On canonical subfield preserving polynomials

by

GIACOMO MICHELI and DAVIDE SCHIPANI (Zürich)

1. Introduction. Let q be a prime power and m a natural number. In [1] the structure of the group consisting of permutation polynomials [3] of \mathbb{F}_{q^m} having coefficients in the base field \mathbb{F}_q was made explicit. We start by observing that, if f is a permutation of \mathbb{F}_{q^m} with coefficients in \mathbb{F}_q then

$$f(\mathbb{F}_q) = \mathbb{F}_q \quad \text{and} \quad \forall d, s \,|\, m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) = \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}.$$

Indeed for any integer $s \geq 1$, since f has coefficients in \mathbb{F}_q , and \mathbb{F}_{q^s} is a field, we have $f(\mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^s}$. As f is also a bijection, this is in fact an equality. The property above then follows directly (see also [1, Lemma 2]).

It is now natural to ask which polynomials f, having coefficients in $\mathbb{F}_q,$ have the property that

(1.1)
$$f(\mathbb{F}_q) \subseteq \mathbb{F}_q$$
 and $\forall d, s \mid m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}.$

Let us denote by T_q^m the set of such polynomials. We remark that this is a monoid under composition, and its invertible elements $(T_q^m)^*$ form the group of permutation polynomials with coefficients in \mathbb{F}_q , mentioned above.

In this paper we give the explicit semigroup structure of T_q^m , obtaining the main result of [1] (i.e. the group structure mentioned above) as a corollary. The explicit semigroup structure will allow us to compute the probability that a polynomial chosen uniformly at random having coefficients in \mathbb{F}_q satisfies condition (1.1). This will imply the following remarkable results:

- Given p prime, for q relatively large, the density of T_q^p is approximately zero.
- Given q, for p a relatively large prime, the density of T_q^p is approximately one.
- For q = p a large prime the density of T_p^p is approximately 1/e.

2010 Mathematics Subject Classification: Primary 11T06, 12E05; Secondary 12E20.

Key words and phrases: polynomials, finite fields, subfield preserving, semidirect product, monoid.

Indeed, Theorem 5.3 shows how the asymptotic density intrinsically depends on the ratio between p and q (to be compared with the trivial density in Theorem 5.1 and Corollary 5.2).

2. Preliminary definitions

DEFINITION 2.1. We say $f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$ is subfield preserving if (2.1) $f(\mathbb{F}_q) \subseteq \mathbb{F}_q$ and $\forall d, s \mid m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}$. Moreover, we will say f is q-canonical if its polynomial representation has coefficients in \mathbb{F}_q (or simply canonical when q is understood).

REMARK 2.2. One of the reasons why we use the term *canonical* to address the property of having coefficients in a subfield is that, under this property, the induced map \tilde{f} of f(x) is always well defined no matter what irreducible polynomial we choose for the representation of the finite field extension \mathbb{F}_{q^m} .

Denote by $\mathcal{L}_{\mathbb{F}_{q^m}}$ the set of all subfield preserving polynomials.

REMARK 2.3. If we drop the condition on the coefficients, the semigroup structure becomes straightforward:

$$\mathcal{L}_{\mathbb{F}_{q^m}} \cong \bigotimes_{k|m} M_{[k\pi(k)]}$$

with $\pi(k)$ being the number of monic irreducible polynomials of degree k over \mathbb{F}_q and $M_{[n]}$ being the set of all maps from $\{1, \ldots, n\}$ to itself.

REMARK 2.4. Clearly not all subfield preserving polynomials are canonical, which can also be checked by a cardinality count using the results later in the paper.

We will need the following lemma, whose proof can be easily adapted from [1] and [2].

LEMMA 2.5. Let $f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$ be a map. Then $f \in \mathbb{F}_q[x]$ if and only if $f \circ \varphi_q = \varphi_q \circ f$ where $\varphi_q(x) = x^q$.

