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1. Introduction. In the 1960s H. Davenport popularized the following
problem, motivated by an application in algebraic number theory. Let G
be an additive finite abelian group. Determine the smallest integer ` such
that each sequence over G of length at least ` has a non-empty subsequence
the sum of whose terms equals 0 ∈ G. This integer is now called Daven-
port’s constant of G, denoted D(G). We refer to the recent survey article
[10], the lecture notes [14], the monographs [13], in particular Chapters 5 to
7, and [20], in particular Chapter 9, for detailed information on and appli-
cations of Davenport’s constant, e.g., in investigations of the arithmetic of
maximal orders of algebraic number fields.

Parallel to the problem of determining Davenport’s constant, a direct
problem, the associated inverse problem, i.e., the problem of determining
the structure of the longest sequences that do not have a subsequence with
sum zero, was intensively investigated as well. On the one hand, solutions
to the inverse problem are relevant in the above mentioned applications as
well, and on the other hand, inverse results for one type of group can be
applied in investigations of the direct problem for other, more complicated,
types of groups (see, e.g., [1]).

In this paper, we investigate the inverse problem associated to Daven-
port’s constant for general finite abelian groups of rank two, complementing
the investigations of the first paper in this series [12] that focused on groups
of the form C2

m, i.e., the direct sum of two cyclic groups of order m. To put
this in context, we recall that the value of Davenport’s constant for groups
of rank two is well-known (cf. Theorem 4.1 and the references there); more-
over, for cyclic groups, answers to both the direct and the inverse problem
are well-known (cf. Theorems 4.1 and 4.2 and, e.g., [18, 22] for refinements),
whereas for groups of rank at least three, both the direct and the inverse
problem is in general wide open (see, e.g., [3, 19] for results in special cases).
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For groups of the form C2
m there is a well-known and well-supported

conjecture regarding the answer to the inverse problem (see Definition 3.1
for details). For groups of the form C2⊕C2n and C3⊕C3n the inverse problem
was solved in [8, Section 3] and [5], respectively, and in [7, Section 8] and [15]
partial results in the general case were obtained. Here we solve, assuming the
above mentioned conjecture for groups of the form C2

m is true, the inverse
problem for general groups of rank two (see Theorem 3.2).

In our proof, we use direct and inverse results for cyclic groups and
groups of the form C2

m, which we recall in Subsection 4.1, that we combine
by using the Inductive Method (cf. [13, Section 5.7]).

2. Notation and terminology. We recall some standard notation and
terminology (we follow [10] and [13]).

We denote by Z the set of integers, and by N and N0 the positive and
non-negative integers, respectively. For a, b ∈ Z, we denote by [a, b] =
{z ∈ Z : a ≤ z ≤ b} the interval of integers. For k ∈ Z and m ∈ N, we
let [k]m be the integer in [0,m− 1] that is congruent to k modulo m.

Let G denote an additively written finite abelian group. (Throughout, we
use additive notation for abelian groups.) For a subset G0 ⊂ G, we denote
by 〈G0〉 the subgroup generated by G0. We call elements e1, . . . , er ∈ G\{0}
independent if

∑r
i=1miei = 0 with mi ∈ Z implies that miei = 0 for each

i ∈ [1, r]. We call a subset of G a basis if it generates G and its elements are
independent. For n ∈ N, we denote by Cn a cyclic group of order n. For each
finite abelian group G, there exist uniquely determined 1 < n1 | . . . |nr such
that G ∼= Cn1⊕· · ·⊕Cnr ; we refer to r as the rank of G and to exp(G) = nr

as the exponent of G (except for |G| = 1, where the exponent is 1).
We denote by F(G) the (multiplicatively written) free abelian monoid

over G, that is, the monoid of all formal commutative products

S =
∏
g∈G

gvg(S)

with vg(S) ∈ N0. We call such an element S a sequence over G. We refer to
vg(S) as the multiplicity of g in S. Moreover, σ(S) =

∑
g∈G vg(S)g ∈ G is

called the sum of S, |S| =
∑

g∈G vg(S) ∈ N0 the length of S, and supp(S) =
{g ∈ G : vg(S) > 0} ⊂ G the support of S.

We denote the unit element of F(G) by 1 and call it the empty sequence.
If T ∈ F(G) and T |S (in F(G)), then we call T a subsequence of S; we say
that it is a proper subsequence if 1 6= T 6= S. Moreover, we denote by T−1S
its co-divisor , i.e., the unique sequence R with RT = S.

