On canonical subfield preserving polynomials

by
\section*{Giacomo Micheli and Davide Schipani (Zürich)}

1. Introduction. Let q be a prime power and m a natural number. In [1] the structure of the group consisting of permutation polynomials [3] of $\mathbb{F}_{q^{m}}$ having coefficients in the base field \mathbb{F}_{q} was made explicit. We start by observing that, if f is a permutation of $\mathbb{F}_{q^{m}}$ with coefficients in \mathbb{F}_{q} then

$$
f\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q} \quad \text { and } \quad \forall d, s \mid m \quad f\left(\mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}}\right)=\mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}}
$$

Indeed for any integer $s \geq 1$, since f has coefficients in \mathbb{F}_{q}, and $\mathbb{F}_{q^{s}}$ is a field, we have $f\left(\mathbb{F}_{q^{s}}\right) \subseteq \mathbb{F}_{q^{s}}$. As f is also a bijection, this is in fact an equality. The property above then follows directly (see also [1, Lemma 2]).

It is now natural to ask which polynomials f, having coefficients in \mathbb{F}_{q}, have the property that

$$
\begin{equation*}
f\left(\mathbb{F}_{q}\right) \subseteq \mathbb{F}_{q} \quad \text { and } \quad \forall d, s \mid m \quad f\left(\mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}}\right) \subseteq \mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}} \tag{1.1}
\end{equation*}
$$

Let us denote by T_{q}^{m} the set of such polynomials. We remark that this is a monoid under composition, and its invertible elements $\left(T_{q}^{m}\right)^{*}$ form the group of permutation polynomials with coefficients in \mathbb{F}_{q}, mentioned above.

In this paper we give the explicit semigroup structure of T_{q}^{m}, obtaining the main result of [1] (i.e. the group structure mentioned above) as a corollary. The explicit semigroup structure will allow us to compute the probability that a polynomial chosen uniformly at random having coefficients in \mathbb{F}_{q} satisfies condition 1.1 . This will imply the following remarkable results:

- Given p prime, for q relatively large, the density of T_{q}^{p} is approximately zero.
- Given q, for p a relatively large prime, the density of T_{q}^{p} is approximately one.
- For $q=p$ a large prime the density of T_{p}^{p} is approximately $1 / e$.

2010 Mathematics Subject Classification: Primary 11T06, 12E05; Secondary 12E20.
Key words and phrases: polynomials, finite fields, subfield preserving, semidirect product, monoid.

Indeed, Theorem 5.3 shows how the asymptotic density intrinsically depends on the ratio between p and q (to be compared with the trivial density in Theorem 5.1 and Corollary 5.2.

2. Preliminary definitions

Definition 2.1. We say $f: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q^{m}}$ is subfield preserving if

$$
\begin{equation*}
f\left(\mathbb{F}_{q}\right) \subseteq \mathbb{F}_{q} \quad \text { and } \quad \forall d, s \mid m \quad f\left(\mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}}\right) \subseteq \mathbb{F}_{q^{d}} \backslash \mathbb{F}_{q^{s}} \tag{2.1}
\end{equation*}
$$

Moreover, we will say f is q-canonical if its polynomial representation has coefficients in \mathbb{F}_{q} (or simply canonical when q is understood).

REmARK 2.2. One of the reasons why we use the term canonical to address the property of having coefficients in a subfield is that, under this property, the induced map \tilde{f} of $f(x)$ is always well defined no matter what irreducible polynomial we choose for the representation of the finite field extension $\mathbb{F}_{q^{m}}$.

Denote by $\mathcal{L}_{\mathbb{F}_{q^{m}}}$ the set of all subfield preserving polynomials.
REMARK 2.3. If we drop the condition on the coefficients, the semigroup structure becomes straightforward:

$$
\mathcal{L}_{\mathbb{F}_{q^{m}}} \cong \chi_{k \mid m} M_{[k \pi(k)]}
$$

with $\pi(k)$ being the number of monic irreducible polynomials of degree k over \mathbb{F}_{q} and $M_{[n]}$ being the set of all maps from $\{1, \ldots, n\}$ to itself.

