Asymptotic nature of higher Mahler measure

by
Arunabha Biswas (Lubbock, TX)

1. Introduction

Definition 1.1. Given a nonzero Laurent polynomial $P(x) \in \mathbb{C}\left[x^{ \pm 1}\right]$ and $k \in \mathbb{N}$, the k-higher Mahler measure of P (see [4]) is defined by

$$
m_{k}(P):=\int_{0}^{1} \log ^{k}\left|P\left(e^{2 \pi i \theta}\right)\right| d \theta=\frac{1}{2 \pi i} \int_{|z|=1} \log ^{k}|P(z)| \frac{d z}{z}
$$

These m_{k} 's are multiples of the coefficients in the Taylor expansion of Akatsuka's zeta Mahler measure (see [2])

$$
Z(s, P):=\int_{0}^{1}\left|P\left(e^{2 \pi i}\right)\right|^{s} d \theta, \quad \text { that is, } \quad Z(s, P)=\sum_{k=0}^{\infty} \frac{m_{k}(P)}{k!} s^{k}
$$

For $k=0,1,2, \ldots$, let $a_{k}(P)=m_{k}(P) / k$!, so that

$$
Z(s, P)=\sum_{k=0}^{\infty} a_{k}(P) s^{k}
$$

In this paper we only consider polynomials of type $P(x)=x-r$ with $|r|=1$. Therefore, from now on, we write $m_{k}(x-r)=m_{k}$ and $a_{k}(x-r)=a_{k}$ for simplicity.
2. Asymptotic nature of higher Mahler measure of $r-x$ when $|r|=1$. We will prove

Theorem 2.1. Let m_{k} and a_{k} be as above. Then
(a) $\frac{m_{k+1}}{(k+1)!}+\frac{m_{k}}{k!}=a_{k+1}+a_{k}=\mathcal{O}(1 / k)$,
(b) $\lim _{k \rightarrow \infty}\left|\frac{m_{k}}{k!}\right|=\lim _{k \rightarrow \infty}\left|a_{k}\right|=\frac{1}{\pi}$,

[^0](c) $\frac{m_{k+1}}{(k+1)!}+\frac{m_{k}}{k!}=a_{k+1}+a_{k}=o(1 / k)$,
(d) $\lim _{k \rightarrow \infty} \frac{1}{k+1} \cdot \frac{m_{k+1}}{m_{k}}=\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=-1$.

From [4] we know that for $|s|<1$,

$$
\begin{equation*}
Z(s, r-x)=\exp \left(\sum_{k=2}^{\infty} \frac{(-1)^{k}\left(1-2^{1-k}\right) \zeta(k)}{k} s^{k}\right) . \tag{2.1}
\end{equation*}
$$

Differentiating both sides of (2.1) with respect to s we obtain

$$
\begin{aligned}
\sum_{k=1}^{\infty} k a_{k} s^{k-1} & =\frac{\partial}{\partial s} Z(s, r-x) \\
& =Z(s, r-x) \sum_{k=2}^{\infty}(-1)^{k}\left(1-2^{1-k}\right) \zeta(k) s^{k-1} \\
& =\left(\sum_{k=0}^{\infty} a_{k} s^{k}\right)\left(\sum_{k=1}^{\infty} b_{k} s^{k}\right)=\sum_{k=1}^{\infty}\left(a_{0} b_{k}+\sum_{j=1}^{k-1} a_{j} b_{k-j}\right) s^{k},
\end{aligned}
$$

where $b_{k-1}:=(-1)^{k}\left(1-2^{1-k}\right) \zeta(k)$. From the power series expansion of (2.1) we already know that $a_{0}=1$. Now comparing coefficients on both sides of the last expression we get $a_{1}=0, a_{2}=\frac{1}{2} a_{0} b_{1}=\frac{1}{4} \zeta(2)$ and for $k \geq 3$,

$$
\begin{equation*}
a_{k}=\frac{1}{k} \sum_{j=0}^{k-2} a_{j} b_{k-1-j}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}:=(-1)^{k+1}\left(1-2^{-k}\right) \zeta(k+1) . \tag{2.3}
\end{equation*}
$$

3. A few remarks and lemmas

Remark 3.1. It can be easily shown by induction that $a_{2 k}>0$ and $a_{2 k+1}<0$ for all $k \geq 1$. It is also easy to see that

$$
a_{k}=\frac{(-1)^{k}}{k} \sum_{j=0}^{k-2}\left|a_{j} b_{k-1-j}\right| \quad \text { for } k>1
$$

Remark 3.2. Let $B_{k}:=\left|b_{k}\right|$. Then $B_{k} \leq 1$ for all $k \geq 1, B_{k}$ is increasing and $B_{k} \rightarrow 1$ as $k \rightarrow \infty$.

