
R√
3
−
√

4−R2

)
(
√

3 ≤ R ≤ 2),

12
π2

(
R
√

3 arccos
(
R+ 3

√
R2 − 4

4
√
R2 − 3

)
+

3
2

√
R2 − 4 log

(
R2 − 4
R2 − 3

))
(R > 2).

(1.7)

See also [22] for a derivation of (1.7) from (1.5).
Our purpose in the present note is to discuss the behavior of Ψd(R)

for d fixed and R large, as well as for d large. For fixed d ≥ 3, it was
proved by Li [18] that Ψd(R) �d R

−(d−1) for all R > 0, and Marklof in an
unpublished note [20] pointed out that a corresponding lower bound also
holds: Ψd(R)�d R

−(d−1) for all R ≥ 1. Our first result, which we will prove
in Section 2, is an asymptotic formula refining these bounds:

Theorem 2. Let d ≥ 3. Then

Ψd(R) =
d

2ζ(d− 1)
R−(d−1) +Od(R−d−1/(d−2)) as R→∞.(1.8)

Here the error term is sharp; in fact there exists a constant c > 0 which only
depends on d, such that for all sufficiently large R,

Ψd(R) >
d

2ζ(d− 1)
R−(d−1) + cR−d−1/(d−2).(1.9)

In particular we may note that (1.7) implies Ψ3(R) = 9
π2R

−2 + 33
2π2R

−4 +
O(R−6) as R→∞, which is consistent with Theorem 2.

Combining Theorems 1 and 2 we conclude that if R is large, and if a
is picked at random from a set of the type N̂d ∩ TD with T sufficiently
large—where the notion of “sufficiently large” may depend on R—then the
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probability that the normalized Frobenius number f(a)

(a1···ad)1/(d−1) is greater

than R is approximately d
2ζ(d−1)R

−(d−1). It is an interesting problem to try

to get a more uniform control on the probability of f(a)

(a1···ad)1/(d−1) being large,
i.e. to give bounds from above and below, uniformly with respect to large T
and R, on

(1.10) Pd(T,R)

:=
1

#(N̂d ∩ TD)
#
{
a ∈ N̂d ∩ TD :

f(a)
(a1 · · · ad)1/(d−1)

> R

}
.

Results related to this question have recently been obtained by Aliev
and Henk [2] and Aliev, Henk and Hinrichs [3], by making use of Schmidt’s
results on the distribution of similarity classes of sublattices of Zm [31]. We
will show that the application of [31] can be refined—using in particular
the strong uniform error bounds which Schmidt provides for his asymptotic
formulas—so as to give a uniform bound which significantly improves upon
the bounds obtained in [2], [3], and which can be viewed as a T -uniform
version of Li’s upper bound Ψd(R)�d R

−(d−1).
For technical reasons we will consider the Frobenius number normalized

not with the factor (a1 · · · ad)−1/(d−1), but with s(a)−1, where

s(a) :=

∑d
j=1 aj

√
‖a‖2 − a2

j

‖a‖1−1/(d−1)
,(1.11)

with ‖a‖ denoting the standard Euclidean norm of a. Thus, we set

P̃d(T,R) :=
1

#(N̂d ∩ TD)
#
{
a ∈ N̂d ∩ TD :

f(a)
s(a)

> R

}
.(1.12)

Note that Pd(T,R) and P̃d(T,R) are defined for any T > 0 such that N̂d ∩
TD 6= ∅; in particular, for any fixed D ⊂ Rd

≥0 with non-empty interior,
Pd(T,R) and P̃d(T,R) are defined for all T �D 1.

The normalizing factor s(a) was used also in Aliev and Henk [2]; cf. also
Fukshansky and Robins [13]. Note that if we assume that the coefficients of
a are ordered so that a1 ≤ · · · ≤ ad then s(a) �d ad−1a

1/(d−1)
d ; in particular

we have

(a1 · · · ad)1/(d−1) �d s(a)�d ‖a‖d/(d−1), ∀a ∈ Rd
>0.(1.13)

Hence there exists a constant c1 > 0 which only depends on d such that

P̃d(T, c1R) ≤ Pd(T,R)(1.14)

for any R > 0 and any D ⊂ Rd
≥0 and T > 0 such that N̂d ∩ TD 6= ∅.

On the other hand, if D is bounded and satisfies D ⊂ Rd
>0, then s(a) �
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(a1 · · · ad)1/(d−1) holds uniformly over all a ∈ R>0D, and thus we have
Pd(T,R) ≤ P̃d(T, c2R) for all T,R > 0 with N̂d ∩ TD 6= ∅, where c2 > 0 is a
constant which only depends on D. Hence for any such region D, any of the
two functions Pd(T,R) and P̃d(T,R) can essentially be bounded in terms of
the other, as long as we allow an implied constant which may depend on D.

Our main result on P̃d(T,R) is the following bound, which we will prove
in Section 3.

Theorem 3. Let d ≥ 3, and let D ⊂ Rd
≥0 be bounded with non-empty

interior. Then

P̃d(T,R)�d,D R
−(d−1)(1.15)

uniformly over all T > 0 with N̂d ∩ TD 6= ∅, and all R > 0. Furthermore,
for any such T ,

P̃d(T,R) = 0 whenever R ≥ (T sup
x∈D
‖x‖)1−1/(d−1).(1.16)

Theorem 3 strengthens the bound P̃d(T,R) � R−2 which was given in
[2, Thm. 1.1]. Note also that if the set D satisfies D ⊂ Rd

>0, then by the
previous discussion Theorem 3 implies Pd(T,R)�d,D R

−(d−1).
From many points of view, the normalization factor (a1 · · · ad)−1/(d−1) is

the most natural one to use in the Frobenius problem. A clear indication of
this is for example the fact that the limit distribution obtained in Theorem 1
is independent of the choice of D. Hence it is interesting to ask whether the
bound in Theorem 3 is valid also for Pd(T,R), without the extra assumption
D ⊂ Rd

>0. We conjecture that this is so. However in the present paper we
will content ourselves with pointing out a weaker bound, which follows fairly
directly from Theorem 3 by an argument along the lines of [3], and which
strengthens the bound (1) Pd(T,R)� R−2 d−1

d+1
+ε obtained in [3].

Corollary 1. Let d ≥ 3, and let D ⊂ Rd
≥0 be bounded with non-empty

interior. Then

Pd(T,R)�d,D R
−(d−1)/2(log(R+ 2))(d−3)/2(1.17)

uniformly over all T > 0 with N̂d ∩ TD 6= ∅, and all R > 0. Furthermore,

Pd(T,R) = 0 whenever R ≥ d(T sup
x∈D
‖x‖)1−1/(d−1).(1.18)

(1) We here correct a mistake in [3, p. 530, lines 5–6] by adding ε in the exponent:

In the notation of [3], the choice of t = n−1
n+1

yields the bound β
−2

(n−1)2

n(n+1) and not β−2 n−1
n+1

as claimed; choosing t optimally yields the bound β
−2

(n−1)2

n2+1 , and using also [3, p. 529,

Remark 1] brings the bound down to β−2 n−1
n+1 +ε.
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We remark that in the special case d = 3, it follows from Ustinov [37,
pp. 1025, 1044] that the stronger bound P3(T,R) �D R−2 is valid at least
so long as we keep T � R22+ε.