REmARK 2.4. Clearly not all subfield preserving polynomials are canonical, which can also be checked by a cardinality count using the results later in the paper.

We will need the following lemma, whose proof can be easily adapted from [1] and [2].

Lemma 2.5. Let $f: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q^{m}}$ be a map. Then $f \in \mathbb{F}_{q}[x]$ if and only if $f \circ \varphi_{q}=\varphi_{q} \circ f$ where $\varphi_{q}(x)=x^{q}$.

Indeed, the set of functions we are looking at is $T_{q}^{m}=\mathcal{L}_{\mathbb{F}_{q}{ }^{m}} \cap \mathcal{C}_{\varphi_{q}}$ where $\mathcal{C}_{\varphi_{q}}:=\left\{f: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q^{m}} \mid f \circ \varphi_{q}=\varphi_{q} \circ f\right\}$.
3. Combinatorial underpinning. Let S be a finite set and $\psi: S \rightarrow S$ a bijection. For any $T \subseteq S$, let

$$
\mathcal{K}_{\psi}(T):=\{f: T \rightarrow T \mid \forall x \in T f \circ \psi(x)=\psi \circ f(x)\} .
$$

For any partition \mathcal{P} of S into sets P_{k}, let

$$
M_{S}(\mathcal{P}):=\left\{f: S \rightarrow S \mid \forall k f\left(P_{k}\right) \subseteq P_{k}\right\}
$$

When $\mathcal{P}=\{S\}$ is the trivial partition, we will denote $M_{S}(\{S\})=M_{S}$, the monoid of maps from S to itself.

For any bijection $\phi: S \rightarrow S$, define ϕ_{k} for any k as the composition of the cycles of ϕ of length k, and set $\phi_{k}=(\emptyset)$ if ϕ has no such cycles. Let $W=\{1, \ldots,|S|\}$. Then $\phi=\prod_{k \in W, \phi_{k} \neq(\emptyset)} \phi_{k}$. If $\operatorname{supp}\left(\phi_{k}\right)$ denotes the set of elements moved by ϕ_{k}, then ϕ induces a partition \mathcal{P}_{ϕ} on $S=\bigcup_{k \in W} S_{k}$, with $S_{k}=\operatorname{supp}\left(\phi_{k}\right)$ for $k \geq 2$, and S_{1} being the set of fixed points of ϕ.

Lemma 3.1.

$$
M_{S}\left(\mathcal{P}_{\phi}\right) \cap \mathcal{K}_{\phi}(S) \cong \underset{k \in W, \phi_{k} \neq(\emptyset)}{X} \mathcal{K}_{\phi_{k}}\left(S_{k}\right)
$$

Proof. Clearly any $f \in \mathcal{K}_{\phi_{k}}\left(S_{k}\right)$ can be extended to S as the identity and the extension \bar{f} belongs to $\mathcal{K}_{\phi}(S) \cap M_{S}\left(\mathcal{P}_{\phi}\right)$. Indeed we have a natural injection

$$
\underset{W, \phi_{k} \neq(\emptyset)}{X} \mathcal{K}_{\phi_{k}}\left(S_{k}\right) \hookrightarrow M_{S}\left(\mathcal{P}_{\phi}\right) \cap \mathcal{K}_{\phi}(S) .
$$

This is also a surjection: in fact, let $f \in M_{S}\left(\mathcal{P}_{\phi}\right) \cap \mathcal{K}_{\phi}(S)$ and define

$$
f_{k}(x):= \begin{cases}f(x) & \text { if } x \in S_{k} \\ x & \text { otherwise }\end{cases}
$$

Since $M_{S}\left(\mathcal{P}_{\phi}\right) \cap \mathcal{K}_{\phi}(S) \subseteq M_{S}\left(\mathcal{P}_{\phi}\right)$, then $f_{k}\left(S_{k}\right) \subseteq S_{k}$, which implies

$$
\left.f_{k}\right|_{S_{k}} \in \mathcal{K}_{\phi_{k}}\left(S_{k}\right)
$$

As the S_{k} form a partition, the composition of all the f_{k} coincides with f.
Now, for $n, k \in \mathbb{N}$ let U_{n}^{k} be a set with $k n$ elements and ψ a bijection of U_{n}^{k} having n cycles of length k. Let us label the elements of U_{n}^{k} in the following way: let $a_{i j}$ be the j th element of the i th cycle, with $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, k\}$.

