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Algebraic S-integers of fixed degree and bounded height

by

Fabrizio Barroero (Pisa)

1. Introduction. In this article we give asymptotic estimates for the
cardinality of certain subsets of Qn of bounded height. By height we mean
the multiplicative absolute Weil height H on the affine space Qn, whose
definition will be recalled in Section 2.

Let k be a number field of degree m over Q and let n and e be positive
integers. We fix an algebraic closure k of k and set

k(n, e) = {α ∈ kn : [k(α) : k] = e},
where k(α) is the field obtained by adjoining all the coordinates of α to k. By
Northcott’s Theorem [12], subsets of k(n, e) of uniformly bounded height are
finite. Therefore, for any subset A of k(n, e) and H > 0, we may introduce
the following counting function:

N(A,H) = |{α ∈ A : H(α) ≤ H}|.
Various results about this counting function appear in the literature. One
of the earliest is due to Schanuel [13], who gave an asymptotic formula
for N(k(n, 1),H). Schmidt was the first to consider the case e > 1. In
[14], he found upper and lower bounds for N(k(n, e),H), while in [15], he
gave asymptotics for N(Q(n, 2),H). Shortly afterwards, Gao [8] found the
asymptotics for N(Q(n, e),H), provided n > e. Later Masser and Vaaler [11]
established an asymptotic estimate for N(k(1, e),H). Finally, Widmer [16]
proved an asymptotic formula for N(k(n, e),H), provided n > 5e/2 + 5
+ 2/me. However, for general n and e even the correct order of magnitude
for N(k(n, e),H) remains unknown.

In this article we are interested in counting algebraic S-integers. Let
S be a finite set of places of k containing the archimedean ones. As usual,
OS denotes the ring of S-integers of k. Let S be the set of places of k that lie
above the places in S and let OS be the ring of S-integers of k. Alternatively,
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we could think of OS as the ring of those algebraic numbers having minimal
polynomial over k that is monic and has coefficients in OS .

Given n and e positive integers, we set

OS(n, e) = k(n, e) ∩ On
S

= {α ∈ On
S

: [k(α) : k] = e}.
Let S∞ be the set of archimedean places of k. If we choose S = S∞, then
OS = Ok is the ring of algebraic integers of k and we use the notation
Ok(n, e) with the obvious meaning. Besides the trivial cases OQ(n, 1) = Zn,
the first asymptotic result can probably be found in Lang’s book [9]. Lang
states, without proof,

N(Ok(1, 1),H) = γkHm(logH)q +O(Hm(logH)q−1),

where m = [k : Q], q is the rank of the unit group of Ok, and γk and
the implicit constant in the error term are unspecified positive constants,
depending on k. More recently, Widmer [17] established the asymptotic
formula

(1.1) N(Ok(n, e),H) =

t∑
i=0

DiHmen(logHmen)i+Om,e,n(Hmen−1(logH)t),

provided e = 1 or n > e + Ce,m for some explicit Ce,m ≤ 7. Here t =
e(q + 1) − 1, and the constants Di = Di(k, n, e) are explicitly given. Our
Theorem 1.1 generalizes Widmer’s result in the case e = 1 to asymptotics
for N(OS(n, 1),H). However, we do not obtain a multiterm expansion as
in (1.1).

Chern and Vaaler [6] proved an asymptotic formula for the number of
monic polynomials in Z[X] of given degree and bounded Mahler measure.
Theorem 6 of [6] immediately implies the following estimate:

N(OQ(1, e),H) = CeHe
2

+Oe(He
2−1)

for some explicit constant Ce. This was extended by the author in [1], where
an asymptotic estimate is given for N(Ok(1, e),H). Theorem 1.2 below gen-
eralizes this result and gives an asymptotic estimate for N(OS(1, e),H) for
any finite set of places S containing the archimedean ones.

We write Sfin for the set of non-archimedean places of S. Suppose that
Sfin = {v1, . . . , vL} and that vl corresponds to the prime ideal pl of Ok. We
denote by N(A) the norm from k to Q of the fractional ideal A and by N(S)
the L-tuple (N(p1), . . . ,N(pL)). Let r and s be, respectively, the number
of real embeddings and pairs of conjugate complex embeddings of k. More-
over, we denote by ∆k the discriminant of k. Let n be a positive integer.
We set

(1.2) B
(n)
k,S =

nr+s−12snm|S|−1

(|S| − 1)!(
√
|∆k|)n

L∏
l=1

(
1

logN(pl)

(
1− 1

N(pl)n

))
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and

CR,n = 2n−M
( M∏
j=1

(
2j

2j + 1

)n−2j)nM
M !

with M =
⌊
n−1

2

⌋
(as usual, bxc is the integer part of x ∈ R), and

CC,n = πn
nn

(n!)2
.

In this article, as usual, empty products are understood to be 1.
For non-negative real functions f(X), g(X), h(X) and X0 ∈ R, we write

f(X) = g(X) + O(h(X)) as X ≥ X0 tends to infinity if there is C0 such
that |f(X)− g(X)| ≤ C0h(X) for all X ≥ X0.

Theorem 1.1. Let n be a positive integer and let k be a number field of
degree m over Q. Moreover, let S be a finite set of places of k containing
the archimedean ones. Then, as H ≥ 2 tends to infinity,

N(OS(n, 1),H) = (2rπs)nB
(n)
k,SH

mn(logH)|S|−1

+

{
O(Hmn(logH)|S|−2) if |S| > 1,

O(Hmn−1) if |S| = 1.

The implicit constant in the error term depends on m, n and N(S).

Theorem 1.2. Let e be a positive integer and let k be a number field of
degree m over Q. Moreover, let S be a finite set of places of k containing
the archimedean ones. Then, as H ≥ 2 tends to infinity,

N(OS(1, e),H) = e|S|CrR,eC
s
C,eB

(e)
k,SH

me2(logH)|S|−1

+

{
O(Hme2(logH)|S|−2) if |S| > 1,

O(He(me−1)L) if |S| = 1,

where L = logH if (m, e) = (1, 2) and L = 1 otherwise. The implicit con-
stant in the error term depends on m, e and N(S).

As mentioned before, if S = S∞, then Theorem 1.1 reduces to (1.1),
although with a larger error term, and Theorem 1.2 to the result in [1].
However, for the case S∞ 6= S our results appear to be new.

As in [1], our proof relies on work of the author and Widmer [2] about
counting lattice points in definable sets in o-minimal structures. Our ap-
proach is similar to the one in [1], but in the case S = S∞ the result is more
straightforward, because the embedding of Ok in Rm is a lattice. On the
other hand, if S ) S∞, the embedding of OS is dense in Rm, and a more
elaborate proof is needed.

Let us apply our theorems to a few simple examples. Fix a prime num-
ber p. One can see, as an easy exercise and as a special case of both theorems,
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that the number of elements of Z[1/p] of height at most H is

2

log p

(
1− 1

p

)
H logH+Op(H).