It is also interesting to consider the moments of the (normalized) Frobe-
nius number; in particular the expected value has been considered by many
authors (cf., e.g., [3]–[6], [11, Sec. 5], [36]). Note that it follows from The-
orem 2 (or just from the upper and lower bounds by Li [18] and Marklof
[20]) that the limit distribution described by Ψd(R) possesses qth moment
for 0 < q < d− 1 (q not necessarily an integer), and for no larger q. Let us
write Md,q for this moment:

Md,q := −
∞�

0

Rq dΨd(R) = q

∞�

0

Rq−1Ψd(R) dR, 0 < q < d− 1.(1.19)

Now the following is an easy consequence of Theorem 1 combined with
Theorem 3 and Corollary 1.

Corollary 2. Let d ≥ 3, and let D ⊂ Rd
≥0 be a bounded set with

non-empty interior and boundary of Lebesgue measure zero. Then for any q
in the interval 0 < q < 1

2(d− 1), we have convergence of moments:

lim
T→∞

1

#(N̂d ∩ TD)

∑
a∈bNd∩TD

(
f(a)

(a1 · · · ad)1/(d−1)

)q
= Md,q.(1.20)

If furthermore D ⊂ Rd
>0, then (1.20) holds for all 0 < q < d− 1.

We expect that (1.20) should hold for all 0 < q < d − 1 also without
the extra assumption D ⊂ Rd

>0 (indeed this would follow from our previous
conjecture that Pd(T,R) �d,D R

−(d−1) holds for general D). We note that
in the special case d = 3 and q = 1, (1.20) does hold for general D ⊂ Rd

≥0

(bounded with non-empty interior); this follows from Ustinov [36, Thm. 1].
We also remark that for d ≥ 4 and q = 1, (1.20) was proved in [3].

Finally let us turn to a slightly different question: What can be said
about the limit distribution of Frobenius numbers for d large? Let ρd−1 be
the absolute inhomogeneous minimum of ∆, viz.

ρd−1 = inf{ρ(L) : L ∈ Xd−1}.(1.21)

Using (1.5) and the fact that Ψd is continuous ([19, Lemma 7]), one easily
shows that

(1.22) Ψd(R) = 1 for 0 ≤ R ≤ ρd−1, and Ψd(R) < 1 for R > ρd−1,

i.e. the limit distribution described by Ψd(R) has support exactly in the
interval [ρd−1,∞). In fact ρd−1 is not only a lower bound for the support of
the limit distribution, but also a lower bound on the normalized Frobenius
number for any input vector; we have
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f(a)
(a1 · · · ad)1/(d−1)

≥ ρd−1, ∀a ∈ N̂d(1.23)

(cf. Aliev and Gruber [1, Thm. 1.1(i)] as well as Rödseth [24]). It was noted
in [1, (7)] that

ρd−1 > (d− 1)!1/(d−1).(1.24)

On the other hand the number ρd−1 is quite near (d− 1)!1/(d−1) for d large:
It follows from a bound by Rogers [27] on lattice coverings by general convex
bodies, refined by Gritzmann [14] in the case of convex bodies satisfying a
mild symmetry condition (cf. also [12, Sec. 9], and use the fact that ∆ can
be mapped to a regular (d−1)-simplex by a volume preserving linear map),
that

ρd−1 ≤ (d− 1)!1/(d−1)

(
1 +O

(
log d
d

))
as d→∞.(1.25)

When computing the Frobenius numbers for modest d and several random
large vectors a, one notes that the normalized values f(a)/(a1 · · · ad)1/(d−1)

most often do not exceed the experimental value for the lower bound ρd−1

by more than a constant factor < 2. This is seen in Figure 1 above in the
cases d = 3, 4, 5, 6; the same phenomenon was also noted in [7, Sec. 5 (esp.
Fig. 17)] for d = 4 and d = 8. The following result shows that this behavior
continues as d →∞; indeed, for d large, the distribution described by Ψd(R)
has almost all of its mass concentrated in the interval between (d− 1)!1/(d−1)

and 1.757 · (d− 1)!1/(d−1).

Theorem 4. Let η0 = 0.756 . . . be the unique real root of e log η+η = 0.
Then for any α > 1 + η0 we have

Ψd(α(d− 1)!1/(d−1))→ 0 as d→∞.(1.26)

We remark that the proof will show that (1.26) holds with an exponential
rate, for any fixed α > 1 + η0.

Combining Theorem 4 with Theorem 1 and (1.24) implies that for large d,
the normalized Frobenius number f(a)/(a1 · · · ad)1/(d−1) is very likely to lie
between (d− 1)!1/(d−1) and 1.757 · (d− 1)!1/(d−1). In precise terms, for any
fixed α > η0 we have

(1.27) lim
d→∞

lim inf
T→∞

1

#(N̂d ∩ [0, T ]d)
#
{
a ∈ N̂d ∩ [0, T ]d :

(d− 1)!1/(d−1) <
f(a)

(a1 · · · ad)1/(d−1)
< α(d− 1)!1/(d−1)

}
= 1.

Theorem 4 follows from a modification of a general bound by Rogers
on lattice coverings of space with convex bodies [25], further improved by
Schmidt [30]. We carry this out in Section 4 below.
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Remark 1. It is an interesting question whether the bound on α in
Theorem 4 can be further improved. Could it be that the limit distribution
of Frobenius numbers in fact concentrates near (d− 1)!1/(d−1) as d→∞, in
the sense that (1.26) holds for all α > 1?

It is also an interesting task to try to prove a good uniform bound on
Ψd(R) valid for all large d and R, uniting Theorem 4 and the fact that
Ψd(R)�d R

−(d−1) as R→∞. Even more generally, we may ask for a good
uniform bound on Pd(T,R) valid for all large d, T , R.

2. The asymptotic behavior of Ψd(R) as R→∞. In this section we
will prove Theorem 2.

2.1. Preliminaries. Let us write n = d− 1. Recall that ∆ denotes the
standard n-dimensional simplex defined in (1.4). Given L ∈ Xn and ρ > 0,
we have L+ρ∆ = Rn if and only if ζ−ρ∆ has non-empty intersection with
L for each ζ ∈ Rn. Thus, since L = −L,

ρ(L) = sup{ρ > 0 : there is ζ ∈ Rn such that L ∩ (ρ∆− ζ) = ∅}.(2.1)

It follows that the formula for Ψd(R), (1.5), may be rewritten as

(2.2) Ψd(R) = µn({L ∈ Xn : there is ζ ∈ Rn such that
L ∩ (R∆− ζ) = ∅}).

Let us write G = G(n) = SL(n,R) and Γ = Γ (n) = SL(n,Z). For any
M ∈ G, ZnM is an n-dimensional lattice of covolume one, and this gives
an identification of the space Xn with the homogeneous space Γ\G. Note
that µn is the measure on Xn coming from Haar measure on G, normalized
to be a probability measure; we write µn also for the corresponding Haar
measure on G. Let A = A(n) be the subgroup of G consisting of the diagonal
matrices with positive entries

a(a) =


a1

. . .

an

 ∈ G, aj > 0,(2.3)

and let N = N (n) be the subgroup of upper triangular matrices

n(u) =


1 u12 · · · u1n

. . . . . .
...