Notice $B_{k}=\eta(k+1)$ where $\eta(k)$ is Dirichlet's eta function. Since $\eta(k) \rightarrow 1$ as $k \rightarrow \infty$ and $\eta(k)$ is an increasing function of k by $11, B(k) \leq 1$ for all $k \geq 1, B_{k}$ is increasing and $B_{k} \rightarrow 1$ as $k \rightarrow \infty$.

Lemma 3.3. $\left|a_{k}\right| \leq 1$ for all $k \geq 1$.

Proof. We use induction. First we see that $\left|a_{0}\right|=1 \leq 1,\left|a_{1}\right|=0 \leq 1$, and $\left|a_{2}\right|=\zeta(2) / 4=\pi^{2} / 24 \leq 1$. Now assume $\left|a_{j}\right| \leq 1$ for all $2<j<k$. Using this along with Remark 3.2 we get

$$
\left|a_{k}\right|=\frac{1}{k}\left|\sum_{j=0}^{k-2} a_{j} b_{k-1-j}\right| \leq \frac{1}{k} \sum_{j=0}^{k-2}\left|a_{j} b_{k-1-j}\right| \leq \frac{1}{k} \sum_{j=0}^{k-2} 1=\frac{k-1}{k}<1
$$

Lemma 3.4. For $k \geq 4, \zeta(k)-\zeta(k+1) \leq 1 / k^{2}$.
Proof. We use induction. First notice that for all $k \geq 4$ and $n \geq 2$ we have $0<\sqrt{n} /(\sqrt{n}-1)<4 \leq k$, from which it follows that $n(1-1 / k)^{2} \geq 1$. For $k=4$ we see that $\zeta(4)-\zeta(5) \approx 0.045<0.0625=1 / 4^{2}$. Assume the conclusion of the lemma is true for all $4<j<k$, in particular for $j=k-1$. Since for all $k \geq 4$ and $n \geq 2$ we have $n(1-1 / k)^{2} \geq 1$, it follows that

$$
\begin{aligned}
\frac{1}{k^{2}} & =\left(\frac{k-1}{k}\right)^{2} \cdot \frac{1}{(k-1)^{2}} \geq\left(1-\frac{1}{k}\right)^{2}(\zeta(k-1)-\zeta(k)) \\
& =\sum_{n=2}^{\infty} n\left(1-\frac{1}{k}\right)^{2}\left(\frac{1}{n^{k}}-\frac{1}{n^{k+1}}\right) \\
& \geq \sum_{n=2}^{\infty}\left(\frac{1}{n^{k}}-\frac{1}{n^{k+1}}\right)=\zeta(k)-\zeta(k+1)
\end{aligned}
$$

Lemma 3.5. Recall $B_{k}=\left|b_{k}\right|$. For $k>1$,

$$
B_{k}-B_{k-1} \leq 1 / k^{2}
$$

Proof. Indeed,

$$
\begin{aligned}
\frac{1}{k^{2}} & -\left(B_{k}-B_{k-1}\right)=\frac{1}{k^{2}}-B_{k}+B_{k-1} \\
& =\frac{1}{k^{2}}-\left(1-\frac{1}{2^{k}}\right) \zeta(k+1)+\left(1-\frac{1}{2^{k-1}}\right) \zeta(k) \\
& =\frac{1}{k^{2}}-\left(1-\frac{1}{2^{k+1}}+\frac{1}{3^{k+1}}-\frac{1}{4^{k+1}}+\cdots\right)+\left(1-\frac{1}{2^{k}}+\frac{1}{3^{k}}-\frac{1}{4^{k}}+\cdots\right) \\
& =\frac{1}{k^{2}}-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)+\frac{1}{3^{k}}\left(1-\frac{1}{3}\right)-\frac{1}{4^{k}}\left(1-\frac{1}{4}\right)+\cdots \\
& >\frac{1}{k^{2}}-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)>0 \quad \text { for all } k>1 .
\end{aligned}
$$