Now, let d be a square-free positive integer with d ≡ 3 mod 4. Consider
k = Q(

√
d) and set S to consist of the place corresponding to the prime

ideal (2, 1 +
√
d), in addition to the two archimedean places. Then

N(OS(n, 1),H) =
2n(2n − 1)

dn/2 log 2
H2n(logH)2 +On(H2n logH).

Let again k = Q and suppose the non-archimedean places in S are associated
to the primes 2 and 3. Then

N(OS(1, 2),H) =
32

3 log 2 log 3
H4(logH)2 +O(H4 logH).

In [11], Masser and Vaaler observed that the limit as H →∞ of

N(k(1, e),H1/e)

N(k(e, 1),H)

is a rational number. Moreover, they asked if this can be extended to some
sort of reciprocity law, i.e., whether

lim
H→∞

N(k(n, e),H1/e)

N(k(e, n),H1/n)
∈ Q.

Analogously we notice that

lim
H→∞

N(OS(1, e),H1/e)

N(OS(e, 1),H)
= e

(
CR,e
2e

)r(CC,e
πe

)s
is a rational number depending only on e, r and s, as already pointed out
in [1] for the case S = S∞. As Masser and Vaaler did, one can ask again
whether

lim
H→∞

N(OS(n, e),H1/e)

N(OS(e, n),H1/n)
∈ Q.

2. Preliminaries. Let k be a number field of degree m over Q and let
Mk be the set of places of k. For v ∈Mk, we indicate by kv the completion
of k with respect to v. We write Qv for the completion of Q with respect to
the unique place of Q that lies below v. Moreover, we set dv = [kv : Qv] to
be the local degree of k at v.

Any v ∈ Mk corresponds either to a non-zero prime ideal pv of Ok or
to an embedding of k into C. In the first case v is called a finite or non-
archimedean place and we write v - ∞. In the second case v is called an
infinite or archimedean place and we write v |∞. We set, for v -∞,

|α|v = N(pv)
−ordpv (α)/dv
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for every α ∈ k \ {0}, where ordpv(α) is the power of pv in the factoriza-
tion of the principal fractional ideal αOk. Furthermore, |0|v = 0. If v |∞
corresponds to σv : k ↪→ C, we set

|α|v = |σv(α)|

for every α ∈ k, where | · | is the usual absolute value on C. The absolute
multiplicative Weil height H : kn → [1,∞) is defined by

(2.1) H(α1, . . . , αn) =
∏
v∈Mk

max{1, |α1|v, . . . , |αn|v}dv/m.

Note that for α ∈ k \ {0}, |α|v 6= 1 for finitely many v. Therefore, the
above product contains only finitely many terms different from 1. Moreover,
this definition is independent of the field containing the coordinates, and
therefore the height is defined on Qn. For properties of the Weil height we
refer to the first chapter of [4].

We conclude this section by introducing semialgebraic sets and stating
the Tarski–Seidenberg principle.

Definition 2.1. Let N and Mi, for i = 1, . . . , N , be positive integers.
A semialgebraic subset of Rn is a set of the form

N⋃
i=1

Mi⋂
j=1

{x ∈ Rn : fi,j(x) ∗i,j 0},

where fi,j ∈ R[X1, . . . , Xn] and the ∗i,j are either < or =.

Let A ⊆ Rn be a semialgebraic set. A function f : A → Rn′ is called
semialgebraic if its graph Γ (f) is a semialgebraic set of Rn+n′ .

If we identify C with R2, then the definitions of semialgebraic set and
function are extended to subsets of Cn and to functions of complex variables
in a natural way. We will need the following theorem, which is usually known
as the Tarski–Seidenberg principle.

Theorem 2.2 ([3, Theorem 1.5]). Let A ∈ Rn+1 be a semialgebraic set.
Then π(A) ∈ Rn is semialgebraic, where π : Rn+1 → Rn is the projection
map on the first n coordinates.

3. A generalization. In this section we formulate a theorem which will
be used later to derive Theorems 1.1 and 1.2.

In the following definition we consider functions whose domain is Rn+1

or Cn+1. We use the notation z to indicate a vector with entries in a
generic field, while x will be a vector with real coordinates. We are of-
ten going to identify a function f : Cn → R with f : R2n → R where if
x = (x1, . . . , x2n) ∈ R2n, f(x) = f(x1 + ix2, . . . , x2n−1 + ix2n).
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Definition 3.1. Let n be a positive integer. A semialgebraic distance
function (of dimension n) is a continuous function N from Rn+1 or Cn+1 to
the interval [0,∞) satisfying the following conditions:

(i) N(z) = 0 if and only if z is the zero vector;
(ii) N(wz) = |w|N(z) for any scalar w in R or in C;
(iii) N is a semialgebraic function.

Let r and s be non-negative integers, not both zero. A system N of r real
and s complex semialgebraic distance functions (of dimension n) is called
an (r, s)-system (of dimension n).

Let us fix a number field k with [k : Q] = m. Let r and s be, respec-
tively, the number of real and pairs of conjugate complex embeddings of k.
These induce r + s archimedean places of k, with respective completions
R or C. Given an (r, s)-system N of dimension n, we can associate to ev-
ery archimedean place v a semialgebraic distance function Nv on kn+1

v . We
will mostly use the alternative notation N1, . . . , Nr for the r real distance
functions and Nr+1, . . . , Nr+s for the s complex ones, and we set di = 1 for
i = 1, . . . , r, and di = 2 for i = r + 1, . . . , r + s. For the non-archimedean
places we set

Nv(z) = max{|z0|v, . . . , |zn|v}

for z = (z0, . . . , zn) ∈ kn+1
v . Now we can define, for α ∈ kn+1, a height

function associated to N ,

HN (α)m =
∏
v∈Mk

Nv(σv(α))dv ,

where σv is the embedding of k into kv corresponding to v, extended com-
ponentwise to kn+1.

Now, let ONS (H) be the set of a ∈ OnS with HN (1,a) ≤ H. We are

interested in obtaining an estimate for |ONS (H)| as H →∞.

Let us introduce some notation and impose some conditions on the func-
tions Ni in view of the application of this estimate. For i = 1, . . . , r + s, we
set Ñi(z) = Ni(1, z) and suppose that

(3.1) Ñi(z) ≥ 1

for every z ∈ Rn or Cn. We define the sets

(3.2) Zi(T ) = {z : Ñi(z) ≤ T},

and suppose that

(3.3) the Zi(T ) have volume pi(T ) for every T ≥ 1,

where pi(X) ∈ R[X] is a polynomial of degree din and leading coefficient Ci.
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Moreover, let

(3.4) CN ,k,S =
nr+s−12snm|S|−1

(|S|−1)!(
√
|∆k|)n

( r+s∏
i=1

Ci

) L∏
l=1

(
1

logN(pl)

(
1− 1

N(pl)n

))
.