. . . un−1,n

1

 ∈ G.(2.4)
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Every element M ∈ G has a unique Iwasawa decomposition

M = n(u)a(a)k(2.5)

with k ∈ SO(n). We set

FN = {u : ujk ∈ (−1/2, 1/2], 1 ≤ j < k ≤ n};(2.6)

then {n(u) : u ∈ FN} is a fundamental region for (Γ ∩N)\N . We define the
following Siegel set:

(2.7) Sn :=
{
n(u)a(a)k ∈ G : u ∈ FN ,

0 < aj+1 ≤ 2√
3
aj (j = 1, . . . , n− 1), k ∈ SO(n)

}
.

It is known that Sn contains a fundamental region for Xn = Γ\G, and on the
other hand Sn is contained in a finite union of fundamental regions for Xn

(cf. [8]).

Lemma 1. If R > 0 and M = n(u)a(a)k ∈ Sn satisfy ZnM∩(R∆−ζ) = ∅
for some ζ ∈ Rn, then a1 �d R.

Proof. Note that R∆ contains a ball of radius �d R. Now the lemma
follows from [35, Lemma 2.1].

Alternatively, Lemma 1 follows from Jarńık’s inequalities (cf., e.g., [15,
p. 99]) together with the fact that a1 �d λn, where λn is the last successive
mimimum of the lattice ZnM (cf. (3.6) below).

Using the above lemma together with (2.2) and the bound

µn({M ∈ Sn : a1 > A})�d A
−n, ∀A > 0(2.8)

(cf. the proof of [35, Lemma 2.4]), we immediately deduce the upper bound

Ψd(R)�d R
−n,(2.9)

which was proved by Li [18, Thm. 1.2] in a different (but closely related)
way.

We next recall the parametrization of G = G(n) by R>0×Sn−1
1 ×Rn−1×

G(n−1) introduced in [35, (2.9)–(2.11)]. Let us fix a function f (smooth
except possibly at one point, say) Sn−1

1 → SO(n) such that e1f(v) = v for
all v ∈ Sn−1

1 (where e1 = (1, 0, . . . , 0)). Given M = n(u)a(a)k ∈ G, the
matrices n(u), a(a) and k can be split uniquely as

n(u) =

(
1 u
t0 n(u

˜
)

)
, a(a) =

(
a1 0
t0 a

−1/(n−1)
1 a(a

˜
)

)
, k =

(
1 0
t0 k

˜

)
f(v),

(2.10)

where u ∈ Rn−1, n(u
˜
) ∈ N (n−1), a1 > 0, a(a

˜
) ∈ A(n−1), k

˜
∈ SO(n − 1) and
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v ∈ Sn−1
1 . We set

M∼ = n(u
˜
)a(a

˜
)k
˜
∈ G(n−1).(2.11)

In this way we get a bijection between G and R>0 × Sn−1
1 ×Rn−1 ×G(n−1);

we write M = [a1,v,u,M∼ ] for the element in G corresponding to the 4-tuple
〈a1,v,u,M∼〉 ∈ R>0×Sn−1

1 ×Rn−1×G(n−1). The Haar measure µn takes the
following form in the parametrization M = [a1,v,u,M∼ ]:

dµn(M) = ζ(n)−1 dµn−1(M∼ ) du dv
da1

an+1
1

,(2.12)

where du is standard Lebesgue measure on Rn−1 and dv is the (n − 1)-
dimensional volume measure on Sn−1

1 ([35, (2.12)]). Note that all of the
above claims are valid also for n = 2, with the natural interpretation that
S1 = SL(1,R) = {1} with µ1({1}) = 1.

2.2. On the intersection of ∆ and a hyperplane orthogonal to v.
For M = [a1,v,u,M∼ ], the points in the lattice ZnM are given by the formula

(2.13) (k,m)M = ka1v + a
−1/(n−1)
1 (0, kua(a

˜
)k
˜

+mM∼ )f(v)

(∀k ∈ Z, m ∈ Zn−1).

In particular ZnM is contained in the union of the (parallel) hyperplanes
ka1v + v⊥:

ZnM ⊂
⋃
k∈Z

(ka1v + v⊥).(2.14)

Note that for each k, the (n−1)-dimensional affine lattice ZnM∩(ka1v+v⊥)
has covolume a−1

1 inside ka1v + v⊥. Hence if a1 is large then this point set
typically covers ka1v+v⊥ well in the sense that the maximal distance from
ZnM ∩ (ka1v + v⊥) to any point in ka1v + v⊥ is small.

Given v = (v1, . . . , vn) ∈ Sn−1
1 we let Pv : Rn → Rn be the orthogonal

projection onto the line Rv, viz.

Pv(x) := (x · v)v.(2.15)

Note that Pv(∆) is a closed line segment; let `(v) denote its length. In other
words, `(v) is the width of ∆ in the direction v. Since ∆ is the convex hull
of {0, e1, . . . , en}, where ej is the jth standard basis vector of Rn, Pv(∆)
is the convex hull of {Pv(0), Pv(e1), . . . , Pv(en)}, and here Pv(0) = 0 and
Pv(ej) = vjv. Hence

`(v) = `+(v)− `−(v),(2.16)

where

`+(v) := max(0, v1, . . . , vn), `−(v) := min(0, v1, . . . , vn).(2.17)

In particular 1/
√
n ≤ `(v) ≤

√
2.
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Lemma 2. If R > 0, M = [a1,v,u,M∼ ] and a1 > `(v)R, then there exists
ζ ∈ Rn such that ZnM ∩ (R∆− ζ) = ∅.

Proof. Because of (2.14), ZnM ∩ (R∆ − ζ) = ∅ certainly holds when-
ever R∆ − ζ lies completely inside the open strip contained between the
two parallel hyperplanes v⊥ and a1v + v⊥, and this holds if and only if
Pv(R∆ − ζ) ⊂ {tv : 0 < t < a1}. There exist vectors ζ satisfying the last
inclusion if and only if `(v)R < a1.

We next seek to obtain restrictions on those lattices ZnM with M =
[a1,v,u,M∼ ] and a1 ≤ `(v)R which still satisfy ZnM ∩ (R∆ − ζ) = ∅ for
some ζ ∈ Rn. We first prove the following simple geometric fact.

Lemma 3. For any v ∈ Sn−1
1 and x ∈ R, the hyperplane xv + v⊥ inter-

sects ∆ if and only if x ∈ [`−(v), `+(v)], and furthermore when this happens,
(xv + v⊥) ∩∆ contains an (n− 1)-dimensional ball of radius

(2.18) r := (2
√
n+ n)−1 min(x− `−(v), `+(v)− x).

Proof. The first statement follows since xv+v⊥ intersects ∆ if and only
if xv ∈ Pv(∆), and Pv(∆) = {tv : `−(v) ≤ t ≤ `+(v)}.

To prove the second statement we will prove the stronger fact that if
x ∈ [`−(v), `+(v)] then there is some y ∈ xv + v⊥ such that y + Bnr ⊂ ∆,
where Bnr denotes the closed n-dimensional ball of radius r centered at 0
(thus y + Bnr is the ball of radius r centered at y).

For an arbitrary point y = (y1, . . . , yn) ∈ Rn we note that y + Bnr ⊂ ∆
holds if and only if y1, . . . , yn ≥ r and y1 + · · · + yn ≤ 1 −

√
nr, which is

equivalent to saying that (
√
n + n)r ≤ 1 and y − re ∈ (1 − (

√
n + n)r)∆.

The condition (
√
n+ n)r ≤ 1 is clearly met for our r, since min(x− `−(v),

`+(v)− x) ≤ 1
2`(v) ≤ 2−1/2.