If σ(S) = 0, then we call S a zero-sum sequence (zss, for short), and if
σ(T ) 6= 0 for each 1 6= T |S, then we say that S is zero-sum free. We call
a zss a minimal zss (mzss, for short) if it is non-empty and has no proper
subsequence with sum zero.
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Using the notation recalled above, the definition of Davenport’s constant
can be given as follows. For a finite abelian group G, let ` ∈ N be minimal
with the property that each S ∈ F(G) with |S| ≥ ` has a subsequence
1 6= T |S such that σ(T ) = 0.

It is a simple and well-known fact that D(G) is the maximal length of a
mzss over G and that each zero-sum free sequence of length D(G)−1 over G,
i.e., a sequence appearing in the inverse problem associated to D(G), is a
subsequence of a mzss of length D(G). Since it has technical advantages, we
thus in fact investigate the structure of mzss of maximal length (ml-mzss,
for short) instead of zero-sum free sequences of length D(G)− 1.

Each map f : G→ G′ between finite abelian groups extends uniquely to
a monoid homomorphism F(G)→ F(G′), which we denote by f as well. If
f is a group homomorphism, then σ(f(S)) = f(σ(S)) for each S ∈ F(G).

3. Formulation of result. In this section we recall the conjecture men-
tioned in the introduction and formulate our result.

Definition 3.1. Let m ∈ N. The group C2
m is said to have Property B

if each ml-mzss equals gexp(G)−1T for some g ∈ C2
m and T ∈ F(C2

m).

Property B was introduced by W. Gao and A. Geroldinger [7, 9]. It is
conjectured that for each m ∈ N the group C2

m has Property B (see the just
mentioned papers and, e.g., [10, Conjecture 4.5]). We recall some result on
this conjecture.

By a very recent result (see [11], and [9] for an earlier partial result) it
is known that to establish Property B for C2

m for each m ∈ N, it suffices to
establish it for C2

p for each prime p. Moreover, Property B is known to hold
for C2

m for m ≤ 28 (see [2] and [9] for m ≤ 7). For further recent results
towards establishing Property B see [16, 12, 2].

As indicated in the introduction, we characterize ml-mzss for finite
abelian groups of rank two, under the assumption that a certain subgroup
of the group has Property B.

Theorem 3.2. Let G be a finite abelian group of rank two, say, G ∼=
Cm ⊕ Cmn with m,n ∈ N and m ≥ 2. The following sequences are minimal
zero-sum sequences of maximal length.

(i) S = e
ord ej−1
j

∏ord ek
i=1 (−xiej + ek) where {e1, e2} is a basis of G with

ord e2 = mn, {j, k} = {1, 2}, and xi ∈ N0 with
∑ord ek

i=1 xi ≡ −1
(mod ord ej).

(ii) S = gsm−1
1

∏(n+1−s)m
i=1 (−xig1 + g2) where s ∈ [1, n], {g1, g2} is a

generating set of G with ord g2 = mn and, in case s 6= 1, mg1 = mg2,
and xi ∈ N0 with

∑(n+1−s)m
i=1 xi = m− 1.
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If C2
m has Property B, then all minimal zero-sum sequences of maximal

length over G are of this form.

The case G ∼= C2
m, i.e. n = 1, of this result is well-known and included for

completeness only (see, e.g., [13, Theorem 5.8.7]); in particular, note that
(ii) is redundant for n = 1.

This result can be combined with the above mentioned results on Prop-
erty B to yield unconditional results for special types of groups. We do not
formulate these explicitly and only point out that, since C2

2 and C2
3 have

Property B (cf. above), the results on C2⊕C2n and C3⊕C3n mentioned in
the introduction can be obtained in this way.

4. Proof of the result. In this section we give the proof of Theorem 3.2.
First, we recall some results that we use in the proof.

4.1. Known results. The value of D(G) for G of rank two, i.e., the
answer to the direct problem, is well-known (see [17, 21]).

Theorem 4.1. Let m,n ∈ N. Then D(Cm ⊕ Cmn) = m+mn− 1.

Next, we recall some results on sequences over cyclic groups: the solution
to the inverse problem associated to Davenport’s constant for cyclic groups,
a simple special case of [4], and the theorem of Erdős–Ginzburg–Ziv [6].

Theorem 4.2. Let n ∈ N and S ∈ F(Cn).

(i) S is a ml-mzss if and only if S = en for some e ∈ Cn with 〈e〉 = Cn.
(ii) If |S| ≥ 2n − 1, then there exists some T |S with |T | = n and

σ(T ) = 0.