Indeed, the set of functions we are looking at is $T_q^m = \mathcal{L}_{\mathbb{F}_{q^m}} \cap \mathcal{C}_{\varphi_q}$ where $\mathcal{C}_{\varphi_q} := \{f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m} \mid f \circ \varphi_q = \varphi_q \circ f\}.$

3. Combinatorial underpinning. Let S be a finite set and $\psi: S \to S$ a bijection. For any $T \subseteq S$, let

 $\mathcal{K}_{\psi}(T) := \{ f: T \to T \mid \forall x \in T \ f \circ \psi(x) = \psi \circ f(x) \}.$

For any partition \mathcal{P} of S into sets P_k , let

$$M_S(\mathcal{P}) := \{ f : S \to S \mid \forall k \ f(P_k) \subseteq P_k \}.$$

When $\mathcal{P} = \{S\}$ is the trivial partition, we will denote $M_S(\{S\}) = M_S$, the monoid of maps from S to itself.

For any bijection $\phi: S \to S$, define ϕ_k for any k as the composition of the cycles of ϕ of length k, and set $\phi_k = (\emptyset)$ if ϕ has no such cycles. Let $W = \{1, \ldots, |S|\}$. Then $\phi = \prod_{k \in W, \phi_k \neq (\emptyset)} \phi_k$. If $\operatorname{supp}(\phi_k)$ denotes the set of elements moved by ϕ_k , then ϕ induces a partition \mathcal{P}_{ϕ} on $S = \bigcup_{k \in W} S_k$, with $S_k = \operatorname{supp}(\phi_k)$ for $k \geq 2$, and S_1 being the set of fixed points of ϕ .

Lemma 3.1.

$$M_S(\mathcal{P}_{\phi}) \cap \mathcal{K}_{\phi}(S) \cong \underset{k \in W, \phi_k \neq (\emptyset)}{\times} \mathcal{K}_{\phi_k}(S_k).$$

Proof. Clearly any $f \in \mathcal{K}_{\phi_k}(S_k)$ can be extended to S as the identity and the extension \overline{f} belongs to $\mathcal{K}_{\phi}(S) \cap M_S(\mathcal{P}_{\phi})$. Indeed we have a natural injection

$$\underset{k \in W, \phi_k \neq (\emptyset)}{\times} \mathcal{K}_{\phi_k}(S_k) \hookrightarrow M_S(\mathcal{P}_{\phi}) \cap \mathcal{K}_{\phi}(S).$$

This is also a surjection: in fact, let $f \in M_S(\mathcal{P}_{\phi}) \cap \mathcal{K}_{\phi}(S)$ and define

$$f_k(x) := \begin{cases} f(x) & \text{if } x \in S_k, \\ x & \text{otherwise.} \end{cases}$$

Since $M_S(\mathcal{P}_{\phi}) \cap \mathcal{K}_{\phi}(S) \subseteq M_S(\mathcal{P}_{\phi})$, then $f_k(S_k) \subseteq S_k$, which implies

$$f_k\big|_{S_k} \in \mathcal{K}_{\phi_k}(S_k)$$

As the S_k form a partition, the composition of all the f_k coincides with f.

Now, for $n, k \in \mathbb{N}$ let U_n^k be a set with kn elements and ψ a bijection of U_n^k having n cycles of length k. Let us label the elements of U_n^k in the following way: let a_{ij} be the *j*th element of the *i*th cycle, with $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, k\}$.

Let [h] denote $\{1, \ldots, h\}$ for a natural number h. We say $\lambda : [h] \to [h]$ is a *cyclic shift* of [h] if $\lambda(j + \ell) = \lambda(j) + \ell$ modulo h for any $j, \ell \in [h]$.

Let $\gamma_1, \ldots, \gamma_n$ be cyclic shifts of [k] and $\sigma : [n] \to [n]$ a map. We then define $f_{\sigma}^{\gamma} : U_n^k \to U_n^k$ as follows:

$$f^{\gamma}_{\sigma}(a_{ij}) := a_{\sigma(i)\gamma_i(j)}.$$

THEOREM 3.2. $g \in \mathcal{K}_{\psi}(U_n^k)$ iff there exists $\gamma := (\gamma_1, \ldots, \gamma_n), \gamma_i$ cyclic shifts of [k], and a map $\sigma : [n] \to [n]$ such that $g = f_{\sigma}^{\gamma}$.