Hence, since ∆ is the convex hull of {0, e1, . . . , en}, it follows that there
exists a point y ∈ xv + v⊥ with y + Bnr ⊂ ∆ if and only if x lies in the
(1-dimensional) convex hull of the n+ 1 numbers

rv · e and rv · e+ (1− (
√
n+ n)r)vj for j = 1, . . . , n.(2.19)

Recalling (2.17) we see that this holds if and only if x ∈ [α−, α+], where

α± := rv · e+ (1− (
√
n+ n)r)`±(v).(2.20)

However

(2.21) |α± − `±(v)| ≤ r|v · e|+ (
√
n+ n)r|`±(v)| ≤ r(

√
n+
√
n+ n).

Hence x ∈ [α−, α+] certainly holds whenever

`−(v) + (2
√
n+ n)r ≤ x ≤ `+(v)− (2

√
n+ n)r,(2.22)

and this condition is clearly fulfilled for our r in (2.18).
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Lemma 4. If R > 0, M = [a1,v,u,M∼ ] ∈ Sn and a1 ≤ `(v)R, and if
ZnM ∩ (R∆− ζ) = ∅ for some ζ ∈ Rn, then a

˜
1 �d (`(v)R− a1)a1/(n−1)

1 in
M∼ = n(u

˜
)a(a

˜
)k
˜
∈ G(n−1).

Proof. Set X = `(v)R−a1 ≥ 0. Since Pv(R∆−ζ) is a closed line segment
in Rv of length `(v)R, there exists some k ∈ Z such that ka1v ∈ Pv(R∆−ζ)
and furthermore such that ka1v has distance ≥ 1

2X to both the endpoints
of Pv(R∆ − ζ). Hence by Lemma 3, (ka1v + v⊥) ∩ (R∆ − ζ) contains an
(n − 1)-dimensional ball B of radius �d X. Now ZnM ∩ (R∆ − ζ) = ∅
implies that the (n− 1)-dimensional affine lattice (ka1v+ v⊥)∩ZnM must
be disjoint from B. In view of (2.13) it follows that the (n− 1)-dimensional
lattice a−1/(n−1)

1 (0,Zn−1M∼ )f(v) ⊂ v⊥ is disjoint from a certain translate
of B inside v⊥. Hence Zn−1M∼ is disjoint from a ball of radius�d a

1/(n−1)
1 X

in Rn−1, and so a
˜
1 �d a

1/(n−1)
1 X by [35, Lemma 2.1].

2.3. The main computation. Recall that by Lemma 1, if M =
n(u)a(a)k ∈ Sn satisfies ZnM ∩ (R∆ − ζ) = ∅ for some ζ ∈ Rn, then
a1 ≥ κR, where κ > 0 is a constant which only depends on d. We set

A := κR,(2.23)

and from now on we keep R > κ−1, so that A > 1.
We next recall some definitions and facts from [21, Sec. 3.2]. We fix a

subset Sn−1
± ⊂ Sn−1

1 ∩{v1 ≥ 0} which contains exactly one of the vectors
v and −v for every v ∈ Sn−1

1 . Let us also fix a (set-theoretical, measur-
able) fundamental region Fn−1 ⊂ Sn−1 for Γ (n−1)\G(n−1). We set (cf. [21,
(3.15), (3.18)])

(2.24) GA := {[a1,v,u,M∼ ] ∈ G : a1 > A, v ∈ Sn−1
± ,

u ∈ (−1/2, 1/2]n−1, M∼ ∈ Fn−1}

and

S ′n := {[a1,v,u,M∼ ] ∈ Sn : v ∈ Sn−1
± }.(2.25)

Lemma 5. There exists a (set-theoretical, measurable) fundamental re-
gion Fn ⊂ S ′n for Xn = Γ\G and a (measurable) subset C ⊂ S ′n ∪ GA such
that

GA \ C ⊂ {M ∈ Fn : a1 > A} ⊂ GA ∪ C(2.26)

and µn(C)�d A
−2n if n ≥ 3, while C = ∅ if n = 2.
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Proof. For n ≥ 3 this follows from [21, Lemma 3.4], together with the
computation in [21, (3.23), (3.24)]. In the remaining case n = 2 we use the
well-known fact that a fundamental region for X2 = Γ (2)\G(2) is provided
by

F2 := {n(u)a(a)f(v) ∈ G(2) : u+ a2
1i ∈ FH, v ∈ S1

±},(2.27)

where FH is the usual fundamental region for the action of Γ (2) on the upper
half-plane H = {z = x+ iy ∈ C : y > 0}, viz.

(2.28) FH := {z = x+iy ∈ H : −1/2 < x ≤ 1/2, |z| ≥ 1, (x < 0⇒ |z| > 1)}.

In particular for this choice of F2 we have F2 ⊂ S ′2 and {M ∈ F2 : a1 > A}
= GA, since A > 1.

It follows from Lemma 5 and (2.2) that

(2.29) Ψd(R) =
�

GA

I(∃ζ ∈ Rn : ZnM ∩ (R∆− ζ) = ∅) dµn(M) +O(µn(C)),

where the error term is �d A
−2n �d R

−2n if n ≥ 3, while if n = 2 then the
error term vanishes. Hence, using (2.24) and (2.12), we obtain

(2.30) Ψd(R) =
1

ζ(n)

∞�

A

�

Sn−1
±

�

(−1/2,1/2)n−1

�

Fn−1

I(∃ζ ∈ Rn :

Zn[a1,v,u,M∼ ]∩(R∆−ζ) = ∅) dµn−1(M∼ ) du dv
da1

an+1
1

+Od(I(n ≥ 3) ·R−2n).

Here it follows from Lemma 2 that the right hand side is

≥ 1
ζ(n)

�

Sn−1
±

∞�

`(v)R

da1

an+1
1

dv =
R−n

nζ(n)

�

Sn−1
±

`(v)−n dv.(2.31)

(Note here that by Lemma 2 and our definition of A we have A ≤ `(v)R for
all v ∈ Sn−1

1 .) On the other hand it follows from Lemma 4 that there is a
constant κ′ > 0 which only depends on d such that the difference between
the integral in (2.30) and the right hand side of (2.31) is

(2.32)

≤ 1
ζ(n)

�

Sn−1
±

`(v)R�

A

µn−1({M∼ ∈ Fn−1 : a
˜
1 ≥ κ′(`(v)R− a1)a1/(n−1)

1 }) da1

an+1
1

dv.

Here A = κR; hence R�d a1 �d R in the integral, and we get, with a new
constant κ′′ > 0 which only depends on d,
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�d R
−(n+1)

�

Sn−1
±

`(v)R�

κR

µn−1({M∼ ∈ Fn−1 :(2.33)

a
˜
1 ≥ κ′′(`(v)R− a1)R1/(n−1)}) da1 dv

≤ R−(n+1)
�

Sn−1
±

`(v)R�

0

µn−1({M∼ ∈ Fn−1 : a
˜
1 ≥ κ′′tR1/(n−1)}) dt dv

�d R
−(n+1)

√
2R�

0

µn−1({M∼ ∈ Fn−1 : a
˜
1 ≥ κ′′tR1/(n−1)}) dt.

Now if n ≥ 3 then by a computation as in the proof of [35, Lemma 2.4] we
get

(2.34) �d R
−(n+1)

√
2R�

0

(1 + tR1/(n−1))−(n−1) dt�d R
−n−1−1/(n−1).

