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Asymptotic nature of higher Mahler measure
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Arunabha Biswas (Lubbock, TX)

1. Introduction

Definition 1.1. Given a nonzero Laurent polynomial P (x) ∈ C[x±1]
and k ∈ N, the k-higher Mahler measure of P (see [4]) is defined by

mk(P ) :=

1�

0

logk |P (e2πiθ)|dθ =
1

2πi

�

|z|=1

logk |P (z)| dz
z
.

These mk’s are multiples of the coefficients in the Taylor expansion of Akat-
suka’s zeta Mahler measure (see [2])

Z(s, P ) :=

1�

0

|P (e2πi)|sdθ, that is, Z(s, P ) =

∞∑
k=0

mk(P )

k!
sk.

For k = 0, 1, 2, . . . , let ak(P ) = mk(P )/k!, so that

Z(s, P ) =

∞∑
k=0

ak(P )sk.

In this paper we only consider polynomials of type P (x) = x − r with
|r| = 1. Therefore, from now on, we write mk(x−r) = mk and ak(x−r) = ak
for simplicity.

2. Asymptotic nature of higher Mahler measure of r − x when
|r| = 1. We will prove

Theorem 2.1. Let mk and ak be as above. Then

(a)
mk+1

(k + 1)!
+
mk

k!
= ak+1 + ak = O(1/k),

(b) lim
k→∞

∣∣∣∣mk

k!

∣∣∣∣ = lim
k→∞

|ak| =
1

π
,
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(c)
mk+1

(k + 1)!
+
mk

k!
= ak+1 + ak = o(1/k),

(d) lim
k→∞

1

k + 1
· mk+1

mk
= lim

k→∞

ak+1

ak
= −1.

From [4] we know that for |s| < 1,

Z(s, r − x) = exp

( ∞∑
k=2

(−1)k(1− 21−k)ζ(k)

k
sk
)
.(2.1)

Differentiating both sides of (2.1) with respect to s we obtain
∞∑
k=1

kaks
k−1 =

∂

∂s
Z(s, r − x)

= Z(s, r − x)
∞∑
k=2

(−1)k(1− 21−k)ζ(k)sk−1

=
( ∞∑
k=0

aks
k
)( ∞∑

k=1

bks
k
)

=
∞∑
k=1

(
a0bk +

k−1∑
j=1

ajbk−j

)
sk,

where bk−1 := (−1)k(1−21−k)ζ(k). From the power series expansion of (2.1)
we already know that a0 = 1. Now comparing coefficients on both sides of
the last expression we get a1 = 0, a2 = 1

2a0b1 = 1
4ζ(2) and for k ≥ 3,

(2.2) ak =
1

k

k−2∑
j=0

ajbk−1−j ,

where

(2.3) bk := (−1)k+1(1− 2−k)ζ(k + 1).

3. A few remarks and lemmas

Remark 3.1. It can be easily shown by induction that a2k > 0 and
a2k+1 < 0 for all k ≥ 1. It is also easy to see that

ak =
(−1)k

k

k−2∑
j=0

|ajbk−1−j | for k > 1.

Remark 3.2. Let Bk := |bk|. Then Bk ≤ 1 for all k ≥ 1, Bk is increasing
and Bk → 1 as k →∞.

Notice Bk = η(k+1) where η(k) is Dirichlet’s eta function. Since η(k)→1
as k → ∞ and η(k) is an increasing function of k by [1], B(k) ≤ 1 for all
k ≥ 1, Bk is increasing and Bk → 1 as k →∞.

Lemma 3.3. |ak| ≤ 1 for all k ≥ 1.
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Proof. We use induction. First we see that |a0| = 1 ≤ 1, |a1| = 0 ≤ 1,
and |a2| = ζ(2)/4 = π2/24 ≤ 1. Now assume |aj | ≤ 1 for all 2 < j < k.
Using this along with Remark 3.2 we get

|ak| =
1

k

∣∣∣k−2∑
j=0

ajbk−1−j

∣∣∣≤ 1

k

k−2∑
j=0

|ajbk−1−j | ≤
1

k

k−2∑
j=0

1 =
k − 1

k
< 1.

Lemma 3.4. For k ≥ 4, ζ(k)− ζ(k + 1) ≤ 1/k2.

Proof. We use induction. First notice that for all k ≥ 4 and n ≥ 2 we
have 0 <

√
n/(
√
n− 1) < 4 ≤ k, from which it follows that n(1− 1/k)2 ≥ 1.