Proof. Suppose first $g \in \mathcal{K}_{\psi}(U_n^k)$. Then

$$g(a_{ij}) = g(\psi^{j-1}(a_{i1})) = \psi^{j-1}(g(a_{i1})).$$

Define $\sigma(i) := [g(a_{i1})]_1$ and $\gamma_i(j) := [g(a_{ij})]_2$, where the subscripts $[x]_1$ and $[x]_2$ refer to the indices i, j of $x \in U_n^k$ in the representation a_{ij} above.

Observe that for all $i \in [n]$, γ_i is a cyclic shift: indeed, modulo k,

$$\gamma_i(j+\ell) = [g(a_i \ _{j+\ell})]_2 = [g(\psi^\ell(a_{ij}))]_2 = [\psi^\ell(g(a_{ij}))]_2$$
$$= [g(a_{ij})]_2 + \ell = \gamma_i(j) + \ell.$$

Moreover,

$$g(a_{ij}) = g(\psi^{j-1}(a_{i1})) = \psi^{j-1}(g(a_{i1})) = \psi^{j-1}(a_{\sigma(i)\gamma_i(1)})$$

= $a_{\sigma(i)\gamma_i(1)+j-1} = a_{\sigma(i)\gamma_i(j)} = f_{\sigma}^{\gamma}(a_{ij}).$

Let us now prove the other implication:

$$\psi(f_{\sigma}^{\gamma}(a_{ij})) = \psi(a_{\sigma(i)\gamma_i(j)}) = a_{\sigma(i)\gamma_i(j)+1}$$
$$= a_{\sigma(i)\gamma_i(j+1)} = f_{\sigma}^{\gamma}(a_{ij+1}) = f_{\sigma}^{\gamma}(\psi(a_{ij}))$$

for all $i \in [n]$ and $j \in [k]$.

3.1. Semidirect product of monoids. We now recall the definition of semidirect product of monoids

DEFINITION 3.3. Let M, N be monoids and let $\Gamma : M \to \operatorname{End}(N)$ with $m \mapsto \Gamma_m$ be an antihomomorphism of monoids (i.e. $\Gamma_{m_1m_2} = \Gamma_{m_2} \circ \Gamma_{m_1}$). We define $M \ltimes_{\Gamma} N$ as the monoid having support $M \times N$ and operation * defined by the formula

$$(m_1, n_1) * (m_2, n_2) = (m_1 m_2, \Gamma_{m_2}(n_1) n_2).$$

REMARK 3.4. It is straightforward to verify that * is associative.

We will now prove an easy lemma that will be useful in Section 4. For any monoid H let us denote by H^* the group of invertible elements of H.

LEMMA 3.5. Let $M \ltimes G$ be a semidirect product of monoids where G is a group. Then

$$(M \ltimes G)^* = M^* \ltimes G.$$

Proof. The inclusion $(M \ltimes G)^* \subseteq M^* \ltimes G$ is trivial, since if $(m, g) \in (M \ltimes G)^*$ then there exists (m', g') such that

$$(m,g) * (m',g') = (e_1,e_2),$$

so $mm' = e_1$, the identity element of M. To prove the converse inclusion, let $(m, g) \in M^* \ltimes G$. Then its inverse is $(m^{-1}, \Gamma_{m^{-1}}(g^{-1}))$.

We are now ready to prove the main proposition of this section as a corollary of Theorem 3.2.

We first observe that the set of cyclic shifts of [k] is clearly isomorphic to C_k , the cyclic group of order k, and each cyclic shift is determined by its action on 1.