On the other hand if n = 2 then Fn−1 = {1} and hence the last line of (2.33)
equals R−3 ·min(

√
2R, κ′′−1R−1), which is � R−4. Hence we conclude that

Ψd(R) =
R−n

nζ(n)

�

Sn−1
±

`(v)−n dv +Od(R−n−1−1/(n−1)).(2.35)

Now to prove the asymptotic formula for Ψd(R) stated in Theorem 2, it only
remains to compute the integral

	
Sn−1
±

`(v)−n dv.

2.4. Computing the constant in the main term

Lemma 6. For every n ≥ 2 we have
�

Sn−1
±

`(v)−n dv =
n(n+ 1)

2
.(2.36)

Proof. Set

K = {rv : v ∈ Sn−1
1 , 0 ≤ r ≤ `(v)−1} ⊂ Rn;(2.37)

then clearly
�

Sn−1
±

`(v)−n dv =
1
2

�

Sn−1
1

`(v)−n dv =
n

2
vol(K).(2.38)

But for any x = rv with r > 0 and v ∈ Sn−1
1 we have

`(v) = ‖x‖−1(max(0, x1, . . . , xn)−min(0, x1, . . . , xn)),(2.39)
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so that r ≤ `(v)−1 if and only if max(0, x1, . . . , xn)−min(0, x1, . . . , xn) ≤ 1.
In other words,

K = {x ∈ [−1, 1]n : |xj − xk| ≤ 1, ∀j, k}.(2.40)

Hence by easy symmetry considerations we have

vol(K) = vol(K ∩ [0, 1]n) + vol(K ∩ [−1, 0]n)(2.41)
+ n(n− 1) vol({x ∈ K : x1 < 0 < x2 and

x1 < xj < x2 for j = 3, . . . , n})

= 2 + n(n− 1)
0�

−1

1+x1�

0

(x2 − x1)n−2 dx2 dx1 = n+ 1.

The lemma follows from (2.38) and (2.41).

2.5. Bound from below. Finally we will prove the lower bound (1.9)
in Theorem 2.

The key step is the following lemma, which says that for “good” direc-
tions v = (v1, . . . , vn) ∈ Sn−1

1 , we may weaken the restriction a1 > `(v)R
in Lemma 2 by a small but uniform amount, and still be sure to have
ZnM ∩ (R∆− ζ) = ∅ for some ζ ∈ Zn.

Lemma 7. Let c be a fixed number in the interval (0, n−1/2), and set

c′ = (n− 1)!1/(n−1)cn/(n−1).(2.42)

Then for any R ≥ (2c′
√
n)1−1/n and any M = [a1,v,u,M∼ ] with a1 >

`(v)R − c′R−1/(n−1) and vj > c (for all j), there exists ζ ∈ Rn such that
ZnM ∩ (R∆− ζ) = ∅.

Proof. Let R and M = [a1,v,u,M∼ ] satisfy the given assumptions. If
a1 > `(v)R then the desired statement is in Lemma 2; hence from now on
we may assume a1 ≤ `(v)R. We will choose

ζ = c′R−1/(n−1)v +w(2.43)

for some w ∈ v⊥ which will be fixed at the end of the proof. Then for every
x ∈ R∆− ζ we have

x · v ≤ `+(v)R− ζ · v = `(v)R− c′R−1/(n−1)(2.44)

and

x · v ≥ −ζ · v = −c′R−1/(n−1) ≥ −(`(v)R− c′R−1/(n−1)),(2.45)

where we used the assumption R ≥ (2c′
√
n)1−1/n in the last step. Using

(2.44), (2.45) and a1 > `(v)R− c′R−1/(n−1) we conclude that

(R∆− ζ) ∩ (ka1v + v⊥) = ∅, ∀k ∈ Z \ {0}.(2.46)
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Hence, using also (2.14), we get

(R∆− ζ) ∩ ZnM = (R∆− ζ) ∩ LM,v,(2.47)

where LM,v is the (n−1)-dimensional lattice LM,v = ZnM ∩v⊥. Recall that
LM,v has covolume a−1

1 in v⊥. Using also R∆ ⊂ Rn
≥0 and ζ = c′R−1/(n−1)v

+w, w ∈ v⊥, we obtain

(R∆− ζ) ∩ ZnM ⊂ (Rn
≥0 − c′R−1/(n−1)v −w) ∩ LM,v(2.48)

= (((Rn
≥0 − c′R−1/(n−1)v) ∩ v⊥)−w) ∩ LM,v.

Here (Rn
≥0 − c′R−1/(n−1)v) ∩ v⊥ is a closed (n − 1)-dimensional simplex,

and a simple computation yields for its volume (cf. [13, (17)], or the simpler
computation in [5, Lemma 1])

(2.49) voln−1((Rn
≥0 − c′R−1/(n−1)v) ∩ v⊥)

=

∏n
j=1 v

−1
j

(n− 1)!
(c′R−1/(n−1))n−1 < R−1.

In the last step we used vj > c (for all j) and (2.42). However the covolume
of LM,v in v⊥ is, since we assumed a1 ≤ `(v)R from the start,

voln−1(v⊥/LM,v) = a−1
1 ≥ (`(v)R)−1 > R−1.(2.50)

(Indeed `(v) = `+(v) < 1 since all vj are positive.) The above shows that
the volume of (Rn

≥0 − c′R−1/(n−1)v) ∩ v⊥ is smaller than the covolume of
LM,v, and hence there is some w ∈ v⊥ such that the intersection in (2.48)
is empty.

We now return to the computation in Section 2.3. We will bound the
difference between the integral in (2.30) and the right hand side of (2.31)
from below. Fix a constant c ∈ (0, n−1/2) as in Lemma 7, let c′ > 0 be as in
(2.42), and let Ω be the non-empty, relatively open subset of Sn−1

± consisting
of all v = (v1, . . . , vn) ∈ Sn−1

1 with vj > c (for all j). It now follows from
Lemma 7 that, for any R ≥ (2c′

√
n)1−1/n, the difference between the integral

in (2.30) and the right hand side of (2.31) is

≥ 1
ζ(n)

`(v)R�

`(v)R−c′R−1/(n−1)

�

Ω

dv
da1

an+1
1

�d R
−n−1−1/(n−1).(2.51)

In particular note that this contribution is asymptotically larger than the
error term in (2.30). Hence we conclude that there exist constants c, c′ > 0
which only depend on n such that for all R > c′,

Ψd(R) >
R−n

nζ(n)

�

Sn−1
±

`(v)−n dv + cR−n−1−1/(n−1).(2.52)
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In view of Lemma 6 we have thus proved (1.9) in Theorem 2. Since the
asymptotic relation (1.8) follows from (2.35) and Lemma 6, this concludes
the proof of Theorem 2.

3. Uniform bounds on P̃d(T,R) and Pd(T,R). In this section we will
prove Theorem 3 and Corollary 1.

3.1. Proof of Theorem 3. Let us first note that the claim (1.16), i.e.

P̃d(T,R) = 0 whenever R ≥ κ1−1/(d−1)
D T 1−1/(d−1)(3.1)

where

κD := sup
x∈D
‖x‖,(3.2)

is a direct consequence of any among several known bounds on the Frobenius
number (cf., e.g., [23]). For example, the classical bound by Schur (cf. [10])
asserts that for any a ∈ N̂d satisfying a1 ≤ · · · ≤ ad,

(3.3) g(a) ≤ a1ad−a1−ad (thus f(a) ≤ a1ad+a2 + · · ·+ad−1 < da1ad).