4. Proofs of the results of Section 2

Proof of Theorem 2.1(a). Using (2.3) and Lemma 3.4, notice that for $k-j \geq 4$,

$$
\begin{aligned}
& \left|\frac{b_{k-j}}{k+1}+\frac{b_{k-1-j}}{k}\right| \\
& =\left|\frac{(-1)^{k-j+1}\left(1-2^{-k+j}\right) \zeta(k-j+1)}{k+1}+\frac{(-1)^{k-j}\left(1-2^{-k+1+j}\right) \zeta(k-j)}{k}\right| \\
& =\left|\frac{\left(1-2^{-k+1+j}\right) \zeta(k-j)}{k}-\frac{\left(1-2^{-k+j}\right) \zeta(k-j+1)}{k+1}\right| \\
& =\frac{1}{k(k+1)} \left\lvert\,(k+1)\left(1-\frac{1}{\left.2^{k-1-j}\right) \left.\zeta(k-j)-k\left(1-\frac{1}{2^{k-j}}\right) \zeta(k-j+1) \right\rvert\,} \begin{array}{rl}
= & \frac{1}{k(k+1)} \left\lvert\, k(\zeta(k-j)-\zeta(k-j+1))-\frac{k}{2^{k-j}}(2 \zeta(k-j)-\zeta(k-j+1))\right. \\
\leq & \frac{1}{k(k+1)}[k(\zeta(k-j)-\zeta(k-j+1)) \\
& \left.+\frac{k}{2^{k-j}}\{(\zeta(k-j)-\zeta(k-j+1))+\zeta(k-j)\}+\left(1-\frac{1}{2^{k-1-j}}\right) \zeta(k-j) \right\rvert\, \\
\leq & \left.\frac{1}{k(k+1)}\left[\frac{k}{(k-j)^{2}}+\frac{k}{2^{k-j}}\left\{\frac{1}{(k-j)^{2}}+\zeta(2)\right\}+\zeta(2)\right] \zeta(k-j)\right] \\
= & \frac{1}{(k+1)(k-j)^{2}}+\frac{1}{2^{k-j}(k+1)(k-j)^{2}}+\frac{\zeta(2)}{2^{k-j}(k+1)}+\frac{\zeta(2)}{k(k+1)} \\
\leq & \frac{1}{(k+1)(k-j)^{2}}+\frac{1}{(k+1)(k-j)^{2}}+\frac{\zeta(2)}{2^{k-j}(k+1)}+\frac{\zeta(2)}{k(k+1)} \\
= & \frac{2}{(k+1)(k-j)^{2}}+\frac{\zeta(2)}{2^{k-j}(k+1)}+\frac{\zeta(2)}{k(k+1)} .
\end{array}\right.\right. \\
& =
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left|a_{k+1}+a_{k}\right| \\
& \quad=\left|\frac{1}{k+1} \sum_{j=0}^{k-1} a_{j} b_{k-j}+\frac{1}{k} \sum_{j=0}^{k-2} a_{j} b_{k-1-j}\right| \\
& \quad=\left|\frac{a_{k-1} b_{1}}{k+1}+\sum_{j=0}^{k-2} a_{j}\left(\frac{b_{k-j}}{k+1}+\frac{b_{k-1-j}}{k}\right)\right| \\
& \quad \leq \frac{1}{k+1}+\sum_{j=0}^{k-2}\left|\frac{b_{k-j}}{k+1}+\frac{b_{k-1-j}}{k}\right| \quad \text { by Remark (3.2) and Lemma (3.3) } \\
& \quad \leq \frac{1}{k+1}+\sum_{j=0}^{k-4}\left|\frac{b_{k-j}}{k+1}+\frac{b_{k-1-j}}{k}\right|+2 \cdot \frac{\max \left\{\left|b_{3}\right|,\left|b_{2}\right|\right\}}{k}+2 \cdot \frac{\max \left\{\left|b_{2}\right|,\left|b_{1}\right|\right\}}{k}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{k+1}+\sum_{j=0}^{k-4}\left[\frac{2}{(k+1)} \cdot \frac{1}{(k-j)^{2}}+\frac{\zeta(2)}{(k+1)} \cdot \frac{1}{2^{k-j}}+\frac{\zeta(2)}{k(k+1)}\right]+\frac{4}{k} \\
\leq & \frac{5}{k}+\frac{2}{k+1} \sum_{j=0}^{k-4} \frac{1}{(k-j)^{2}}+\frac{\zeta(2)}{k+1} \sum_{j=0}^{k-4} \frac{1}{2^{k-j}}+\frac{\zeta(2)}{k(k+1)} \sum_{j=0}^{k-4} 1 \\
= & \frac{5}{k}+\frac{2}{k+1}\left(\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots+\frac{1}{k^{2}}\right)+\frac{\zeta(2)}{k+1}\left(\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots+\frac{1}{2^{k}}\right) \\
& +\frac{\zeta(2)(k-3)}{k(k+1)} \\
\leq & \frac{5}{k}+\frac{2}{k+1} \cdot \zeta(2)+\frac{\zeta(2)}{k+1} \cdot \frac{1}{1-1 / 2}+\frac{\zeta(2)}{k+1} \\
= & \frac{5}{k}+\frac{5 \zeta(2)}{k+1} \leq \frac{5}{k}(1+\zeta(2)) .
\end{aligned}
$$