Corollary 3.6.

$$\mathcal{K}_{\psi}(U_n^k) \cong M_{[n]} \ltimes_{\Gamma} C_k^n$$

26

where Γ is defined by

$$\Gamma(\sigma)(\gamma) := \Gamma_{\sigma}(\gamma) := \gamma_{\sigma} := (\gamma_{\sigma(1)}, \dots, \gamma_{\sigma(n)}) \quad \text{for any } \gamma \in C_k^n$$

Proof. First observe that

$$\Gamma_{\mu}(\gamma_{\sigma(1)},\ldots,\gamma_{\sigma(n)})=(\gamma_{\sigma(\mu(1))},\ldots,\gamma_{\sigma(\mu(i))},\ldots,\gamma_{\sigma(\mu(n))})$$

for any $\sigma, \mu \in M_{[n]}$. This can be easily seen by denoting $\gamma_{\sigma(i)} =: g_i$. Therefore, Γ is an antihomomorphism, as desired:

$$\Gamma(\sigma\mu)(\gamma) = \gamma_{\sigma\mu} = (\gamma_{\sigma(\mu(1))}, \dots, \gamma_{\sigma(\mu(i))}, \dots, \gamma_{\sigma(\mu(n))})$$
$$= \Gamma_{\mu}(\gamma_{\sigma(1)}, \dots, \gamma_{\sigma(n)}) = \Gamma_{\mu} \circ \Gamma_{\sigma}(\gamma).$$

Let

$$\Delta: M_{[n]} \ltimes C_k^n \to \mathcal{K}_{\psi}(U_n^k), \quad (\sigma, \gamma) \mapsto f_{\sigma}^{\gamma}$$

Then Δ is clearly a bijection by Theorem 3.2. It is also an automorphism since

$$\begin{aligned} &\Delta((\overline{\sigma},\overline{\gamma})*(\sigma,\gamma))(a_{i,j}) = \Delta(\overline{\sigma}\sigma,\overline{\gamma}_{\sigma}\gamma)(a_{i,j}) = f_{\overline{\sigma}\sigma}^{\overline{\gamma}_{\sigma}\gamma}(a_{i,j}) \\ &= a_{\overline{\sigma}\sigma(i),\overline{\gamma}_{\sigma(i)}\gamma_i(j)} = f_{\overline{\sigma}}^{\overline{\gamma}}(a_{\sigma(i),\gamma_i(j)}) = f_{\overline{\sigma}}^{\overline{\gamma}} \circ f_{\sigma}^{\gamma}(a_{i,j}) = (\Delta(\overline{\sigma},\overline{\gamma}) \circ \Delta(\sigma,\gamma))(a_{i,j}) \\ \text{for all } i \in [n] \text{ and } j \in [k]. \end{aligned}$$

4. Semigroup structure of T_q^m . Consider now T_q^m and notice that, since $M_{\mathbb{F}_{q^m}}(\mathcal{P}_{\varphi_q}) = \mathcal{L}_{\mathbb{F}_{q^m}}$ and $\mathcal{K}_{\varphi_q}(\mathbb{F}_{q^m}) = \mathcal{C}_{\varphi_q}$, we have

(4.1)
$$T_q^m = \mathcal{L}_{\mathbb{F}_{q^m}} \cap \mathcal{C}_{\varphi_q} = M_{\mathbb{F}_{q^m}}(\mathcal{P}_{\varphi_q}) \cap \mathcal{K}_{\varphi_q}(\mathbb{F}_{q^m}).$$

Indeed, the condition

 $f(S_k) \subseteq S_k$

for each S_k in the partition induced by φ_q is equivalent to the subfield preserving requirement (2.1), since

$$S_1 = \mathbb{F}_q$$
 and $S_k = \bigcap_{a|k, a \neq k} (\mathbb{F}_{q^k} \setminus \mathbb{F}_{q^a})$ for $k \ge 2$.

Any element α in a cycle of length d is associated to the irreducible polynomial $\prod_{i=0}^{d-1} (x - \alpha^{q^i}) \in \mathbb{F}_q[x]$, so there is a bijection between the cycles of φ_q of length d and the monic irreducible polynomials of degree d over \mathbb{F}_q , whose cardinality is

$$\pi(d) = \frac{1}{d} \sum_{j|d} \mu(d/j) q^j$$

with μ being the Möbius function. Now, write

$$\varphi_q = \prod_{k|m} \phi_k$$

as above with $\phi = \varphi_q$ and label the elements of the finite field as follows: $a_{i,j}^{(k)}$ is the *j*th element in the *i*th *k*-cycle.