For k = 4 we see that ζ(4) − ζ(5) ≈ 0.045 < 0.0625 = 1/42. Assume the
conclusion of the lemma is true for all 4 < j < k, in particular for j = k−1.
Since for all k ≥ 4 and n ≥ 2 we have n(1− 1/k)2 ≥ 1, it follows that

1

k2
=

(
k − 1

k

)2

· 1

(k − 1)2
≥
(

1− 1

k

)2

(ζ(k − 1)− ζ(k))

=
∞∑
n=2

n

(
1− 1

k

)2( 1

nk
− 1

nk+1

)

≥
∞∑
n=2

(
1

nk
− 1

nk+1

)
= ζ(k)− ζ(k + 1).

Lemma 3.5. Recall Bk = |bk|. For k > 1,

Bk −Bk−1 ≤ 1/k2.

Proof. Indeed,

1

k2
− (Bk −Bk−1) =

1

k2
−Bk +Bk−1

=
1

k2
−
(

1− 1

2k

)
ζ(k + 1) +

(
1− 1

2k−1

)
ζ(k)

=
1

k2
−
(

1− 1

2k+1
+

1

3k+1
− 1

4k+1
+ · · ·

)
+

(
1− 1

2k
+

1

3k
− 1

4k
+ · · ·

)
=

1

k2
− 1

2k

(
1− 1

2

)
+

1

3k

(
1− 1

3

)
− 1

4k

(
1− 1

4

)
+ · · ·

>
1

k2
− 1

2k

(
1− 1

2

)
> 0 for all k > 1.

4. Proofs of the results of Section 2

Proof of Theorem 2.1(a). Using (2.3) and Lemma 3.4, notice that for
k − j ≥ 4,



18 A. Biswas∣∣∣∣ bk−jk + 1
+
bk−1−j
k

∣∣∣∣
=

∣∣∣∣(−1)k−j+1(1− 2−k+j)ζ(k − j + 1)

k + 1
+

(−1)k−j(1− 2−k+1+j)ζ(k − j)
k

∣∣∣∣
=

∣∣∣∣(1− 2−k+1+j)ζ(k − j)
k

− (1− 2−k+j)ζ(k − j + 1)

k + 1

∣∣∣∣
=

1

k(k + 1)

∣∣∣∣(k + 1)

(
1− 1

2k−1−j

)
ζ(k − j)− k

(
1− 1

2k−j

)
ζ(k − j + 1)

∣∣∣∣
=

1

k(k + 1)

∣∣∣∣k(ζ(k − j)− ζ(k − j + 1))− k

2k−j
(2ζ(k − j)− ζ(k − j + 1))

+

(
1− 1

2k−1−j

)
ζ(k − j)

∣∣∣∣
≤ 1

k(k + 1)

[
k(ζ(k − j)− ζ(k − j + 1))

+
k

2k−j
{(ζ(k − j)− ζ(k − j + 1)) + ζ(k − j)}+

(
1− 1

2k−1−j

)
ζ(k − j)

]
≤ 1

k(k + 1)

[
k

(k − j)2
+

k

2k−j

{
1

(k − j)2
+ ζ(2)

}
+ ζ(2)

]
=

1

(k + 1)(k − j)2
+

1

2k−j(k + 1)(k − j)2
+

ζ(2)

2k−j(k + 1)
+

ζ(2)

k(k + 1)

≤ 1

(k + 1)(k − j)2
+

1

(k + 1)(k − j)2
+

ζ(2)

2k−j(k + 1)
+

ζ(2)

k(k + 1)

=
2

(k + 1)(k − j)2
+

ζ(2)

2k−j(k + 1)
+

ζ(2)

k(k + 1)
.

Therefore,

|ak+1 + ak|

=

∣∣∣∣ 1

k + 1

k−1∑
j=0

ajbk−j +
1

k

k−2∑
j=0

ajbk−1−j

∣∣∣∣
=

∣∣∣∣ak−1b1k + 1
+
k−2∑
j=0

aj

(
bk−j
k + 1

+
bk−1−j
k

)∣∣∣∣
≤ 1

k + 1
+

k−2∑
j=0

∣∣∣∣ bk−jk + 1
+
bk−1−j
k

∣∣∣∣ by Remark (3.2) and Lemma (3.3)

≤ 1

k + 1
+
k−4∑
j=0

∣∣∣∣ bk−jk + 1
+
bk−1−j
k

∣∣∣∣+ 2 · max{|b3|, |b2|}
k

+ 2 · max{|b2|, |b1|}
k
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≤ 1

k + 1
+

k−4∑
j=0

[
2

(k + 1)
· 1

(k − j)2
+

ζ(2)

(k + 1)
· 1

2k−j
+

ζ(2)

k(k + 1)

]
+

4

k

≤ 5

k
+

2

k + 1

k−4∑
j=0

1

(k − j)2
+

ζ(2)

k + 1

k−4∑
j=0

1

2k−j
+

ζ(2)

k(k + 1)

k−4∑
j=0

1

=
5

k
+

2

k + 1

(
1

42
+

1

52
+ · · ·+ 1

k2

)
+

ζ(2)

k + 1

(
1

24
+

1

25
+ · · ·+ 1

2k

)
+
ζ(2)(k − 3)

k(k + 1)

≤ 5

k
+

2

k + 1
· ζ(2) +

ζ(2)

k + 1
· 1

1− 1/2
+

ζ(2)

k + 1

=
5

k
+

5ζ(2)

k + 1
≤ 5

k
(1 + ζ(2)).