Let $[h]$ denote $\{1, \ldots, h\}$ for a natural number h. We say $\lambda:[h] \rightarrow[h]$ is a cyclic shift of $[h]$ if $\lambda(j+\ell)=\lambda(j)+\ell$ modulo h for any $j, \ell \in[h]$.

Let $\gamma_{1}, \ldots, \gamma_{n}$ be cyclic shifts of $[k]$ and $\sigma:[n] \rightarrow[n]$ a map. We then define $f_{\sigma}^{\gamma}: U_{n}^{k} \rightarrow U_{n}^{k}$ as follows:

$$
f_{\sigma}^{\gamma}\left(a_{i j}\right):=a_{\sigma(i) \gamma_{i}(j)}
$$

Theorem 3.2. $g \in \mathcal{K}_{\psi}\left(U_{n}^{k}\right)$ iff there exists $\gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right), \gamma_{i}$ cyclic shifts of $[k]$, and a map $\sigma:[n] \rightarrow[n]$ such that $g=f_{\sigma}^{\gamma}$.

Proof. Suppose first $g \in \mathcal{K}_{\psi}\left(U_{n}^{k}\right)$. Then

$$
g\left(a_{i j}\right)=g\left(\psi^{j-1}\left(a_{i 1}\right)\right)=\psi^{j-1}\left(g\left(a_{i 1}\right)\right)
$$

Define $\sigma(i):=\left[g\left(a_{i 1}\right)\right]_{1}$ and $\gamma_{i}(j):=\left[g\left(a_{i j}\right)\right]_{2}$, where the subscripts $[x]_{1}$ and $[x]_{2}$ refer to the indices i, j of $x \in U_{n}^{k}$ in the representation $a_{i j}$ above.

Observe that for all $i \in[n], \gamma_{i}$ is a cyclic shift: indeed, modulo k,

$$
\begin{aligned}
\gamma_{i}(j+\ell) & =\left[g\left(a_{i} j+\ell\right)\right]_{2}=\left[g\left(\psi^{\ell}\left(a_{i j}\right)\right)\right]_{2}=\left[\psi^{\ell}\left(g\left(a_{i j}\right)\right)\right]_{2} \\
& =\left[g\left(a_{i j}\right)\right]_{2}+\ell=\gamma_{i}(j)+\ell .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
g\left(a_{i j}\right) & =g\left(\psi^{j-1}\left(a_{i 1}\right)\right)=\psi^{j-1}\left(g\left(a_{i 1}\right)\right)=\psi^{j-1}\left(a_{\sigma(i) \gamma_{i}(1)}\right) \\
& =a_{\sigma(i) \gamma_{i}(1)+j-1}=a_{\sigma(i) \gamma_{i}(j)}=f_{\sigma}^{\gamma}\left(a_{i j}\right) .
\end{aligned}
$$

Let us now prove the other implication:

$$
\begin{aligned}
\psi\left(f_{\sigma}^{\gamma}\left(a_{i j}\right)\right) & =\psi\left(a_{\sigma(i) \gamma_{i}(j)}\right)=a_{\sigma(i)} \gamma_{i}(j)+1 \\
& =a_{\sigma(i) \gamma_{i}(j+1)}=f_{\sigma}^{\gamma}\left(a_{i} j+1\right)=f_{\sigma}^{\gamma}\left(\psi\left(a_{i j}\right)\right)
\end{aligned}
$$

for all $i \in[n]$ and $j \in[k]$.
3.1. Semidirect product of monoids. We now recall the definition of semidirect product of monoids

Definition 3.3. Let M, N be monoids and let $\Gamma: M \rightarrow \operatorname{End}(N)$ with $m \mapsto \Gamma_{m}$ be an antihomomorphism of monoids (i.e. $\Gamma_{m_{1} m_{2}}=\Gamma_{m_{2}} \circ \Gamma_{m_{1}}$). We define $M \ltimes_{\Gamma} N$ as the monoid having support $M \times N$ and operation * defined by the formula

$$
\left(m_{1}, n_{1}\right) *\left(m_{2}, n_{2}\right)=\left(m_{1} m_{2}, \Gamma_{m_{2}}\left(n_{1}\right) n_{2}\right) .
$$

Remark 3.4. It is straightforward to verify that $*$ is associative.
We will now prove an easy lemma that will be useful in Section 4. For any monoid H let us denote by H^{*} the group of invertible elements of H.