EXAMPLE 4.1. Let $\mathbb{F}_{2^2} = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$, consisting of $\{0, 1, \alpha, \alpha + 1\}$. Indeed,

$$\varphi_q = \phi_1 \phi_2 = (0)(1)(\alpha, \alpha + 1)$$

and then $a_{1,1}^{(1)} = 0$, $a_{2,1}^{(1)} = 1$, $a_{1,1}^{(2)} = \alpha$ and $a_{1,2}^{(2)} = \alpha + 1$.

THEOREM 4.2.

(4.2)
$$T_q^m \cong \bigotimes_{k|m} M_{[\pi(k)]} \ltimes C_k^{\pi(k)}$$

Proof. This follows from Lemma 3.1 and Corollary 3.6 using the partition induced by the Frobenius morphism. Indeed, using (4.1) and Lemma 3.1 we get

$$T_q^m \cong \bigotimes_{k \in W, \, \phi_k \neq (\emptyset)} \mathcal{K}_{\phi_k}(S_k).$$

Using now Corollary 3.6 we get

$$T_q^m \cong \bigotimes_{k|m} M_{[\pi(k)]} \ltimes C_k^{\pi(k)}.$$

More explicitly, the action of $t \in \times_{k|m} M_{[\pi(k)]} \ltimes C_k^{\pi(k)}$ on an element $a_{i,j}^{(k)} \in S_k \subseteq \mathbb{F}_{q^m}$ is given by

$$t(a_{i,j}^{(k)}) = (\sigma^{(k)}, \gamma^{(k)})(a_{i,j}^{(k)}) = f_{\sigma^{(k)}}^{\gamma^{(k)}}(a_{i,j}^{(k)}) = a_{\sigma^{(k)}(i),\gamma_i^{(k)}(j)}^{(k)},$$

where $\gamma^{(k)}$ and $\sigma^{(k)}$ are the components indexed by k.

Corollary 4.3.

$$(T_q^m)^* \cong \bigotimes_{k|m} \mathcal{S}_{\pi(k)} \ltimes C_k^{\pi(k)},$$

where $S_{\pi(k)}$ is the permutation group of $\pi(k)$ elements.

Proof. Observe that trivially

$$(T_q^m)^* \cong \bigotimes_{k|m} (M_{[\pi(k)]} \ltimes C_k^{\pi(k)})^*.$$

Applying now Lemma 3.5 yields

$$(T_q^m)^* \cong \bigotimes_{k|m} (M_{[\pi(k)]} \ltimes C_k^{\pi(k)})^* \cong \bigotimes_{k|m} \mathcal{S}_{\pi(k)} \ltimes C_k^{\pi(k)}. \blacksquare$$

COROLLARY 4.4.

$$|T_q^m| = \prod_{k|m} k^{\pi(k)} \pi(k)^{\pi(k)}, \quad |(T_q^m)^*| = \prod_{k|m} k^{\pi(k)} \pi(k)!$$

REMARK 4.5. Corollary 4.3 corresponds to [1, Theorem 2], and Corollary 4.4 generalizes the corollary of [1, Theorem 2].

REMARK 4.6. Let us observe that a simpler decomposition of $(T_q^m)^*$, as a direct product of two monoids, can be seen as follows:

- First notice that any permutation polynomial over \mathbb{F}_q can be extended to a permutation polynomial over \mathbb{F}_{q^m} with coefficients in \mathbb{F}_q by simply defining it as the identity function on $\mathbb{F}_{q^m} \setminus \mathbb{F}_q$ and Lagrange interpolation over the whole field. The resulting permutation polynomial over \mathbb{F}_{q^m} has coefficients in \mathbb{F}_q , since it commutes with φ_q , which is easily checked by looking at the base field and the rest separately.
- $(T_q^m)^*$ then has a normal subgroup isomorphic to \mathcal{S}_q consisting of

$$\{s \in (T_q^m)^* \mid s \text{ is the identity on } \mathbb{F}_{q^m} \setminus \mathbb{F}_q\}.$$

• Let

$$H_q^m := \{ h \in (T_q^m)^* \, | \, h \text{ is the identity on } \mathbb{F}_q \}.$$

Then H_q^m is also normal in $(T_q^m)^*$.