Therefore for $k \geq 4$,

$$
\left|a_{k+1}+a_{k}\right| \leq \frac{5}{k}(1+\zeta(2))
$$

and so $a_{k+1}+a_{k}=\mathcal{O}(1 / k)$.
Proof of Theorem 2.1(b). By definition of the Akatsuka zeta Mahler measure (see [2]), the generating function $f(s)$ of a_{k} 's is precisely $Z(s, x-r)$ with $|r|=1$. From [4] we know that for $|r|=1$ and $|s|<1$,

$$
f(s):=\sum_{k=0}^{\infty} a_{k} s^{k}=Z(s, x-r)=\frac{\Gamma(s+1)}{\Gamma^{2}(s / 2+1)}=\frac{4}{s} \frac{\Gamma(s)}{\Gamma^{2}(s / 2)}
$$

Define

$$
F(s):=1+\sum_{k=1}^{\infty}(-1)^{k}\left(a_{k-1}+a_{k}\right) s^{k}
$$

So, $F(s)=(1-s) f(-s)$. Notice that
$\lim _{s \rightarrow 1^{-}} F(s)=\frac{-4}{\Gamma^{2}(-1 / 2)} \lim _{s \rightarrow 1^{-}}(1-s) \Gamma(-s)=\frac{-4}{\Gamma^{2}(-1 / 2)} \lim _{s \rightarrow-1}(1+s) \Gamma(s)=\frac{1}{\pi}$, since $\lim _{s \rightarrow-1}(1+s) \Gamma(s)=-1$ and $\sqrt{\pi}=\Gamma(1 / 2)=(-1 / 2) \Gamma(-1 / 2)$.

Now $\left\{k(-1)^{k}\left(a_{k}+a_{k+1}\right)\right\}$ is a bounded sequence by Theorem 2.1(a). Therefore applying Littlewood's extension of Tauber's Theorem (see [3]) to the sequence $\left\{(-1)^{k}\left(a_{k}+a_{k+1}\right)\right\}$ and its generating function $F(s)-1$ we see that

$$
\lim _{k \rightarrow \infty}\left|a_{k}\right|=1-\sum_{k=0}^{\infty}\left\{(-1)^{k}\left(a_{k}+a_{k+1}\right)\right\}=1+\lim _{s \rightarrow 1^{-}}(F(s)-1)=\frac{1}{\pi}
$$