Theorem 3.2. Let N be an (r, s)-system of dimension n, satisfying the
above hypotheses (3.1) and (3.3). Moreover, suppose S is a finite set of
places of k containing the archimedean ones. Then, for every H0 > 1, there
exists a positive C0 = C0(N ,N(S),H0) such that for every H ≥ H0,∣∣|ONS (H)| − CN ,k,SHmn(logH)|S|−1

∣∣ ≤ {C0Hmn(logH)|S|−2 if |S| > 1,

C0Hmn−1 if |S| = 1.

4. Proofs of Theorems 1.1 and 1.2. In this section we apply Theo-
rem 3.2 to prove Theorems 1.1 and 1.2. Let us start with the first one. We
choose our system N to consist of the max norm

Nv(z) = |z|∞ = max{|z0|, . . . , |zn|},

for every archimedean place v of k. These Nv clearly satisfy the definition of
semialgebraic distance function. The sets Zi(T ) defined in (3.2) have volume
(2T )n for i = 1, . . . , r and πnT 2n for i = r + 1, . . . , r + s, for every T ≥ 1.
Therefore, the hypotheses of Theorem 3.2 are satisfied.

Note that, for every a ∈ kn,

HN (1,a) =
∏
v

Nv(1, σv(a))dv/m =
∏
v

max{1, |a1|v, . . . , |an|v}dv/m = H(a).

Therefore HN is the usual absolute Weil height defined in (2.1). The claim
of Theorem 1.1 follows by applying Theorem 3.2 with H0 = 2.

Now let us prove Theorem 1.2. We choose N to consist of the Mahler
measure function

Ni(z0, . . . , zn) = M(z0X
n + z1X

n−1 + · · ·+ zn) =: M(z0, . . . , zn)

for every i = 1, . . . , r+s. Let us recall its definition. If f = z0X
d+z1X

d−1 +
· · ·+ zd is a non-zero polynomial of degree d with complex coefficients and
roots α1, . . . , αd, the Mahler measure of f is defined to be

(4.1) M(f) = |z0|
d∏

h=1

max{1, |αh|}.

Moreover, we set M(0) = 0.

In what follows we are going to consider the Mahler measure as a function
of the coefficients of a polynomial:

M : Rd+1 or Cd+1 → [0,∞), (z0, . . . , zd) 7→M(z0X
d+z1X

d−1 + · · ·+zd).
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Mahler [10, Lemma 1] proved that such an M is continuous and it is
easy to see that it satisfies conditions (i) and (ii) of Definition 3.1. We now
prove that it is a semialgebraic function.

Lemma 4.1. The Mahler measure M , as a function of the coefficients of
a polynomial, is a semialgebraic function.

Proof. We start by proving the claim for the complex Mahler measure.
We need to show that, for every positive integer n, the function

Mn : R2(n+1) → [0,∞),

(x0, . . . , x2n+1) 7→M((x0 + ix1)Xn + · · ·+ (x2n + ix2n+1)),

is semialgebraic, i.e., its graph

Γ (Mn) = {(x0, . . . , x2n+1, t) ∈ R2(n+1)+1 : M(x0, . . . , x2n+1) = t}
is a semialgebraic set.

We prove this by induction on n. For n = 1,

Γ (M1) =
{

(x0, x1, x2, x3, t) ∈ R5 : max{x2
0 + x2

1, x
2
2 + x2

3} = t2, t ≥ 0
}

is clearly semialgebraic. Now suppose n > 1. Let Γ (Mn) = A ∪B, where

A = {(x0, . . . , x2n+1, t) ∈ Γ (Mn) : x2
0 + x2

1 6= 0},
B = {(x0, . . . , x2n+1, t) ∈ Γ (Mn) : x0 = x1 = 0}.

By the inductive hypothesis, B is a semialgebraic set since B = {(0, 0)} ×
Γ (Mn−1). Now let A′ be the set of points

(x0, . . . , x2n+1, t, α1, β1, . . . , αn, βn) ∈ R2(n+1)+1+2n

such that x2
0 + x2

1 6= 0, αh + iβh for h = 1, . . . , n are the roots of
(x0 + ix1)Xn + · · ·+ (x2n + ix2n+1), and

(4.2) |x0 + ix1|
n∏
h=1

max{1, |αh + iβh|} = t.

This set A′ is defined by the symmetric functions that link the coefficients
of a polynomial with its roots and by (4.2). It is therefore semialgebraic.
Since A is the projection of A′ on the first 2(n+ 1)+ 1 coordinates, it is also
semialgebraic by the Tarski–Seidenberg principle (Theorem 2.2). We have
the claim for the complex Mahler measure.

For the real one it is sufficient to note that its graph is nothing but the
projection that forgets the coordinates x1, x3, . . . , x2n−1, x2n+1 of

Γ (Mn) ∩ {(x0, . . . , x2n+1, t) : x2j+1 = 0 for j = 0, . . . , n}.
Since M satisfies the three conditions of Definition 3.1, it is a semialge-

braic distance function. Moreover, in [6], Chern and Vaaler calculated the
volume of the sets of the form (3.2) for the real and the complex monic
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Mahler measure. By (1.16) and (1.17) of [6], for every T ≥ 1 the volumes of
the sets

{(z1, . . . , zn) ∈ Rn : M(1, z1, . . . , zn) ≤ T},
{(z1, . . . , zn) ∈ Cn : M(1, z1, . . . , zn) ≤ T}

are, respectively, polynomials pR(T ) and pC(T ) of degree n and 2n and
leading coefficients

CR,n = 2n−M
( M∏
j=1

(
2j

2j + 1

)n−2j)nM
M !

(1),

with M = bn−1
2 c, and

CC,n = πn
nn

(n!)2
.

We have just shown that N satisfies the hypothesis of Theorem 3.2,
therefore for every H0 > 1 there exists a positive C0 = C0(m,n,N(S),H0),
such that for every H ≥ H0,

(4.3)
∣∣|ONS (H)| − CrR,nCsC,nB

(n)
k,SH

mn(logH)|S|−1
∣∣

≤
{
C0Hmn(logH)|S|−2 if |S| > 1,

C0Hmn−1 if |S| = 1,

where B
(n)
k,S is the constant defined in (1.2).

Let us reformulate these considerations in terms of polynomials. We pro-
ceed in a similar way to [1, Section 2]. For any positive integer n we fix the
system Nn of dimension n to consist of Mahler measure distance functions
and we define

Mk : k[X]→ [0,∞), a0X
n + a1X

n−1 + · · ·+ an 7→ HNn(a0, a1, . . . , an).

Therefore we can write

Mk(a0, . . . , an)

=
(r+s∏
i=1

M
(
σi(a0)Xn + · · ·+ σi(an)

)di/m)∏
v-∞

max{|a0|v, . . . , |an|v}dv/m.