• We have $S_q \times H_q^m = (T_q^m)^*$. Indeed, note first that $H_q^m \cap S_q = 1$. Now given $f \in (T_q^m)^*$ we have to prove that it can be written as a composition of an element of H_q^m and an element of S_q . Let $s_2 \in S_q$ be such that s_2 restricted to \mathbb{F}_q is f. Let $s_1 \in S_q$ be such that s_1 restricted to \mathbb{F}_q is the inverse permutation of the restriction of f to \mathbb{F}_q . In other words, $f \circ s_1$ restricted to \mathbb{F}_q is the identity. Observe then that since $f \circ s_1$ also has coefficients in \mathbb{F}_q , it lives in H_q^m . Verify that $s_2 \circ f \circ s_1 = f$. Thus we have written f as a composition of an element of S_q and an element of H_q^m .

5. Asymptotic density of T_q^m . Let us first compute the asymptotic density of the group of permutation polynomials described in [1] inside the whole group of permutation polynomials, and inside the monoid of the polynomial functions having coefficients in the subfield \mathbb{F}_q . We will restrict to the case \mathbb{F}_{q^p} , p prime.

THEOREM 5.1. Consider an element of $\mathbb{F}_q[x]/(x^{q^p}-x)$ chosen uniformly at random. The probability that this is a permutation polynomial tends to 0 as p and/or q tends to ∞ .

Proof. Given Corollary 4.4, we need to consider

$$L := \lim_{p \lor q \to \infty} \frac{q!(p)^{\frac{q^p-q}{p}} \left(\frac{q^p-q}{p}\right)!}{q^{q^p}}$$

By Stirling approximation this is

$$L = \lim_{p \lor q \to \infty} \frac{q!(p)^{\frac{q^{p}-q}{p}} \left(\frac{q^{p}-q}{pe}\right)^{\frac{q^{p}-q}{p}} \sqrt{2\pi \frac{q^{p}-q}{p}}}{q^{q^{p}}}.$$

Now notice that

$$\lim_{p \lor q \to \infty} \left(\frac{q^p - q}{q^p}\right)^{\frac{q^p - q}{p}} = \lim_{p \lor q \to \infty} \left(1 - \frac{1}{q^{p-1}}\right)^{q^{p-1} \cdot \frac{q - q^{2-p}}{p}}$$

By the continuity of the exponential function, this can be written as

$$\lim_{p \lor q \to \infty} e^{\frac{q-q^{2-p}}{p} \ln \left(1 - \frac{1}{q^{p-1}}\right)^{q^{p-1}}} = e^{-\lim_{p \lor q \to \infty} \frac{q}{p}}$$

so that

$$L = \lim_{p \lor q \to \infty} \frac{q! (q^p)^{\frac{q^p - q}{p}} e^{-\frac{q}{p}} \sqrt{2\pi \frac{q^p - q}{p}}}{q^{q^p} e^{\frac{q^p - q}{p}}} = \lim_{p \lor q \to \infty} \frac{q! e^{-\frac{q}{p}} \sqrt{2\pi \frac{q^p - q}{p}}}{q^q e^{\frac{q^p - q}{p}}} = 0,$$

as one can easily see by exploring the cases $q \to \infty$ with Stirling and q fixed. \blacksquare

By observing that $q^{p}! > q^{q^{p}}$ eventually for large p and/or q, we also have the following:

COROLLARY 5.2. Consider a permutation of the set \mathbb{F}_{q^m} chosen uniformly at random. The probability that its associated permutation polynomial has coefficients in the subfield \mathbb{F}_q tends to 0 as p and/or q tends to ∞ .