The following result is a main tool in the proof of Theorem 3.2. It was
obtained in [9, Proposition 4.1, Theorem 7.1]; note that now the additional
assumption in the original version (regarding the existence of zss of length
m and 2m) can be dropped, since by [10, Theorem 6.5] it is known to be
fulfilled for each m ∈ N (also note that the second type of sequence requires
t ≥ 3).

Theorem 4.3. Let m, t ∈ N with m ≥ 2 and t ≥ 2. Suppose that C2
m has

Property B. Let S ∈ F(C2
m) be a zss of length tm− 1 that cannot be written

as the product of t non-empty zss. Then for some basis {f1, f2} of C2
m,

S = f sm−1
1

(t−s)m∏
i=1

(aif1 + f2)

with s ∈ [1, t− 1] and ai ∈ [0,m− 1] where
∑(t−s)m

i=1 ai ≡ 1 (mod m), or

S = fs1m
1 fs2m−1

2 (bf1 + f2)s3m−1(bf1 + 2f2)
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with si ∈ N such that s1 + s2 + s3 = t and b ∈ [1,m − 1] such that
gcd{b,m} = 1.

4.2. Proof of Theorem 3.2. We start by establishing that all the
sequences are indeed ml-mzss.

Since the length of each sequence is mn + n − 1, and by Theorem 4.1,
it suffices to show that they are mzss. It is readily seen that σ(S) = 0,
thus it remains to show minimality. Let 1 6= T |S be a zss. We assert that
T = S. If S is as given in (i), then it suffices to note that e

ord ej−1
j is

zero-sum free, thus (−xiej + ek) |T for some i ∈ [1, ord ek], and this implies∏ord ek
i=1 (−xiej + ek) |T , which implies S = T . Suppose S is as given in (ii).

We first note that ag1 ∈ 〈g2〉 if and only if m | a. Let v ∈ N0 and I ⊂
[1, (n+1−s)m] be such that T = gv

1

∏
i∈I(−xig1+g2). Since σ(T ) = 0 and by

the above observation, it follows that m | (v−
∑

i∈I xi), say mb = v−
∑

i∈I xi,
where b ∈ [0, s − 1]. Furthermore, we get mbg1 + |I|g2 = 0. If s = 1, then
b = 0, implying that |I| = mn and v = m − 1, that is, S = T . If s > 1,
we have mg1 = mg2, thus mn | |I| + mb and indeed mn = |I| + mb. Yet,
mn = |I|+mb implies |I| = [1, (n+ 1− s)m] and b = s− 1, that is, S = T .
Thus, the sequences are mzss.

Now, we show that if C2
m has Property B, then each ml-mzss is of this

form.
As already mentioned, the case n = 1 is well-known (cf. Theorem 4.3).

We thus assume n ≥ 2, that is, G ∼= Cm ⊕ Cmn with m ≥ 2 and n ≥ 2.
Furthermore, let H = {mg : g ∈ G} ∼= Cn and let ϕ : G → G/H be the
canonical map; we have G/H ∼= C2

m. We apply the Inductive Method, as in
[7, Section 8], with the exact sequence

0→ H ↪→ G
ϕ→ G/H → 0.

Let S ∈ F(G) be a ml-mzss. First, we assert that ϕ(S) cannot be written
as the product of n + 1 non-empty zss, in order to apply Theorem 4.3.
Suppose this is possible, say ϕ(S) =

∏n+1
i=1 ϕ(Si) with non-empty zss ϕ(Si).

Then
∏n+1

i=1 σ(Si) ∈ F(H) has a proper subsequence that is a zss, yielding
a proper subsequence of S that is a zss.

Thus, by Theorem 4.3 there exists a basis {f1, f2} of C2
m such that

(4.1) ϕ(S) = fsm−1
1

(n+1−s)m∏
i=1

(aif1 + f2)

with s ∈ [1, n], ai ∈ [0,m− 1], and
∑(n+1−s)m

i=1 ai ≡ 1 (mod m), or

(4.2) ϕ(S) = fs1m
1 fs2m−1

2 (bf1 + f2)s3m−1(bf1 + 2f2)

with si ∈ N such that s1 + s2 + s3 = n + 1 and b ∈ [1,m − 1] such that
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gcd(b,m) = 1. We distinguish two cases, depending on which of the two
structures ϕ(S) has.

Case 1: ϕ(S) is of the form given in (4.1). Moreover, we assume the
basis {f1, f2} is chosen in such a way that s is maximal. Furthermore, let
ψ : G/H → 〈f1〉 denote the projection with respect to G/H = 〈f1〉 ⊕ 〈f2〉.
Let S = FT be such that ϕ(F ) = fsm−1

1 and T =
∏(n+1−s)m

i=1 hi be such
that ϕ(hi) = aif1 + f2.