Let Mk,S(n,H) be the set of monic polynomials f ∈ OS [X] of degree n
with Mk(f) ≤ H. Clearly |ONS (H)| = |Mk,S(n,H)| and (4.3) is an estimate
for such cardinality. Fixing m, n, |S| and an |S|-tuple of prime powers, and
letting k vary among all number fields of degree m and S among the sets
of places of the chosen number field with the prescribed set of norms of the
non-archimedean places, the constants CrR,n, CsC,n and B

(n)
k,S are bounded and

therefore there exists a constant G
(n)
m,N(S), depending on n, m and N(S), such

(1) There is a misprint in (1.16) of [6]: 2−N should read 2−M .
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that

|Mk,S(n,H)| ≤ G(n)
m,N(S)H

mn(logH+ 1)|S|−1(4.4)

for every H ≥ 1.
Note that, for every α ∈ k,

(4.5) Mk(X − α) =
∏
v∈Mk

max{1, |α|v}dv/m = H(α).

It is clear from the definition of Mahler measure (4.1) that

M(fg) = M(f)M(g),

and therefore, by [4, Lemma 1.6.3], one can see that

Mk(fg) = Mk(f)Mk(g)

for every f, g ∈ k[X].

Now we want to restrict to monic f irreducible over k. Let M̃k,S(n,H)
be the set of monic irreducible polynomials f ∈ OS [X] of degree n with
Mk(f) ≤ H, i.e., the polynomials inMk,S(n,H) that are irreducible over k.

Corollary 4.2. For every H0 > 1 there exists a positive D0, depending
on n, m, N(S) and H0, such that for every H ≥ H0 we have∣∣|M̃k,S(n,H)| − CrR,nCsC,nB

(n)
k,SH

mn(logH)|S|−1
∣∣

≤
{
D0Hmn(logH)|S|−2 if |S| > 1,

D0Hmn−1L if |S| = 1,

where L = logH if (m,n) = (1, 2) and L = 1 otherwise.

Proof. For n = 1, there is nothing to prove. Suppose n > 1. We show
that, up to a constant, the number of all monic reducible f ∈ OS [X] of
degree n with Mk(f) ≤ H is not larger than the right hand side of (4.3),
except for the case |S| = 1 and (m,n) = (1, 2).

Consider all f = gh ∈ Mk,S(n,H) with g, h ∈ OS [X] monic of degree
a and b respectively, with 0 < a ≤ b < n and a + b = n. We have 1 ≤
Mk(g),Mk(h) ≤ H because g and h are monic. Thus, there exists a positive
integer d such that 2d−1 ≤Mk(g) < 2d. Note that d must satisfy

(4.6) 1 ≤ d ≤ logH
log 2

+ 1 ≤ 2 logH+ 1.

Since Mk is multiplicative,

Mk(h) =
Mk(f)

Mk(g)
≤ 21−dH.

Using (4.4) and noting that 2d ≤ 2H, we can see that there are at most

G
(a)
m,N(S)(2

d)ma(log 2d + 1)|S|−1 ≤ G(a)
m,N(S)(2

d)ma(logH+ 2)|S|−1
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possibilities for g and

G
(b)
m,N(S)(2

1−dH)mb(log(21−dH)+1)|S|−1 ≤ G(b)
m,N(S)(2

1−dH)mb(logH+2)|S|−1

possibilities for h. Therefore, we have at most

H
(n)
m,N(S)H

mb2md(a−b)(logH+ 2)2(|S|−1)(4.7)

possibilities for gh with Mk(gh) ≤ H and 2d−1 ≤ Mk(g) < 2d, where

H
(n)
m,N(S) is a real constant depending on n, m and N(S).

If a = b = n/2, then (4.7) is

H
(n)
m,N(S)H

mn/2(logH+ 2)2(|S|−1).

Summing over all d, 1 ≤ d ≤ b2 logHc+1 (recall (4.6)), gives an extra factor
2 logH+ 1. Therefore, when a = b, there are at most

H
(n)
m,N(S)H

mn/2(2 logH+ 2)2|S|−1

possibilities for f = gh, with Mk(f) ≤ H. If |S| > 1 or (m,n) 6= (1, 2),
this has smaller order than the right hand side of (4.3), since mn > 2
implies mn/2 < mn − 1. In the case |S| = 1 and (m,n) = (1, 2), we get

H
(n)
m,N(S)H(2 logH+ 2) and we need an additional logarithm factor.

For a < b, summing 2md(a−b) over all d, 1 ≤ d ≤ b2 logHc+ 1 =: D, we
get

D∑
d=1

(2m(a−b))d ≤
D∑
d=1

2−d ≤ 1.

Thus, recalling b ≤ n− 1, if a < b there are at most

H
(n)
m,N(S)H

m(n−1)(logH+ 2)2(|S|−1)

possibilities for f = gh with Mk(f) ≤ H. This is again not larger than the
right hand side of (4.3).

The last step of the proof links such irreducible polynomials with their
roots, and Mk with the height of these roots. Recall that S is the set of
places of k that lie above the places in S.

Lemma 4.3. An algebraic number β ∈ OS has degree e over k and
H(β) ≤ H if and only if it is a root of a monic irreducible polynomial
f ∈ OS [X] of degree e with Mk(f) ≤ He.

Proof. If an algebraic number β ∈ OS has degree e over k, then it is
clearly a root of a monic irreducible polynomial f ∈ OS [X] of degree e, and
vice versa. We claim that

H(β)e = Mk(f).
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The function Mk is independent of the choice of k since it is possible

to define an absolute MQ over Q[X] that, restricted to any k[X], coincides
with Mk. To see this one can simply imitate the proof of the fact that
the Weil height is independent of the field containing the coordinates (see
[4, Lemma 1.5.2]).

Suppose f = (X − α1) · · · (X − αe). By (4.5) we have

MQ(αi)(X − αi) = H(αi),

and the αi have the same height because they are conjugate (see [4, Propo-
sition 1.5.17]). Finally, by the multiplicativity of Mk we can see that

Mk(f) = MQ(f) =

e∏
i=1

MQ(X − αi) = H(αj)
e

for any αj root of f .

This implies that |N(OS(1, e),H)|= e|M̃k,S(e,He)| because there are e
different β ∈OS with the same minimal polynomial over k. For everyH0 > 1,
there exists a positive E0 =E0(m, e,N(S),H0) such that, for every H≥H0,∣∣N(OS(1, e),H)− e|S|CrR,eCsC,eB

(e)
k,SH

me2(logH)|S|−1
∣∣

≤

{
E0Hme

2
(logH)|S|−2 if |S| > 1,

E0He(me−1)L if |S| = 1,

where L = logH if (m, e) = (1, 2) and L = 1 otherwise. We obtain Theo-
rem 1.2 by choosing H0 = 2.