We are now interested in an asymptotic estimate for the density of T_q^p in $\mathbb{F}_q[x]/(x^{q^p}-x)$ for p a prime number. We will show in fact that the monoid of canonical subfield preserving polynomials has nontrivial density inside the monoid of polynomial functions having coefficients in \mathbb{F}_q . Given Corollary 4.4, the probability that an element of $\mathbb{F}_q[x]/(x^{q^p}-x)$ chosen uniformly at random is subfield preserving is

$$\frac{|T_q^p|}{q^{q^p}} = \frac{q^q (q^p - q)^{\frac{q^p - q}{p}}}{q^{q^p}}.$$

THEOREM 5.3. Consider an element of $\mathbb{F}_q[x]/(x^{q^p}-x)$ chosen uniformly at random. The probability that it is subfield preserving tends to $e^{-\lim_{p \lor q \to \infty} \frac{q}{p}}$ as p and/or q tends to ∞ .

Proof. We need to consider

$$\ell := \lim_{p \lor q \to \infty} \frac{q^q (q^p - q)^{\frac{q^p - q}{p}}}{q^{q^p}}$$

With similar arguments to those in Theorem 5.1, this transforms to

$$\ell = \lim_{p \lor q \to \infty} \frac{q^q (q^p)^{\frac{q^p - q}{p}}}{q^{q^p}} e^{-\frac{q}{p}} = e^{-\lim_{p \lor q \to \infty} \frac{q}{p}}. \bullet$$

COROLLARY 5.4.

- $\lim_{p\to\infty} |T_q^p|/q^{q^p} = 1$ if q is fixed. $\lim_{q\to\infty} |T_q^p|/q^{q^p} = 0$ if p is fixed.

COROLLARY 5.5. Let q = p. Then

$$\lim_{p \to \infty} \frac{|T_p^p|}{p^{p^p}} = 1/e.$$

REMARK 5.6. Clearly all the limits above are computed for p and qrunning over the natural numbers, but they hold in particular for the subsequences of increasing primes p and possible orders of finite fields q.

6. Example. Let us consider the structure of T_2^2 as an example. Let α be a root of $x^2 + x + 1 = 0$, so that $\mathbb{F}_{2^2} = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$. It is easy to check that for each polynomial $f \in L$ with

 $L := \{0, 1, x^{2} + x, x^{2} + x + 1, x^{3}, x^{3} + 1, x^{3} + x^{2} + x, x^{3} + x^{2} + x + 1\}$ we have $f(\alpha) \in \mathbb{F}_2$. We know that T_2^2 contains eight polynomials, so that

$$T_2^2 = \frac{\mathbb{F}_2[x]}{(x^4 - x)} \setminus L$$

= {x, x + 1, x², x² + 1, x³ + x² + 1, x³ + x, x³ + x², x³ + x + 1}.

The structure is $C_2 \times M_2$.

Indeed, $C_1^2 \rtimes \overline{M_2} = \overline{M_2}$ and consists of

 $\{x, x^2 + 1, x^3 + x^2, x^3 + x + 1\},\$

that is, those functions which fix $\mathbb{F}_4 \setminus \mathbb{F}_2$ and act as M_2 on \mathbb{F}_2 .

Also $C_2 \rtimes M_1 = C_2$ and consists of

$$\{x, x^2\},\$$

that is, those functions which fix \mathbb{F}_2 and act as C_2 on $\mathbb{F}_4 \setminus \mathbb{F}_2$. This is also H_2^2 .

Acknowledgements. The first author was supported in part by Swiss National Science Foundation grant number 149716.

References

- L. Carlitz and D. R. Hayes, Permutations with coefficients in a subfield, Acta Arith. |1|21 (1972), 131-135.
- [2]Z. Chen, Permutation-type formulas of Frobenius map and their applications, Ars Combin. 39 (1995), 175-181.

[3] R. Lidl and H. Niederreiter, *Finite Fields*, Cambridge Univ. Press, 1997.

Giacomo Micheli, Davide Schipani Institute of Mathematics University of Zurich Winterthurerstrasse 190 8057 Zürich, Switzerland E-mail: giacomo.micheli@math.uzh.ch davide.schipani@math.uzh.ch

> Received on 10.10.2013 and in revised form on 14.7.2014 (7611)

32