Lemma 3.5. Let $M \ltimes G$ be a semidirect product of monoids where G is a group. Then

$$
(M \ltimes G)^{*}=M^{*} \ltimes G .
$$

Proof. The inclusion $(M \ltimes G)^{*} \subseteq M^{*} \ltimes G$ is trivial, since if $(m, g) \in$ $(M \ltimes G)^{*}$ then there exists $\left(m^{\prime}, g^{\prime}\right)$ such that

$$
(m, g) *\left(m^{\prime}, g^{\prime}\right)=\left(e_{1}, e_{2}\right),
$$

so $m m^{\prime}=e_{1}$, the identity element of M. To prove the converse inclusion, let $(m, g) \in M^{*} \ltimes G$. Then its inverse is $\left(m^{-1}, \Gamma_{m^{-1}}\left(g^{-1}\right)\right.$).

We are now ready to prove the main proposition of this section as a corollary of Theorem 3.2.

We first observe that the set of cyclic shifts of $[k]$ is clearly isomorphic to C_{k}, the cyclic group of order k, and each cyclic shift is determined by its action on 1 .

Corollary 3.6.

$$
\mathcal{K}_{\psi}\left(U_{n}^{k}\right) \cong M_{[n]} \ltimes_{\Gamma} C_{k}^{n}
$$

where Γ is defined by

$$
\Gamma(\sigma)(\gamma):=\Gamma_{\sigma}(\gamma):=\gamma_{\sigma}:=\left(\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}\right) \quad \text { for any } \gamma \in C_{k}^{n}
$$

Proof. First observe that

$$
\Gamma_{\mu}\left(\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}\right)=\left(\gamma_{\sigma(\mu(1))}, \ldots, \gamma_{\sigma(\mu(i))}, \ldots, \gamma_{\sigma(\mu(n))}\right)
$$

for any $\sigma, \mu \in M_{[n]}$. This can be easily seen by denoting $\gamma_{\sigma(i)}=: g_{i}$. Therefore, Γ is an antihomomorphism, as desired:

$$
\begin{aligned}
\Gamma(\sigma \mu)(\gamma) & =\gamma_{\sigma \mu}=\left(\gamma_{\sigma(\mu(1))}, \ldots, \gamma_{\sigma(\mu(i))}, \ldots, \gamma_{\sigma(\mu(n))}\right) \\
& =\Gamma_{\mu}\left(\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}\right)=\Gamma_{\mu} \circ \Gamma_{\sigma}(\gamma)
\end{aligned}
$$

Let

$$
\Delta: M_{[n]} \ltimes C_{k}^{n} \rightarrow \mathcal{K}_{\psi}\left(U_{n}^{k}\right), \quad(\sigma, \gamma) \mapsto f_{\sigma}^{\gamma}
$$

Then Δ is clearly a bijection by Theorem 3.2. It is also an automorphism since

$$
\begin{aligned}
& \Delta((\bar{\sigma}, \bar{\gamma}) *(\sigma, \gamma))\left(a_{i, j}\right)=\Delta\left(\bar{\sigma} \sigma, \bar{\gamma}_{\sigma} \gamma\right)\left(a_{i, j}\right)=f_{\bar{\sigma} \sigma}^{\bar{\gamma}_{\sigma} \gamma}\left(a_{i, j}\right) \\
& \quad=a_{\bar{\sigma} \sigma(i), \bar{\gamma}_{\sigma(i)} \gamma_{i}(j)}=f_{\bar{\sigma}}^{\bar{\gamma}}\left(a_{\sigma(i), \gamma_{i}(j)}\right)=f_{\overline{\bar{\sigma}}}^{\bar{\gamma}} \circ f_{\sigma}^{\gamma}\left(a_{i, j}\right)=(\Delta(\bar{\sigma}, \bar{\gamma}) \circ \Delta(\sigma, \gamma))\left(a_{i, j}\right)
\end{aligned}
$$