Proof of Theorem 2.1 (c). Recall $B_{k}=\left|b_{k}\right|$ from Lemma 3.5. Now define a new sequence $\left\{A_{k}\right\}$ by setting $A_{0}=1, A_{1}=0$ and

$$
A_{k}=\frac{1}{k} \sum_{j=0}^{k-2} A_{j} B_{k-1-j}
$$

for all $k \geq 2$. A careful observation of the individual terms inside a_{k} and A_{k} easily shows that $A_{k}=\left|a_{k}\right|$. Clearly $A_{k}=\left|a_{k}\right| \leq 1$ by Lemma 3.3. Let $m:=\lfloor(k-2) / 2\rfloor$ and $A:=1 / \pi$. Since $\lim _{k \rightarrow \infty} A_{k}=1 / \pi=A$, using Remark 3.2 and Lemma 3.5 we see that for each $\epsilon>0$ there is a sufficiently large integer $N>0$ such that $k>N$ implies

$$
\begin{aligned}
\left|(k+1)\left(a_{k+1}+a_{k}\right)\right|= & \left|(k+1)\left(A_{k+1}-A_{k}\right)\right| \\
= & \left|\sum_{j=0}^{k-1} A_{j} B_{k-j}-\sum_{j=0}^{k-2} A_{j} B_{k-1-j}-A_{k}\right| \\
\leq & \left|A_{k-1} B_{1}-A_{k}+\sum_{j=m+1}^{k-2} A_{j}\left(B_{k-j}-B_{k-1-j}\right)\right| \\
& +\sum_{j=0}^{m} A_{j}\left(B_{k-j}-B_{k-1-j}\right)
\end{aligned}
$$

Now if the term within the absolute value signs in (4.1) is positive, then

$$
\left|(k+1)\left(a_{k+1}+a_{k}\right)\right|
$$

$$
\begin{align*}
\leq & \left|(A+\epsilon) B_{1}-(A-\epsilon)+(A+\epsilon) \sum_{j=m+1}^{k-2}\left(B_{k-j}-B_{k-1-j}\right)\right| \tag{4.2}\\
& +\sum_{j=0}^{m} \frac{A_{j}}{(k-j)^{2}} \\
\leq & \left|(A+\epsilon) B_{1}-(A-\epsilon)+(A+\epsilon)\left(B_{k-m-1}-B_{1}\right)\right| \\
& +\frac{1}{(k-m)^{2}}(m+1)
\end{align*}
$$

Notice that $B_{k-m-1} \rightarrow 1$ and $(m+1) /(k-m)^{2} \rightarrow 0$ as $k \rightarrow \infty$. Therefore

$$
\lim _{k \rightarrow \infty}\left|(k+1)\left(a_{k+1}+a_{k}\right)\right| \leq\left|(A+\epsilon) B_{1}-(A-\epsilon)+(A+\epsilon)\left(1-B_{1}\right)\right| .
$$

Since this inequality holds for each fixed $\epsilon>0$, it also holds for $\epsilon=0$. Hence $\left|(k+1)\left(a_{k+1}+a_{k}\right)\right| \rightarrow 0$ as $k \rightarrow \infty$. Therefore, $a_{k+1}+a_{k}=o(1 / k)$.

If the term within the absolute value signs in (4.1) is negative, then a similar argument gives the same conclusion just by replacing $+\epsilon$ by $-\epsilon$ in (4.2).

Proof of Theorem 2.1(d). From Theorem 2.1(b) we know that $0<$ $\lim _{k \rightarrow \infty}\left|a_{k}\right|=1 / \pi<\infty$. Now using Remark 3.1 we have

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=-1
$$

Acknowledgements. We would like to thank George E. Andrews and Chris Monico for helpful discussions.

References

[1] D. Aharonov and U. Elias, Improved inequalities for trigonometric functions via Dirichlet and zeta functions, Math. Inequal. Appl. 16 (2013), 851-859.
[2] H. Akatsuka, Zeta Mahler measures, J. Number Theory 129 (2009), 2713-2734.
[3] P. Duren, Invitation to Classical Analysis, Pure Appl. Undergrad. Texts 17, Amer. Math. Soc., Providence, RI, 2012.
[4] N. Kurokawa, M. Lalín, and H. Ochiai, Higher Mahler measures and zeta functions, Acta Arith. 135 (2008), 269-297.

Arunabha Biswas
Department of Mathematics and Statistics
Texas Tech University
Broadway \& Boston
Lubbock, TX 79409-1042, U.S.A.
E-mail: arunabha.biswas@ttu.edu

[^0]: 2010 Mathematics Subject Classification: 11R06, 11M99.
 Key words and phrases: Mahler measure, zeta function, Dirichlet's eta function.