5. Counting lattice points. We start this section by introducing the
counting theorem that will be used to prove Theorem 3.2. The principle
goes back to Davenport [7] and was developed by several authors. In a
previous work [2], the author and Widmer formulated a counting theorem
that relies on Davenport’s Theorem and uses o-minimal structures. We do
not need Theorem 1.3 of [2] in its full generality as we count lattice points
in semialgebraic sets.

For a semialgebraic set Z ⊆ Rn+n′ , we call Zt = {x ∈ Rn : (x, t) ∈ Z}
the fiber of Z lying above t ∈ Rn′ and Z a semialgebraic family. It is clear
that the fibers Zt are semialgebraic subsets of Rn. Let Λ be a lattice of Rn
with determinant detΛ and let λi = λi(Λ), for i = 1, . . . , n, be the successive
minima of Λ with respect to the unit ball B0(1), i.e.,

λi = inf{λ : B0(λ) ∩ Λ contains i linearly independent vectors}.
The following theorem is a special case of [2, Theorem 1.3].

Theorem 5.1. Let Z ⊂ Rn+n′ be a semialgebraic family and suppose
the fibers Zt are bounded. Then there exists a constant cZ ∈ R, depending
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only on the family, such that∣∣∣∣|Zt ∩ Λ| −
Vol(Zt)

detΛ

∣∣∣∣ ≤ n−1∑
j=0

cZ
Vj(Zt)

λ1 · · ·λj
,

where Vj(Zt) for j > 0 is the sum of the j-dimensional volumes of the or-
thogonal projections of Zt on every j-dimensional coordinate subspace of Rn,
and V0(Zt) = 1.

Let us introduce the family we want to apply Theorem 5.1 to. We fix
an (r, s)-system N of dimension n consisting of r real and s complex semi-

algebraic distance functions. Recall that we have defined Ñi(z) = Ni(1, z).

Moreover, we see the complex Ñi as functions from R2n, i.e.,

Ñi(x1, x2, . . . , x2n−1, x2n) = Ñi(z1, . . . , zn)

for (x1, x2, . . . , x2n−1, x2n) = (<(z1),=(z1), . . . ,<(zn),=(zn)).
Recall that di = 1 for i = 1, . . . , r, and di = 2 for i = r + 1, . . . , r + s,

and m = r + 2s. Let

(5.1) Z =
{

(x1, . . . ,xr+s, t) ∈ Rn(r+2s)+1 :
r+s∏
i=1

Ñi(xi)
di ≤ t

}
,

where xi ∈ Rdin.
We need to show that Z is a semialgebraic family and that the fibers Zt

are bounded for every t ∈ R.

Lemma 5.2. The set Z defined in (5.1) is semialgebraic.

Proof. First note that, since the Ni are semialgebraic functions, also the
Ñi are semialgebraic. Indeed, one can get Γ (Ñi) by intersecting Γ (Ni) with
an appropriate affine subspace. Define

S(i) = {(x1, . . . ,xr+s, t, t1, . . . , tr+s) ∈ Rmn × R1+r+s : Ñi(xi) = ti}
for i = 1, . . . , r + s, and

A =

{
(x1, . . . ,xr+s, t, t1, . . . , tr+s) ∈ Rmn × R1+r+s :

r+s∏
i=1

tdii ≤ t
}
.

All these sets are clearly semialgebraic. Let π be the projection map of
Rmn+1+r+s to the first mn+ 1 coordinates. By the Tarski–Seidenberg prin-
ciple (Theorem 2.2) the set

B = π
(⋂

i

S(i) ∩A
)

is semialgebraic. A point (x1, . . . ,xr+s, t) belongs to B if and only if there

are t1, . . . , tr+s such that Ñi(xi) = ti for every i and
∏r+s
i=1 t

di
i ≤ t, i.e.,∏r+s

i=1 Ñi(xi)
di ≤ t. Therefore B = Z, and we have proved the claim.
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Since the Ni are bounded distance functions, there exist positive real
constants δi such that

δi|z|∞ ≤ Ni(z)

for every z in Rn+1 or Cn+1 (see [5, Lemma 2, p. 108)]. We define γi =
max{δi : δi|z|∞ ≤ Ni(z)} and N ′i(z) = γi|z|∞. As before, we use the nota-

tion Ñ ′i(z) for N ′i(1, z).

Let N ′ be the (r, s)-system consisting of N ′i(z) = γi|z|∞ for every i =

1, . . . , r + s. Each (x1, . . . ,xr+s, t) such that
∏r+s
i=1 Ñi(xi)

di ≤ t satisfies∏r+s
i=1 Ñ

′
i(xi)

di ≤ t. Therefore, if

Z ′ =
{

(x1, . . . ,xr+s, t) ∈ Rmn+1 :
r+s∏
i=1

Ñ ′i(xi)
di ≤ t

}
,

then Z ⊆ Z ′. For every x ∈ Rdin we have, by definition, Ñ ′i(x) ≥ γi and
therefore, for every (x1, . . . ,xr+s) ∈ Z ′t,

Ñ ′i(xi)
di ≤ t∏

j 6=i γ
dj
j

.

This implies

|xi|di∞ ≤
t∏
j γ

dj
j

for every i = 1, . . . , r+s. We have just shown that the fibers Z ′t, and therefore
Zt, are bounded.

From now on we use the notation Z(T ) for ZT . Recall that Vj(Z(T )) is
the sum of the j-dimensional volumes of the orthogonal projections of Z(T )
on every j-dimensional coordinate subspace of Rn and V0(Z(T )) = 1.

Since Z ⊆ Z ′, we have Vj(Z(T )) ≤ Vj(Z
′(T )). By Theorem 5.1 there

exists a constant cZ , depending only on Z, such that

(5.2)

∣∣∣∣|Z(T ) ∩ Λ| − Vol(Z(T ))

detΛ

∣∣∣∣ ≤ mn−1∑
j=0

cZ
Vj(Z

′(T ))

λ1 · · ·λj

for every T ∈ R.

We have to calculate Vol(Z(T )) and we need upper bounds for Vj(Z
′(T )).

Recall we have supposed that, for every i = 1, . . . , r + s, Ñi(x) ≥ 1 and
the volume of the set Zi(T ) defined in (3.2) is pi(T ) for every T ≥ 1, where
pi is a polynomial of degree din and leading coefficient Ci.

Lemma 5.3. Let q = r+ s− 1. Under the hypotheses above we have, for
every T ≥ 1,

Vol(Z(T )) = Q(T 1/2, log T ),
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where Q(X,Y ) ∈ R[X,Y ], degX Q = 2n, degY Q = q and the coefficient of

X2nY q is (nq/q!)
∏q+1
i=1 Ci.

Proof. This is a special case of [1, Lemma 5.2].

The Vj(Z
′(T )) were already computed in [1].