for all $i \in[n]$ and $j \in[k]$.
4. Semigroup structure of T_{q}^{m}. Consider now T_{q}^{m} and notice that, since $M_{\mathbb{F}_{q^{m}}}\left(\mathcal{P}_{\varphi_{q}}\right)=\mathcal{L}_{\mathbb{F}_{q^{m}}}$ and $\mathcal{K}_{\varphi_{q}}\left(\mathbb{F}_{q^{m}}\right)=\mathcal{C}_{\varphi_{q}}$, we have

$$
\begin{equation*}
T_{q}^{m}=\mathcal{L}_{\mathbb{F}_{q^{m}}} \cap \mathcal{C}_{\varphi_{q}}=M_{\mathbb{F}_{q^{m}}}\left(\mathcal{P}_{\varphi_{q}}\right) \cap \mathcal{K}_{\varphi_{q}}\left(\mathbb{F}_{q^{m}}\right) \tag{4.1}
\end{equation*}
$$

Indeed, the condition

$$
f\left(S_{k}\right) \subseteq S_{k}
$$

for each S_{k} in the partition induced by φ_{q} is equivalent to the subfield preserving requirement (2.1), since

$$
S_{1}=\mathbb{F}_{q} \quad \text { and } \quad S_{k}=\bigcap_{a \mid k, a \neq k}\left(\mathbb{F}_{q^{k}} \backslash \mathbb{F}_{q^{a}}\right) \quad \text { for } k \geq 2
$$

Any element α in a cycle of length d is associated to the irreducible polynomial $\prod_{i=0}^{d-1}\left(x-\alpha^{q^{i}}\right) \in \mathbb{F}_{q}[x]$, so there is a bijection between the cycles of φ_{q} of length d and the monic irreducible polynomials of degree d over \mathbb{F}_{q}, whose cardinality is

$$
\pi(d)=\frac{1}{d} \sum_{j \mid d} \mu(d / j) q^{j}
$$

with μ being the Möbius function. Now, write

$$
\varphi_{q}=\prod_{k \mid m} \phi_{k}
$$

as above with $\phi=\varphi_{q}$ and label the elements of the finite field as follows: $a_{i, j}^{(k)}$ is the j th element in the i th k-cycle.

EXAMPLE 4.1. Let $\mathbb{F}_{2^{2}}=\mathbb{F}_{2}[\alpha] /\left(\alpha^{2}+\alpha+1\right)$, consisting of $\{0,1, \alpha, \alpha+1\}$. Indeed,

$$
\varphi_{q}=\phi_{1} \phi_{2}=(0)(1)(\alpha, \alpha+1)
$$

and then $a_{1,1}^{(1)}=0, a_{2,1}^{(1)}=1, a_{1,1}^{(2)}=\alpha$ and $a_{1,2}^{(2)}=\alpha+1$.
Theorem 4.2.

$$
\begin{equation*}
T_{q}^{m} \cong \underset{k \mid m}{X} M_{[\pi(k)]} \ltimes C_{k}^{\pi(k)} \tag{4.2}
\end{equation*}
$$

Proof. This follows from Lemma 3.1 and Corollary 3.6 using the partition induced by the Frobenius morphism. Indeed, using 4.1) and Lemma 3.1 we get

$$
T_{q}^{m} \cong \underset{k \in W, \phi_{k} \neq(\emptyset)}{X} \mathcal{K}_{\phi_{k}}\left(S_{k}\right)
$$