Using this together with the fact that s(a) ≥ da1ad‖a‖−1+1/(d−1) for any
such a, we deduce

f(a)
s(a)

< ‖a‖1−1/(d−1).(3.4)

Here both the left and the right hand sides are invariant under permutations
of the coefficients of a; hence (3.4) in fact holds for all a ∈ N̂d. Finally, (3.1)
follows from (3.4).

We next turn to the proof of (1.15) in Theorem 3. As in the previous
section we write n = d− 1. Given a ∈ N̂d we set

Λa = Zd ∩ a⊥ = {x ∈ Zd : a · x = 0}.(3.5)

This is an n-dimensional sublattice of Zd of determinant det(Λa) = ‖a‖.
(By the determinant, det(Λ), of a lattice Λ of not necessarily full rank in Rd,
we mean the covolume of Λ in spanR Λ.) Given any n-dimensional lattice
Λ ⊂ Rd we write 0 < λ1(Λ) ≤ · · · ≤ λn(Λ) for the Minkowski successive
minima of Λ, i.e.

λj(Λ) = inf{r > 0 : dim spanR(Bdr ∩ Λ) ≥ j}.(3.6)

(Recall that Bdr is the closed d-dimensional ball of radius r centered at 0.)
Then by Aliev and Henk [2, (14)] (2) (cf. also Kannan [17, Thm. 2.5]) we
have

(2) Note that λj in [2] equals ‖a‖−1/nλj(Λa) in our notation.
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f(a)
s(a)

≤ 1
2
n‖a‖−1/nλn(Λa).(3.7)

Note also that we have #(N̂d ∩ TD) �d,D T d uniformly over all T > 0 for
which N̂d ∩ TD 6= ∅, since D is bounded with non-empty interior. From
these facts together with the fact that Λa 6= Λb for all a 6= b ∈ N̂d (since
spanR Λa = a⊥ 6= b⊥ = spanR Λb), it follows that

(3.8) P̃d(T,R)

�d,D T
−d#{Λ ∈ Ln : det(Λ) ≤ κDT, λn(Λ) > 2n−1 det(Λ)1/nR},

where Ln is the set of all n-dimensional sublattices of Zd.
Let us set

ρj(Λ) := λj+1(Λ)/λj(Λ) for j = 1, . . . , n− 1.(3.9)

(Thus ρj(Λ) ≥ 1 for all Λ.) Also, for any r = (r1, . . . , rn−1) ∈ Rn−1
≥1 , we set

Ln(r) := {Λ ∈ Ln : ρj(Λ) ≥ rj (∀j)}.(3.10)

Now as a special case of Schmidt’s [31, Thm. 5], the number of lattices
in Ln(r) with determinant at most T is given by the following asymptotic
formula with a precise error term. Let us write ρj(L) = λj+1(L)/λj(L) also
for an n-dimensional lattice L ⊂ Rn, with λ1(L) ≤ · · · ≤ λn(L) being the
successive minima of L.

Theorem 5 ([31, Thm. 5]). For any r ∈ Rn−1
≥1 and T > 0 we have

(3.11) #{Λ ∈ Ln(r) : det(Λ) ≤ T}

=
πd/2

2Γ (1 + d/2)

( n∏
j=2

ζ(j)
)
µn({L ∈ Xn : ρj(L) ≥ rj (∀j)}) · T d

+Od

((n−1∏
j=1

r
−(j−1/n)(n−j)
j

)
T d−1/n

)
.

Furthermore,

µn({L ∈ Xn : ρj(L) ≥ rj (∀j)}) �d
n−1∏
j=1

r
−j(n−j)
j .(3.12)

For our argument we will only make use of the upper bound which follows
from the above theorem, viz.

(3.13) #{Λ ∈ Ln(r) : det(Λ) ≤ T}

�d T
d
n−1∏
j=1

r
−j(n−j)
j

(
1 + T−1/n

n−1∏
j=1

r
(n−j)/n
j

)
.
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We will now form a finite union of sets Ln(r) which contains the set on
the right hand side of (3.8).

For any n-dimensional lattice Λ we have

λn(Λ)n =
n∏
j=1

λj(Λ)
n−1∏
j=1

ρj(Λ)j �d det(Λ)
n−1∏
j=1

ρj(Λ)j ,(3.14)

where in the last step we used Minkowski’s Second Theorem (cf., e.g., [34,
Lectures 3–4]). Hence there exists a constant c > 0 which only depends on n
(viz., only on d) such that for any n-dimensional lattice Λ and any R > 0,

λn(Λ) > 2n−1 det(Λ)1/nR ⇒
n−1∏
j=1

ρj(Λ)j > cRn.(3.15)

Note that (1.15) is trivial when R � 1 (since P̃d(T,R) ≤ 1 always); hence
from now on we may keep R ≥ ec−1/n without loss of generality. Set

B := blog(cRn)− nc ∈ Z≥0(3.16)

and

(3.17) R(n,R) :=
{
r = (eb1 , eb2/2, eb3/3, . . . , ebn−1/(n−1)) :

b ∈ Zn−1
≥0 ,

n−1∑
j=1

bj = B
}
.

Note that if Λ is any n-dimensional lattice satisfying
∏n−1
j=1 ρj(Λ)j > cRn,

then if we set bj := bj log ρj(Λ)c we have

n−1∑
j=1

bj >

n−1∑
j=1

(j log ρj(Λ)− 1)(3.18)

> log(cRn)− (n− 1) > log(cRn)− n ≥ B.

Hence there is a way to decrease some of the bj ’s so as to make
∑n−1

j=1 bj

= B, while keeping b = (b1, . . . , bn−1) ∈ Zn−1
≥0 . Of course the new vec-

tor b = (b1, . . . , bn−1) still satisfies bj ≤ j log ρj(Λ) for each j, i.e. ρj(Λ)
≥ ebj/j . We have thus proved that for any n-dimensional lattice Λ satisfying∏n−1
j=1 ρj(Λ)j > cRn, there exists some r ∈ R(n,R) such that rj ≤ ρj(Λ)

for j = 1, . . . , n − 1. This fact together with (3.15) implies that the set
on the right hand side of (3.8) is contained in the union of Ln(r) over all
r ∈ R(n,R). So, by (3.8), for all T > 0 with N̂d∩TD 6= ∅ and all R ≥ ec−1/n

we have
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P̃d(T,R)�d,D T
−d

∑
r∈R(n,R)

#{Λ ∈ Ln(r) : det(Λ) ≤ κDT}.(3.19)

Therefore, via (3.13),

P̃d(T,R)�d,D
∑

b∈Zn−1
≥0

b1+···+bn−1=B

exp
{
−
n−1∑
j=1

(n− j)bj
}

(3.20)

+ T−1/n
∑

b∈Zn−1
≥0

b1+···+bn−1=B

exp
{
−
n−1∑
j=1

(1− (nj)−1)(n− j)bj
}
.

If n = 2 then each sum above has exactly one term, and we conclude

P̃3(T,R)�D R−2 + T−1/2R−1.(3.21)

If R < κ
1/2
D T 1/2 then this gives P̃3(T,R) �D R−2. On the other hand if

R ≥ κ
1/2
D T 1/2 then P̃3(T,R) = 0 by (3.1). Hence the proof of (1.15) is

complete in the case n = 2.
We now assume n ≥ 3. We set

(3.22)
γ1(j) := n− j,
γ2(j) := (1− (nj)−1)(n− j) = n+ n−1 − (j + j−1).