Lemma 5.4. For each j = 1, . . . ,mn − 1, there exists a polynomial
Pj(X,Y ) in R[X,Y ], with degX Pj ≤ 2n, degY Pj ≤ q and the coefficient of
X2nY q being 0, such that, for every T ≥ 1, we have

Vj(Z
′(T )) = Pj(T

1/2, log T ).

Proof. See [1, Lemma 5.4].

For an integer u, we will use the notation

X(u) =

{
Xu for u > 0,

1 for u ≤ 0,

in order to avoid possible appearances of 00, for instance in the following
proposition, where we must consider (log T )q for T ≥ 1 and q can be 0.

Moreover, for Λ a lattice, we define

D(Λ) =
1

detΛ
+

mn−1∑
j=0

1

λ1 · · ·λj
.

Proposition 5.5. Let N be an (r, s)-system of dimension n that sat-
isfies the above hypotheses on the volumes of the sets Zi(T ) and let Λ be
a lattice. There exist two positive real constants E and E′, depending only
on N , such that, for every T ≥ 1,∣∣∣∣|Z(T ) ∩ Λ| −

nq
∏q+1
i=1 Ci

q! detΛ
Tn(log T )(q)

∣∣∣∣
≤
{
D(Λ)(ETn(log T )(q−1) + E′) if q ≥ 1,

D(Λ)ETn−1/m if q = 0.

Moreover, if T < 1, then Z(T ) = ∅.

Proof. For T < 1, Z(T ) = ∅ since we have supposed Ñi(x) ≥ 1 for
every x. Suppose T ≥ 1.

We start with the case q = 0. In this case, our system N consists only
of one function N1 that can be either real (d1 = m = 1) or complex
(d1 = m = 2). In any case, the volume of the set Z(T ) ⊆ Rmn equals
p1(T 1/m) for every T ≥ 1, where p1 has degree mn and leading coefficient C1.

Fix a j, 1 ≤ j ≤ mn − 1. Any projection of Z ′(T ) to a j-dimensional
coordinate subspace has volume at most FjT

j/m for some positive real con-
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stant Fj . Therefore, there exists an E′′ such that

Vj(Z
′(T )) ≤ E′′Tn−1/m

for every T ≥ 1, and by (5.2) we have the claim if q = 0.
Suppose q > 0. By (5.2) and Lemmas 5.3 and 5.4, we have the following

inequality, for every T ≥ 1:∣∣∣∣|Z(T ) ∩ Λ| −
nq
∏q+1
i=1 Ci

q! detΛ
Tn(log T )(q)

∣∣∣∣ ≤ D(Λ)P (T 1/2, log T )

for some polynomial P (X,Y ) ∈ R[X,Y ] with degX P ≤ 2n, degY P ≤ q,
whose coefficients depend on N and the coefficient of X2nY q is 0. Since P
satisfies such conditions, there exists a positive E such that

P (T 1/2, log T ) ≤ ETn(log T )(q−1)

for every T ≥ 3. For T ∈ [1, 3], the function of T given by P (T 1/2, log T ) is
bounded, say by E′. Then

P (T 1/2, log T ) ≤ ETn(log T )(q−1) + E′

for every T ≥ 1. Clearly, E and E′ depend only on the coefficients of P and
therefore only on N .

6. Proof of Theorem 3.2. Recall that we have fixed a number field
k of degree m over Q. Let σ1, . . . , σr be the real embeddings of k and
σr+1, . . . , σr+2s be the complex ones, indexed in such a way that σi = σi+s
for every i = r + 1, . . . , r + s. For a = (a1, . . . , an) ∈ kn, we set σi(a) =
(σi(a1), . . . , σi(an)) ∈ Rn for i = 1, . . . , r, and σi(a) = (<(σi(a1)),=(σi(a1)),
. . . ,<(σi(an)),=(σi(an))) ∈ R2n for i = r + 1, . . . , r + s.

Let A be a non-zero fractional ideal of k. The image of A via the embed-
ding σ : a ↪→ (σ1(a), . . . , σr+s(a)) is a lattice in Rm. If we set ΛA = τ(An),
where τ(a) = (σ1(a), . . . , σr+s(a)) for a ∈ kn, then ΛA is a lattice in Rmn.
Recall that N(A) denotes the norm of A and ∆k the discriminant of k.

Lemma 6.1. We have

detΛA = (2−sN(A)
√
|∆k|)n,

and the first successive minimum of ΛA with respect to the Euclidean distance
is λ1 ≥ N(A)1/m.

Proof. In [11] this lemma is stated for integral ideals [11, Lemma 5]. The
same arguments work also for non-zero fractional ideals.

To prove Theorem 3.2 we need an estimate for the cardinality of ONS (H),
i.e., the set of points a ∈ OnS such that HN (1,a) ≤ H.

Recall that we set di = 1 for i = 1, . . . , r, and di = 2 for i = r + 1,
. . . , r + s. As in Section 1, Sfin is the set of non-archimedean places in S.
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First suppose Sfin = ∅; then OS = Ok and |S| = q + 1 = r + s. Note
that, if a is a vector with integer coordinates, its non-archimedean absolute
values are smaller than or equal to 1. Then

HN (1,a) =
∏
v∈Mk

Nv(1, σv(a))dv/m =
r+s∏
i=1

Ñi(σi(a))di/m

for every a ∈ Onk . Therefore, the number of a ∈ Onk such that HN (1,a) ≤ H
is the number of lattice points of ΛOk

= τ(Onk ) in Z(Hm). By Lemma 6.1,

detΛOk
= (2−s

√
|∆k|)n and λ1 ≥ 1. Thus, D(ΛOk

) ≤ mn+ 2sn. Moreover,
for every H0 > 1 there exists a C0 = C0(N ,H0) such that, if q ≥ 1,

(mn+ 2sn)(EHmn(logHm)(q−1) + E′) ≤ C0Hmn(logH)(q−1)

for every H ≥ H0 and, in case q = 0, (mn + 2sn)E ≤ C0. The claim of
Theorem 3.2 follows by applying Proposition 5.5.

From now on, to avoid confusion between Cartesian powers and powers
of an ideal with respect to ideal multiplication, we denote the latter by A?(d)

for a non-zero fractional ideal A and an integer d.

Now, suppose Sfin = {v1, . . . , vL}, with L > 0. In this case we cannot
apply Proposition 5.5 to τ(OnS) directly because it is dense in Rmn.

Recall that vl corresponds to the prime ideal pl of Ok. Let IS be the set
of non-zero integral ideals A in Ok which are products of the prime ideals

we fixed, i.e., A = p
?(g1)
1 . . . p

?(gL)
L for some non-negative integers g1, . . . , gL.

An a ∈ kn is in OnS if and only if there exists an ideal A ∈ IS such that

au ∈ A?(−1) for every u= 1, . . . , n, i.e., τ(a) = (σ1(a), . . . , σr+s(a))∈ΛA?(−1) ,
which is a lattice in Rmn. We will therefore apply Proposition 5.5 to lattices
of this form and then combine the estimates obtained.