Using now Corollary 3.6 we get

$$
T_{q}^{m} \cong \underset{k \mid m}{X} M_{[\pi(k)]} \ltimes C_{k}^{\pi(k)}
$$

More explicitly, the action of $t \in \times_{k \mid m} M_{[\pi(k)]} \ltimes C_{k}^{\pi(k)}$ on an element $a_{i, j}^{(k)} \in$ $S_{k} \subseteq \mathbb{F}_{q^{m}}$ is given by

$$
t\left(a_{i, j}^{(k)}\right)=\left(\sigma^{(k)}, \gamma^{(k)}\right)\left(a_{i, j}^{(k)}\right)=f_{\sigma^{(k)}}^{\gamma^{(k)}}\left(a_{i, j}^{(k)}\right)=a_{\sigma^{(k)}(i), \gamma_{i}^{(k)}(j)}^{(k)},
$$

where $\gamma^{(k)}$ and $\sigma^{(k)}$ are the components indexed by k.
Corollary 4.3.

$$
\left(T_{q}^{m}\right)^{*} \cong \underset{k \mid m}{X} \mathcal{S}_{\pi(k)} \ltimes C_{k}^{\pi(k)}
$$

where $\mathcal{S}_{\pi(k)}$ is the permutation group of $\pi(k)$ elements.
Proof. Observe that trivially

$$
\left(T_{q}^{m}\right)^{*} \cong \underset{k \mid m}{X}\left(M_{[\pi(k)]} \ltimes C_{k}^{\pi(k)}\right)^{*}
$$

Applying now Lemma 3.5 yields

$$
\left(T_{q}^{m}\right)^{*} \cong \underset{k \mid m}{X}\left(M_{[\pi(k)]} \ltimes C_{k}^{\pi(k)}\right)^{*} \cong \underset{k \mid m}{X} \mathcal{S}_{\pi(k)} \ltimes C_{k}^{\pi(k)}
$$

Corollary 4.4.

$$
\left|T_{q}^{m}\right|=\prod_{k \mid m} k^{\pi(k)} \pi(k)^{\pi(k)}, \quad\left|\left(T_{q}^{m}\right)^{*}\right|=\prod_{k \mid m} k^{\pi(k)} \pi(k)!
$$

Remark 4.5. Corollary 4.3 corresponds to [1, Theorem 2], and Corollary 4.4 generalizes the corollary of [1, Theorem 2].

REmark 4.6. Let us observe that a simpler decomposition of $\left(T_{q}^{m}\right)^{*}$, as a direct product of two monoids, can be seen as follows:

- First notice that any permutation polynomial over \mathbb{F}_{q} can be extended to a permutation polynomial over $\mathbb{F}_{q^{m}}$ with coefficients in \mathbb{F}_{q} by simply defining it as the identity function on $\mathbb{F}_{q^{m}} \backslash \mathbb{F}_{q}$ and Lagrange interpolation over the whole field. The resulting permutation polynomial over $\mathbb{F}_{q^{m}}$ has coefficients in \mathbb{F}_{q}, since it commutes with φ_{q}, which is easily checked by looking at the base field and the rest separately.
- $\left(T_{q}^{m}\right)^{*}$ then has a normal subgroup isomorphic to \mathcal{S}_{q} consisting of

$$
\left\{s \in\left(T_{q}^{m}\right)^{*} \mid s \text { is the identity on } \mathbb{F}_{q^{m}} \backslash \mathbb{F}_{q}\right\} .
$$

- Let

$$
H_{q}^{m}:=\left\{h \in\left(T_{q}^{m}\right)^{*} \mid h \text { is the identity on } \mathbb{F}_{q}\right\} .
$$

Then H_{q}^{m} is also normal in $\left(T_{q}^{m}\right)^{*}$.

- We have $\mathcal{S}_{q} \times H_{q}^{m}=\left(T_{q}^{m}\right)^{*}$. Indeed, note first that $H_{q}^{m} \cap \mathcal{S}_{q}=1$. Now given $f \in\left(T_{q}^{m}\right)^{*}$ we have to prove that it can be written as a composition of an element of H_{q}^{m} and an element of \mathcal{S}_{q}. Let $s_{2} \in \mathcal{S}_{q}$ be such that s_{2} restricted to \mathbb{F}_{q} is f. Let $s_{1} \in \mathcal{S}_{q}$ be such that s_{1} restricted to \mathbb{F}_{q} is the inverse permutation of the restriction of f to \mathbb{F}_{q}. In other words, $f \circ s_{1}$ restricted to \mathbb{F}_{q} is the identity. Observe then that since $f \circ s_{1}$ also has coefficients in \mathbb{F}_{q}, it lives in H_{q}^{m}. Verify that $s_{2} \circ f \circ s_{1}=f$. Thus we have written f as a composition of an element of \mathcal{S}_{q} and an element of H_{q}^{m}.