Therefore for k ≥ 4,

|ak+1 + ak| ≤
5

k
(1 + ζ(2)),

and so ak+1 + ak = O(1/k).

Proof of Theorem 2.1(b). By definition of the Akatsuka zeta Mahler
measure (see [2]), the generating function f(s) of ak’s is precisely Z(s, x−r)
with |r| = 1. From [4] we know that for |r| = 1 and |s| < 1,

f(s) :=

∞∑
k=0

aks
k = Z(s, x− r) =

Γ (s+ 1)

Γ 2(s/2 + 1)
=

4

s

Γ (s)

Γ 2(s/2)
.

Define

F (s) := 1 +
∞∑
k=1

(−1)k(ak−1 + ak)s
k.

So, F (s) = (1− s)f(−s). Notice that

lim
s→1−

F (s) =
−4

Γ 2(−1/2)
lim
s→1−

(1−s)Γ (−s) =
−4

Γ 2(−1/2)
lim
s→−1

(1+s)Γ (s) =
1

π
,

since lims→−1(1 + s)Γ (s) = −1 and
√
π = Γ (1/2) = (−1/2)Γ (−1/2).

Now {k(−1)k(ak + ak+1)} is a bounded sequence by Theorem 2.1(a).
Therefore applying Littlewood’s extension of Tauber’s Theorem (see [3]) to
the sequence {(−1)k(ak + ak+1)} and its generating function F (s) − 1 we
see that

lim
k→∞

|ak| = 1−
∞∑
k=0

{(−1)k(ak + ak+1)} = 1 + lim
s→1−

(F (s)− 1) =
1

π
.
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Proof of Theorem 2.1(c). Recall Bk = |bk| from Lemma 3.5. Now define
a new sequence {Ak} by setting A0 = 1, A1 = 0 and

Ak =
1

k

k−2∑
j=0

AjBk−1−j

for all k ≥ 2. A careful observation of the individual terms inside ak and
Ak easily shows that Ak = |ak|. Clearly Ak = |ak| ≤ 1 by Lemma 3.3. Let
m := b(k−2)/2c and A := 1/π. Since limk→∞Ak = 1/π = A, using Remark
3.2 and Lemma 3.5 we see that for each ε > 0 there is a sufficiently large
integer N > 0 such that k > N implies

|(k + 1)(ak+1 + ak)| = |(k + 1)(Ak+1 −Ak)|

=
∣∣∣k−1∑
j=0

AjBk−j −
k−2∑
j=0

AjBk−1−j −Ak
∣∣∣

≤
∣∣∣Ak−1B1 −Ak +

k−2∑
j=m+1

Aj(Bk−j −Bk−1−j)
∣∣∣(4.1)

+

m∑
j=0

Aj(Bk−j −Bk−1−j).

Now if the term within the absolute value signs in (4.1) is positive, then

|(k + 1)(ak+1 + ak)|

(4.2) ≤
∣∣∣(A+ ε)B1 − (A− ε) + (A+ ε)

k−2∑
j=m+1

(Bk−j −Bk−1−j)
∣∣∣

+

m∑
j=0

Aj
(k − j)2

≤ |(A+ ε)B1 − (A− ε) + (A+ ε)(Bk−m−1 −B1)|

+
1

(k −m)2
(m+ 1)

Notice that Bk−m−1 → 1 and (m+ 1)/(k −m)2 → 0 as k →∞. Therefore

lim
k→∞

|(k + 1)(ak+1 + ak)| ≤ |(A+ ε)B1 − (A− ε) + (A+ ε)(1−B1)|.

Since this inequality holds for each fixed ε > 0, it also holds for ε = 0.
Hence |(k + 1)(ak+1 + ak)| → 0 as k →∞. Therefore, ak+1 + ak = o(1/k).

If the term within the absolute value signs in (4.1) is negative, then
a similar argument gives the same conclusion just by replacing +ε by −ε
in (4.2).
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Proof of Theorem 2.1(d). From Theorem 2.1(b) we know that 0 <
limk→∞ |ak| = 1/π <∞. Now using Remark 3.1 we have

lim
k→∞

ak+1

ak
= −1.
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