We set

Vk,N =
nq2sn

q!(
√
|∆k|)n

q+1∏
i=1

Ci.

For a non-zero integral ideal A and T > 0, let Z(A, T ) denote the set of
a ∈ kn such that τ(a) ∈ ΛA?(−1) ∩ Z(Tm).

Lemma 6.2. There exist positive constants F and F ′, depending only
on N , such that, for T ≥ 1 and every non-zero integral ideal A, we have∣∣|Z(A, T )| − Vk,NN(A)nTmn(log Tm)(q)

∣∣
≤
{
N(A)n(FTmn(log Tm)(q−1) + F ′) if q ≥ 1,

N(A)nFTmn−1 if q = 0.

Moreover, if T < 1, then Z(A, T ) = ∅.
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Proof. Note that, by Lemma 6.1, the first successive minimum of ΛA?(−1)

is greater than or equal to N(A)−1/m. Since N(A) is a positive integer, we
have

j∏
i=1

λi ≥ N(A)−j/m ≥ N(A)−(mn−1)/m = N(A)−n+1/m ≥ N(A)−n

for every j = 1, . . . ,mn − 1. Moreover, |∆k| ≥ 1. The claim follows from
Proposition 5.5 and Lemma 6.1, after noting that

D(ΛA?(−1)) ≤ mnN(A)n +
2snN(A)n

(
√
|∆k|)n

≤ N(A)n(mn+ 2sn).

We fix a T ≥ 1. For a non-zero integral ideal A, let Z∗(A, T ) be the sub-
set of Z(A, T ) consisting of the points a such that, for every B strictly
dividing A, there is a u ∈ {1, . . . , n} such that au 6∈ B?(−1). In other
words, a corresponds to a lattice point of ΛA?(−1) that is not contained
in any sublattice of the form ΛB?(−1) where B is a strict divisor of A. We
have

|Z(A, T )| =
∑
B|A

|Z∗(B, T )|.

If µk is the Möbius function for the non-zero ideals of Ok, the Möbius in-
version formula implies that

|Z∗(A, T )| =
∑
B|A

µk(B)|Z(AB?(−1), T )|.

Lemma 6.2 gives us an estimate for |Z∗(A, T )|, for every T ≥ 1:

(6.1)
∣∣∣|Z∗(A, T )| − Vk,N

∑
B|A

µk(B)N(AB?(−1))nTmn(log Tm)(q)
∣∣∣

≤

{∑
B|A |µk(B)|N(AB?(−1))n(FTmn(log Tm)(q−1) + F ′) if q≥ 1,

F
∑

B|A |µk(B)|N(AB?(−1))nTmn−1 if q= 0,

and Z∗(A, T ) = ∅ if T < 1.

Recall that ONS (H) is the set of points a ∈ OnS with HN (1,a) ≤ H.

Lemma 6.3. For every H ≥ 1 we have

(6.2) |ONS (H)| =
∑
A∈IS ,

N(A)−1Hm≥1

|Z∗(A,N(A)−1/mH)|.
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Proof. Let A = p
?(g1)
1 . . . p

?(gL)
L and recall dvl = [kvl : Qvl ] is the local de-

gree of k at vl. Every point a ∈ Z∗(A, T ) is such that maxu∈{1,...,n} |au|
dvl
vl =

N(pl)
gl for every l = 1, . . . , L, and maxu∈{1,...,n} |au|v ≤ 1 for all v 6∈ S. This

means that every a ∈ Z∗(A, T ) satisfies∏
v-∞

max
u
{1, |au|v}dv = N(A),

and thus

HN (1,a) = N(A)1/m
r+s∏
i=1

Ñi(σi(a))di/m ≤ N(A)1/mT.

Therefore, a ∈ ONS (H) if and only if there exists an A ∈ IS such that

a ∈ Z∗(A,N(A)−1/mH). Since such an A is unique and recalling that, if
T < 1, then Z∗(A, T ) is empty, we obtain the claim.

Let IS(T ) be the set of ideals in IS with norm not exceeding T and recall
that the norm is multiplicative. Combining (6.2) with (6.1), we see that∣∣∣∣|ONS (H)| − Vk,N

∑
A∈IS(Hm)

∑
B|A

µk(B)

N(B)n
Hmn

(
log

(
Hm

N(A)

))(q)∣∣∣∣
is smaller than or equal to∑

A∈IS(Hm)

∑
B|A

|µk(B)|
N(B)n

(
FHmn

(
log

(
Hm

N(A)

))(q−1)

+ F ′N(A)n
)

if q ≥ 1, and

F
∑

A∈IS(Hm)

∑
B|A

|µk(B)|
N(B)n

N(A)1/mHmn−1

if q = 0, for every H ≥ 1.

Now, let

Ψ (1)(A) =
∑
B|A

µk(B)

N(B)n
and Ψ (2)(A) =

∑
B|A

|µk(B)|
N(B)n

.

Then

(6.3)

∣∣∣∣|ONS (H)| − Vk,NHmn
∑

A∈IS(Hm)

Ψ (1)(A)

(
log

(
Hm

N(A)

))(q)∣∣∣∣
≤


∑

A∈IS(Hm)

Ψ (2)(A)

(
FHmn

(
log

(
Hm

N(A)

))(q−1)

+ F ′N(A)n
)

if q ≥ 1,

FHmn−1
∑

A∈IS(Hm) Ψ
(2)(A)N(A)1/m if q = 0.
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Let K be a non-negative integer. We set

L(h)
S (H,K) =

∑
A∈IS(Hm)

Ψ (h)(A)

(
log

(
Hm

N(A)

))(K)

for h = 1, 2. Recall that we have defined N(S) = (N(p1), . . . ,N(pL)), and
let

F
(h)
l =

Ψ (h)(pl)

logN(pl)
.

In the next lemma we allow Sfin to be empty as the base step of induction.

Lemma 6.4. For every non-negative integer K, there exists a positive
constant UK,N(S), depending only on K and N(S), such that for h = 1, 2
and for every H ≥ 1,∣∣∣∣L(h)

S (H,K)−
( L∏
l=1

F
(h)
l

)( K+L∏
i=K+1

1

i

)
(logHm)(K+L)

∣∣∣∣
≤ UK,N(S)(logHm + 1)(K+L−1).

Proof. We proceed by induction on the cardinality of Sfin. Clearly, we

can define L(h)
S′ (H,K) and IS′ for S′ = S \ {vL}.

If Sfin is empty, i.e. L = 0, then IS(Hm) = {Ok} and L(h)
S (H,K) =

(logHm)(K) for every H ≥ 1.

Now suppose Sfin has cardinality L > 0. The sum over all A ∈ IS(Hm)
can be viewed as consisting of two sums: the first over all B ∈ IS′(Hm), and

the second over all non-negative integers gL with N(p
?(gL)
L ) ≤ HmN(B)−1.