5. Asymptotic density of T_{q}^{m}. Let us first compute the asymptotic density of the group of permutation polynomials described in [1] inside the whole group of permutation polynomials, and inside the monoid of the polynomial functions having coefficients in the subfield \mathbb{F}_{q}. We will restrict to the case $\mathbb{F}_{q^{p}}, p$ prime.

Theorem 5.1. Consider an element of $\mathbb{F}_{q}[x] /\left(x^{q^{p}}-x\right)$ chosen uniformly at random. The probability that this is a permutation polynomial tends to 0 as p and/or q tends to ∞.

Proof. Given Corollary 4.4, we need to consider

$$
L:=\lim _{p \vee q \rightarrow \infty} \frac{q!(p)^{\frac{q^{p}-q}{p}}\left(\frac{q^{p}-q}{p}\right)!}{q^{q^{p}}}
$$

By Stirling approximation this is

$$
L=\lim _{p \vee q \rightarrow \infty} \frac{q!(p)^{\frac{q^{p}-q}{p}}\left(\frac{q^{p}-q}{p e}\right)^{\frac{q^{p}-q}{p}} \sqrt{2 \pi \frac{q^{p}-q}{p}}}{q^{q^{p}}}
$$

Now notice that

$$
\lim _{p \vee q \rightarrow \infty}\left(\frac{q^{p}-q}{q^{p}}\right)^{\frac{q^{p}-q}{p}}=\lim _{p \vee q \rightarrow \infty}\left(1-\frac{1}{q^{p-1}}\right)^{q^{p-1 \cdot \frac{q-q^{2-p}}{p}} . . ~}
$$

By the continuity of the exponential function, this can be written as

$$
\lim _{p \vee q \rightarrow \infty} e^{\frac{q-q^{2}-p}{p} \ln \left(1-\frac{1}{q^{p-1}}\right)^{q^{p-1}}}=e^{-\lim _{p \vee q \rightarrow \infty} \frac{q}{p}}
$$

so that

$$
L=\lim _{p \vee q \rightarrow \infty} \frac{q!\left(q^{p}\right)^{\frac{q^{p}-q}{p}} e^{-\frac{q}{p}} \sqrt{2 \pi \frac{q^{p}-q}{p}}}{q^{q^{p}} e^{\frac{q^{p}-q}{p}}}=\lim _{p \vee q \rightarrow \infty} \frac{q!e^{-\frac{q}{p}} \sqrt{2 \pi \frac{q^{p}-q}{p}}}{q^{q} e^{\frac{q^{p}-q}{p}}}=0
$$

as one can easily see by exploring the cases $q \rightarrow \infty$ with Stirling and q fixed.

By observing that $q^{p}!>q^{q^{p}}$ eventually for large p and/or q, we also have the following:

Corollary 5.2. Consider a permutation of the set $\mathbb{F}_{q^{m}}$ chosen uniformly at random. The probability that its associated permutation polynomial has coefficients in the subfield \mathbb{F}_{q} tends to 0 as p and/or q tends to ∞.

We are now interested in an asymptotic estimate for the density of T_{q}^{p} in $\mathbb{F}_{q}[x] /\left(x^{q^{p}}-x\right)$ for p a prime number. We will show in fact that the monoid of canonical subfield preserving polynomials has nontrivial density inside the monoid of polynomial functions having coefficients in \mathbb{F}_{q}. Given Corollary 4.4 the probability that an element of $\mathbb{F}_{q}[x] /\left(x^{q^{p}}-x\right)$ chosen uniformly at random is subfield preserving is

$$
\frac{\left|T_{q}^{p}\right|}{q^{q^{p}}}=\frac{q^{q}\left(q^{p}-q\right)^{\frac{q^{p}-q}{p}}}{q^{q^{p}}}
$$

TheOrem 5.3. Consider an element of $\mathbb{F}_{q}[x] /\left(x^{q^{p}}-x\right)$ chosen uniformly at random. The probability that it is subfield preserving tends to $e^{-\lim _{p \vee q \rightarrow \infty} \frac{q}{p}}$ as p and/or q tends to ∞.