Now for any b ∈ Zn−1
≥0 with b1 + · · ·+ bn−1 = B and b1 + · · ·+ bn−2 =: s we

have, since γ1(j) is a decreasing function of j,

n−1∑
j=1

γ1(j)bj ≥ γ1(n− 2)
n−2∑
j=1

bj + γ1(n− 1)bn−1(3.23)

= 2s+ (B − s) = B + s.

Similarly, since also γ2(j) is a decreasing function of j for j ≥ 1,

n−1∑
j=1

γ2(j)bj ≥ γ2(n− 2)s+ γ2(n− 1)(B − s)(3.24)

=
(

1− 1
n(n− 1)

)
B +

(
1− 1

(n− 1)(n− 2)

)
s.

Note also that for any s ∈ {0, 1, . . . , B} there are exactly
(
s+n−3
n−3

)
vec-

tors b ∈ Zn−1
≥0 satisfying b1 + · · · + bn−1 = B and b1 + · · · + bn−2 = s.

Hence
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(3.25) P̃d(T,R)

�d,D

B∑
s=0

(
s+ n− 3
n− 3

)
e−B−s

+ T−1/n
B∑
s=0

(
s+ n− 3
n− 3

)
e
−(1− 1

n(n−1)
)B−(1− 1

(n−1)(n−2)
)s

�d,D e
−B + T−1/ne

−(1− 1
n(n−1)

)B �d R
−n(1 + T−1/nR1/(n−1)).

If R < κ
1−1/n
D T 1−1/n then this gives P̃d(T,R)�d,D R

−n. On the other hand
if R ≥ κ

1−1/n
D T 1−1/n then P̃d(T,R) = 0 by (3.1). Hence the proof of (1.15)

is complete.

Remark 2. Note that our proof makes crucial use of the precise error
terms which Schmidt has worked out for the asymptotic formulas in [31,
Sec. 2]. In this vein, note that the proof of the bound P̃d(T,R) �d R

−2 in
[2, Thm. 1.1] is correct as it stands only when T is sufficiently large in a
way which may depend on R (as well as d); this is because the proof in [2]
uses Schmidt’s [31, Thm. 2], in which the rate of convergence may depend
in an unspecified way on the chosen set D of lattice similarity classes.

3.2. Proof of Corollary 1. Let us first note that (1.18) is again a
direct consequence of the classical bound by Schur, (3.3). Indeed, for any
a ∈ N̂d satisfying a1 ≤ · · · ≤ ad, by (3.3) we have

f(a)
(a1 · · · ad)1/(d−1)

< d · a1

(a1 · · · ad−1)1/(d−1)
· a1−1/(d−1)

d(3.26)

≤ da1−1/(d−1)
d < d‖a‖1−1/(d−1),

and this implies (1.18).
The following lemma refines [3, Thm. 2 and Remark 1]. Recall that

n = d − 1 ≥ 2. Let us write ‖x‖∞ := max(|x1|, . . . , |xn|) for the maximum
norm of a vector x ∈ Rn.

Lemma 8. For any T > 0 and α > 0 we have

#
{
x = (x1, . . . , xn) ∈ Nn : ‖x‖∞ ≤ T,

‖x‖∞
(x1 · · ·xn)1/n

> α

}
�n T

nα−n(log(2 + α))n−2.

Remark 3. For any fixed ε > 0 the above bound is in fact sharp in the
range 1 ≤ α ≤ T 1−1/n−ε, in the sense that the cardinality on the left hand
side is also �n,ε T

nα−n(log(2 + α))n−2 uniformly over all T ≥ T0(n, ε) and
all 1 ≤ α ≤ T 1−1/n−ε. However we do not need this fact and we will not
prove it here.
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Proof of Lemma 8. It suffices to prove

(3.27) #
{
x ∈ Nn :

1
2
T < ‖x‖∞ ≤ T,

‖x‖∞
(x1 · · ·xn)1/n

> α

}
�n T

nα−n(log(2 + α))n−2,

since the lemma then follows by dyadic decomposition in the T -variable. Of
course we may assume T ≥ 1 since otherwise the set on the left hand side
is empty. We may also assume α ≥ 1 since otherwise the right hand side is
�n T

n and (3.27) is trivial. Now note that if x belongs to the set on the left
hand side of (3.27) then for every real vector y in the unit box x + [0, 1]n

we have 1
2T < ‖y‖∞ ≤ T + 1 ≤ 2T and (since all xj ≥ 1)

n∏
j=1

yj ≤
n∏
j=1

(xj + 1) ≤
n∏
j=1

(2xj) = 2n
n∏
j=1

xj(3.28)

< 2n(‖x‖∞)nα−n ≤ 2nTnα−n.

Hence the left hand side of (3.27) is

(3.29) ≤ vol
({
y ∈ Rn

≥1 : T/2 < ‖y‖∞ ≤ 2T,
n∏
j=1

yj < 2nTnα−n
})

≤ n
2T�

1

· · ·
2T�

1

2T�

T/2

I
( n∏
j=1

yj < 2nTnα−n
)
dyn dyn−1 · · · dy1

≤ 2nT
2T�

1

· · ·
2T�

1

I
(n−1∏
j=1

yj < 2n+1Tn−1α−n
)
dyn−1 · · · dy1

= 2nnTn
log(2T )�

0

· · ·
log(2T )�

0

I
(n−1∑
j=1

uj > log(αn/4)
)
e−

Pn−1
j=1 uj dun−1 · · · du1,

where in the last step we substituted yj = 2Te−uj . If n = 2 then the last
expression is clearly � T 2α−2, as desired. From now on we assume n≥ 3.
Set un−1 =s+log(αn/4)−

∑n−2
j=1 uj ; then the conditions

∑n−1
j=1 uj> log(αn/4)

and un−1 > 0 are equivalent to s > 0 and
∑n−2

j=1 uj < s+ log(αn/4), respec-
tively. Hence the last expression in (3.29) is

≤ 2n+2nTnα−n
∞�

0

e−s
(∞�

0

· · ·
∞�

0

I
(n−2∑
j=1

uj < s+ log(αn/4)
)

(3.30)

× dun−2 · · · du1

)
ds
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≤ 2n+2n

(n− 2)!
Tnα−n

∞�

0

e−s(s+ n logα)n−2 ds�n T
nα−n(log(2 + α))n−2,

where we used α ≥ 1.

We now give the proof of (1.17) in Corollary 1. We may assume R ≥ 10
since otherwise (1.17) follows immediately from Pd(T,R) ≤ 1. We keep
R′ ∈ [1, R], to be fixed later. Now

(3.31) Pd(T,R)

�d,D T
−d#

{
a ∈ N̂d ∩ TD :

f(a)
s(a)

> R′ or
s(a)

(a1 · · · ad)1/(d−1)
>
R

R′

}
≤ T−d#

{
a ∈ N̂d ∩ TD :

f(a)
s(a)

> R′
}

+ T−d#
{
a ∈ Nd : ‖a‖∞ ≤ κ′DT,

s(a)
(a1 · · · ad)1/(d−1)

>
R

R′

}
,

where κ′D := supx∈D ‖x‖∞. In the last term, at the price of an extra factor
d we may impose the extra assumption ad = max(a1, . . . , ad). For such
vectors a, we have

s(a)
(a1 · · · ad)1/(d−1)

<
d3/2ad max(a1, . . . , an)
‖a‖1−1/n(a1 · · · ad)1/n

(3.32)

<
d3/2ad max(a1, . . . , an)

a
1−1/n
d (a1 · · · ad)1/n

= d3/2 ‖(a1, . . . , an)‖∞
(a1 · · · an)1/n

.