For typographical convenience we set

A(B) =

⌊
log(HmN(B)−1)

logN(pL)

⌋
and R = IS′(Hm).

We have

L(h)
S (H,K) =

∑
B∈R

A(B)∑
gL=0

Ψ (h)(Bp
?(gL)
L )

(
log

(
Hm

N(B)

)
− gL logN(pL)

)(K)

=
∑
B∈R

A(B)∑
gL=1

[
Ψ (h)(Bp

?(gL)
L )

×
K∑
i=0

(−1)i
(
K

i

)
(logN(pL))igiL

(
log

(
Hm

N(B)

))(K−i)]
+ L(h)

S′ (H,K).

Using the definitions of Ψ (h), it is easy to see that 1/2 ≤ Ψ (h)(pl) ≤ 3/2 for
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every l and, if gL ≥ 1,

(6.4) Ψ (h)(Bp
?(gL)
L ) = Ψ (h)(BpL) = Ψ (h)(B)Ψ (h)(pL) > 0.

Therefore,

(6.5) L(h)
S (H,K) = Ψ (h)(pL)

K∑
i=0

[
(−1)i

(
K

i

)
(logN(pL))i

×
∑
B∈R

Ψ (h)(B)

(
log

(
Hm

N(B)

))(K−i) A(B)∑
gL=1

giL

]
+ L(h)

S′ (H,K).

By Faulhaber’s formula, for every i = 0, . . . ,K, we have

A(B)∑
gL=1

giL −
1

i+ 1

⌊
log(HmN(B)−1)

logN(pL)

⌋i+1

= Qi

(⌊
log(HmN(B)−1)

logN(pL)

⌋)
,

where Qi is a polynomial of degree i (except Q0 = 0) whose coefficients
depend only on i. Then∣∣∣∣A(B)∑

gL=1

giL −
1

i+ 1

(
log(HmN(B)−1)

logN(pL)

)i+1∣∣∣∣ ≤ Q′i(log

(
Hm

N(B)

))
,

where Q′i is a polynomial of degree at most i whose coefficients depend on
i and N(pL). Finally, after noting that

K∑
i=0

(−1)i
(
K

i

)
1

i+ 1
=

1

K + 1
,

by (6.5), we can derive the following inequality:∣∣∣∣L(h)
S (H,K)−

F
(h)
L

K + 1

∑
B∈R

Ψ (h)(B)

(
log

(
Hm

N(B)

))(K+1)∣∣∣∣
≤ L(h)

S′ (H,K) +
∑
B∈R

Ψ (h)(B)Q

(
log

(
Hm

N(B)

))
,

where Q is a polynomial of degree at most K whose coefficients depend only
on K and N(pL). Therefore, we have∣∣∣∣L(h)

S (H,K)−
F

(h)
L

K + 1
L(h)
S′ (H,K + 1)

∣∣∣∣ ≤ K∑
i=0

biL(h)
S′ (H, i),

where the bi are real coefficients again depending on K and N(pL). Now, by
the inductive hypothesis, there exist UK+1,N(S′) and U ′i,N(S′) for i = 0, . . . ,K,
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such that∣∣∣∣L(h)
S′ (H,K + 1)−

(L−1∏
l=1

F
(h)
l

)( K+L∏
i=K+2

1

i

)
(logHm)(K+L)

∣∣∣∣
≤ UK+1,N(S′)(logHm + 1)(K+L−1)

and

L(h)
S′ (H, i) ≤ U ′i,N(S′)(logHm + 1)(i+L−1)

for every i = 0, . . . ,K. The claim follows easily.

Lemma 6.5. There exists a real constant Vm,N(S), depending only on m
and N(S), such that∑

A∈IS(Hm)

Ψ (2)(A)N(A)1/m ≤ Vm,N(S)H(logH+ 1)(L−1)

for every H ≥ 1.

Proof. We proceed by induction on the cardinality of Sfin, as before. If
Sfin is empty, then

∑
A∈IS(Hm) Ψ

(2)(A)N(A)1/m = 1 and the claim holds.

Now suppose Sfin = {v1, . . . , vL} with L > 0, and again p1, . . . , pL are the
prime ideals associated to the places in Sfin. Let S′ = S \ {vL} and again

A(B) =

⌊
log(HmN(B)−1)

logN(pL)

⌋
.

Note that Ψ (2)(pL) ≤ 2 and then, by (6.4), Ψ (2)(Bp
?(gL)
L ) ≤ 2Ψ (2)(B). Hence

∑
A∈IS(Hm)

Ψ (2)(A)N(A)1/m ≤
∑

B∈IS′ (Hm)

2Ψ (2)(B)N(B)1/m

A(B)∑
gL=0

N(pL)gL/m

= 2
∑

B∈IS′ (Hm)

Ψ (2)(B)N(B)1/m N(pL)(A(B)+1)/m − 1

N(pL)1/m − 1

≤ 2N(pL)1/m

N(pL)1/m − 1

∑
B∈IS′ (Hm)

Ψ (2)(B)N(B)1/m
(
N(pL)

log(HmN(B)−1)
logN(pL)

)1/m
=

2N(pL)1/m

N(pL)1/m − 1

∑
B∈IS′ (Hm)

Ψ (2)(B)N(B)1/m

(
Hm

N(B)

)1/m

≤ 2N(pL)1/m

N(pL)1/m − 1
HL(2)

S′ (H, 0).

The claim follows by applying Lemma 6.4.

Now we are ready to prove Theorem 3.2.
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We already dealt with the case Sfin = ∅. Suppose Sfin 6= ∅. By (6.3) we
have∣∣|ONS (H)| − Vk,NHmnL

(1)
S (H, q)

∣∣
≤

{
FHmnL(2)

S (H, q − 1) + F ′HmnL(2)
S (H, 0) if q ≥ 1,

FHmn−1
∑

A∈IS(Hm) Ψ
(2)(A)N(A)1/m if q = 0.

Note that L ≤ |S| − 1, and if q ≥ 1, then L ≤ |S| − 2. Moreover,

F
(1)
l =

Ψ (1)(pl)

logN(pl)
=

1

logN(pl)

(
1− 1

N(pl)n

)
.

We apply Lemmas 6.4 and 6.5 to conclude that there exists a positive G =
G(N ,N(S)) such that∣∣|OnS(H)| − CN ,k,SHmn(logH)|S|−1

∣∣ ≤ GHmn(logH+ 1)|S|−2

for every H ≥ 1, where CN ,k,S was defined in (3.4).
Now, for every H0 > 1, there exists a positive C0, clearly depending

on N , N(S) and H0, such that

GHmn(logH+ 1)|S|−2 ≤ C0Hmn(logH)|S|−2,

and we have the claim of Theorem 3.2.
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