Proof. We need to consider

$$
\ell:=\lim _{p \vee q \rightarrow \infty} \frac{q^{q}\left(q^{p}-q\right)^{\frac{q^{p}-q}{p}}}{q^{q^{p}}}
$$

With similar arguments to those in Theorem 5.1, this transforms to

$$
\ell=\lim _{p \vee q \rightarrow \infty} \frac{q^{q}\left(q^{p}\right)^{\frac{q^{p}-q}{p}}}{q^{q^{p}}} e^{-\frac{q}{p}}=e^{-\lim _{p \vee q \rightarrow \infty} \frac{q}{p}}
$$

Corollary 5.4.

- $\lim _{p \rightarrow \infty}\left|T_{q}^{p}\right| / q^{q^{p}}=1$ if q is fixed.
- $\lim _{q \rightarrow \infty}\left|T_{q}^{p}\right| / q^{q^{p}}=0$ if p is fixed.

Corollary 5.5. Let $q=p$. Then

$$
\lim _{p \rightarrow \infty} \frac{\left|T_{p}^{p}\right|}{p^{p^{p}}}=1 / e .
$$

Remark 5.6. Clearly all the limits above are computed for p and q running over the natural numbers, but they hold in particular for the subsequences of increasing primes p and possible orders of finite fields q.
6. Example. Let us consider the structure of T_{2}^{2} as an example. Let α be a root of $x^{2}+x+1=0$, so that $\mathbb{F}_{2^{2}}=\mathbb{F}_{2}[\alpha] /\left(\alpha^{2}+\alpha+1\right)$. It is easy to check that for each polynomial $f \in L$ with

$$
L:=\left\{0,1, x^{2}+x, x^{2}+x+1, x^{3}, x^{3}+1, x^{3}+x^{2}+x, x^{3}+x^{2}+x+1\right\}
$$

we have $f(\alpha) \in \mathbb{F}_{2}$. We know that T_{2}^{2} contains eight polynomials, so that

$$
\begin{aligned}
T_{2}^{2} & =\frac{\mathbb{F}_{2}[x]}{\left(x^{4}-x\right)} \backslash L \\
& =\left\{x, x+1, x^{2}, x^{2}+1, x^{3}+x^{2}+1, x^{3}+x, x^{3}+x^{2}, x^{3}+x+1\right\} .
\end{aligned}
$$

The structure is $C_{2} \times M_{2}$.
Indeed, $C_{1}^{2} \rtimes M_{2}=M_{2}$ and consists of

$$
\left\{x, x^{2}+1, x^{3}+x^{2}, x^{3}+x+1\right\}
$$

that is, those functions which fix $\mathbb{F}_{4} \backslash \mathbb{F}_{2}$ and act as M_{2} on \mathbb{F}_{2}.
Also $C_{2} \rtimes M_{1}=C_{2}$ and consists of

$$
\left\{x, x^{2}\right\},
$$

that is, those functions which fix \mathbb{F}_{2} and act as C_{2} on $\mathbb{F}_{4} \backslash \mathbb{F}_{2}$. This is also H_{2}^{2}.
Acknowledgements. The first author was supported in part by Swiss National Science Foundation grant number 149716.

References

[1] L. Carlitz and D. R. Hayes, Permutations with coefficients in a subfield, Acta Arith. 21 (1972), 131-135.
[2] Z. Chen, Permutation-type formulas of Frobenius map and their applications, Ars Combin. 39 (1995), 175-181.
[3] R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
Giacomo Micheli, Davide Schipani
Institute of Mathematics
University of Zurich
Winterthurerstrasse 190
8057 Zürich, Switzerland
E-mail: giacomo.micheli@math.uzh.ch
davide.schipani@math.uzh.ch

Received on 10.10.2013
and in revised form on 14.7.2014