Hence for any T > 0 with N̂d ∩ TD 6= ∅,

(3.33) Pd(T,R)

�d,D T
−d#

{
a ∈ N̂d ∩ TD :

f(a)
s(a)

> R′
}

+ T−n#
{
a ∈ Nn : ‖a‖∞ ≤ κ′DT,

‖(a1, . . . , an)‖∞
(a1 · · · an)1/n

>
1
d3/2

R

R′

}
�d,D R

′−n +R−nR′
n
(

log
(

2 +
R

R′

))n−2

,

where we used Theorem 3 and Lemma 8. The bound in (1.17) now follows
by choosing R′ =

√
R(log(R+ 2))1/n−1/2.

4. Lattice coverings of space with convex bodies. According to a
theorem of Schmidt ([30, Thm. 11∗]), sharpening a previous result by Rogers
([25, Thm. 2]), if n is sufficiently large, then for any n-dimensional convex
body K of volume
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voln(K) ≥ (1 + η0)n (with η0 = 0.756 . . . as in Theorem 4),(4.1)

there exists a lattice L ∈ Xn such that the translates of K by L cover Rn,
viz. K + L = Rn. The lower bound (4.1) was shortly afterwards improved
by Rogers to a subexponential bound, in [27]. However, our purpose in this
section is to point out that the argument in [30], [25] can fairly easily be
modified to show that K + L = Rn holds not just for some lattice L ∈ Xn,
but in fact for a subset of large measure in Xn:

Theorem 6. Let η0 = 0.756 . . . be the unique real root of e log η+η = 0.
For every dimension n larger than a certain absolute constant, if a is any
real number satisfying

nη
n/2
0 ≤ a < 1,(4.2)

and K is any n-dimensional convex body of volume

voln(K) ≥ n(1 + η0a
−1/n)n,(4.3)

then

µn({L ∈ Xn : K + L = Rn}) ≥ 1− a.(4.4)

In particular, for any given constant α > 1 + η0 there exists c < 1
such that for any sufficiently large n, and for any convex body K ⊂ Rn of
volume ≥ αn, the probability that K fails to give a covering with respect to
a random lattice L ∈ Xn is ≤ cn, i.e. exponentially small in n.

We obtain Theorem 4 as a special case of this by taking n = d − 1 and
K = α(d− 1)!1/(d−1)∆.

4.1. Proof of Theorem 6. We start by recalling another result of
Rogers ([26]) which is used in the proof of [30, Thm. 11∗]. For any (Lebesgue)
measurable set M ⊂ Rn and any lattice L ∈ Xn we write ε(M,L) for the
density of the set of points in Rn left uncovered by the translates of M by
the vectors of L. In other words,

ε(M,L) = 1− voln((M + L)/L).(4.5)

(Note that (M+L)/L is a well-defined measurable subset of the torus Rn/L.)

Theorem 7 ([26, Thm. 1] (3)). For any measurable set M ⊂ Rn (n ≥ 2)
of volume V , �

Xn

ε(M,L) dµn(L) ≤ 1− V + 1
2V

2.(4.6)

Let us note the following corollary.

(3) The boundedness assumption in Rogers’ statement of [26, Thm. 1] can be disposed
of, cf. [26, p. 211]. Note also that we do not have to require V ≤ 1, although if V > 1
then the bound in (4.6) is subsumed by the bound

	
ε(M,L) dµn ≤ 1/2, which follows by

applying Theorem 7 to an arbitrary subset M ′ ⊂M of volume 1.



Limit distribution of Frobenius numbers 105

Corollary 3. For any C > 0 and any measurable set M ⊂ Rn (n ≥ 2)
of volume V ,

µn({L ∈ Xn : ε(M,L) ≥ 1− V + CV 2}) ≤ 1
2C

.(4.7)

Proof. Clearly, for any lattice L ∈ Xn we have voln((M + L)/L) ≤ V ,
and thus

ε(M,L) ≥ 1− V.(4.8)

Hence if p denotes the measure on the left hand side of (4.7) then
�

Xn

ε(M,L) dµn(L) ≥ p(1− V + CV 2) + (1− p)(1− V )(4.9)

= 1− V + pCV 2,

and thus Theorem 7 implies pC ≤ 1/2.

Proof of Theorem 6. Let a and K be as in the statement of the theorem.
Let r = 0.278 . . . be the root of the equation 1+r+log r = 0; then η0 = e−r.
We set K ′ = ρK, where ρ > 0 is chosen so that the volume of K ′ is

V = voln(K ′) = rn.(4.10)

We also set

η = e−ra−1/n = η0a
−1/n.(4.11)

Now by Schmidt [30, Thm. 10∗] (applied with ε = 1), if n is larger than
a certain absolute constant then�

Xn

ε(K ′, L) dL ≤ 2(1 + V n−1n−n+1eV+n)e−V = 2(1 + r−1)e−rn,(4.12)

and thus

µn({L ∈ Xn : ε(K ′, L) ≥ 4(1 + r−1)e−rna−1}) ≤ 1
2a.(4.13)

Also, by Corollary 3,

µn({L ∈ Xn : ε(ηK ′, L) ≥ 1− ηnV + a−1η2nV 2}) ≤ 1
2a.(4.14)

Note that e−rna−1/(ηnV ) = 1/V = r−1n−1 → 0 as n→∞, and also

a−1η2nV 2

ηnV
= a−1ηnV = a−2e−rnrn ≤ rn−1 → 0 as n→∞,(4.15)

where we used (4.2). Hence for n larger than a certain absolute constant,

1− ηnV + a−1η2nV 2 + 4(1 + r−1)e−rna−1 < 1.(4.16)

It follows from (4.13), (4.14) and (4.16) that

(4.17) µn({L ∈ Xn : ε(ηK ′, L) + ε(K ′, L) < 1}) ≥ 1− a.



106 A. Strömbergsson

However, for any L ∈ Xn that satisfies ε(ηK ′, L) + ε(K ′, L) < 1 we have
(1 + η)K ′ + L = Rn, since K ′ is convex (cf. [25, Sec. 1.3]), and thus also
αK ′ + L = Rn for any α ≥ 1 + η. In particular, since K = ρ−1K ′, we have
K+L = Rn for any such L, provided that ρ−1 ≥ 1+η. But voln(K) = ρ−nV ;
hence ρ−1 ≥ 1 + η is equivalent to voln(K) ≥ (1 + η)nV , and this inequality
certainly holds, because of V < n and our assumption (4.3). Hence (4.4)
follows from (4.17).
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Comput. 43 (2008), 1–7.
[30] W. M. Schmidt, Masstheorie in der Geometrie der Zahlen, Acta Math. 102 (1959),

159–224.
[31] —, The distribution of sublattices of Zm, Monatsh. Math. 125 (1998), 37–81.
[32] V. Shchur, Ya. Sinai and A. Ustinov, Limiting distribution of Frobenius numbers

for n = 3, J. Number Theory 129 (2009), 2778–2789.
[33] C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. 46

(1945), 340–347.
[34] —, Lectures on the Geometry of Numbers, Springer, Berlin, 1989.
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