We call a factorization T = S0S1 . . . Sn−s admissible if σ(ϕ(Si)) = 0 and
|Si| = m for i ∈ [1, n− s] (then σ(ϕ(S0)) = f1 and |S0| = m). Since for a se-
quence T ′ |T of length m the conditions σ(ϕ(T ′)) = 0 and σ(ψ(ϕ(T ′))) = 0
are equivalent, the existence of admissible factorizations follows using The-
orem 4.2.

Let T = S0S1 . . . Sn−s be an admissible factorization such that |supp(S0)|
is maximal (among all admissible factorizations of T ). Moreover, let F =
F0F1 . . . Fs−1 with |F0| = m − 1 and |Fi| = m for i ∈ [1, s − 1]. Then
σ(ϕ(Fi)) = 0 for i ∈ [1, s − 1], σ(ϕ(Si)) = 0 for i ∈ [1, n − s], and
σ(ϕ(S0F0)) = 0. Thus, σ(S0F0)

∏s−1
i=1 σ(Fi)

∏n−s
i=1 σ(Si) is a sequence over H,

and it is a mzss. Since its length is n, it follows by Theorem 4.2 that there
exists some generating element e ∈ H such that this sequence is equal to en.

We show that |supp(F )| = 1. We assume to the contrary that there exist
distinct g, g′ ∈ supp(F ).

First, suppose s ≥ 2. We may assume g |Fi and g′ |Fj for distinct i, j ∈
[0, s − 1]. Now we consider F ′i = g−1g′Fi and F ′j = g′−1gFj and F ′k = Fk

for k /∈ {i, j}. As above, we find that σ(S0F
′
0)

∏s−1
i=1 σ(F ′i )

∏n−s
i=1 σ(Si) is a

ml-mzss over H and thus equal to ēn for some generating element ē ∈ H
and indeed, since at most two elements in the sequence are changed and
for n = 2 there is only one generating element of H, we have e = ē. Thus,
σ(Fi) = σ(F ′i ) = σ(Fi) + g′ − g, a contradiction.

Second, suppose s = 1. It follows that m ≥ 3, since for m = 2 we have
|F | = 1. We consider S0Sj for some j ∈ [1, n − 1]. Let S0Sj = T ′T ′′ with
|T ′| = |T ′′| = m. Since σ(ϕ(T ′)) + σ(ϕ(T ′′)) = f1 and σ(ϕ(T ′)), σ(ϕ(T ′′))
∈ 〈f1〉 it follows that there exists some a ∈ [0,m− 1] such that σ(ϕ(T ′)) =
(a + 1)f1 and σ(ϕ(T ′′)) = −af1. Let F0 = F ′F ′′ with |F ′| = m − (a + 1)
and |F ′′| = a. We note that σ(T ′F ′)σ(T ′′F ′′)

∏n−1
i=1, i 6=j σ(Si), is a ml-mzss

over H and again it follows that it is equal to en (with the same element
e as above). If both F ′ and F ′′ are non-empty, we may assume g |F ′ and
g′ |F ′′, to obtain a contradiction as above. Thus, it remains to investigate
whether there exists a factorization S0Sj = T ′T ′′ with |T ′| = |T ′′| = m such
that {σ(ϕ(T ′)), σ(ϕ(T ′′))} 6= {0, f1}. We observe that such a factorization
exists except if ϕ(S0Sj) = (bf1 + f2)2m−1(cf1 + f2) (note that ϕ(S0Sj) =
(bf1 + f2)2m is impossible, since σ(ϕ(S0Sj)) 6= 0).
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Thus, if such a factorization does not exist, for each j ∈ [1, n− 1], then
ϕ(T ) = (bf1 +f2)mn−1(cf1 +f2). Since σ(ϕ(T )) = f1, we get cf1 = (b+1)f1.
Thus, with respect to the basis consisting of f̄1 = bf1 + f2 and f̄2 = f1, we
have ϕ(S) = f̄mn−1

1 f̄m−1
2 (f̄1 + f̄2), contradicting the assumption that the

basis {f1, f2} maximizes s.
Therefore, we have |supp(F )| = 1 and thus

S = gsm−1
1 T

for some g1 ∈ G.
First, we consider the case s = n. We have ord g1 = mn and thus G =

〈g1〉 ⊕ H2 where H2 ⊂ G is a cyclic group of order m. Let π : G → H2

denote the projection with respect to G = 〈g1〉 ⊕ H2. We observe that
π(

∏m
i=1 hi) ∈ F(H2) is a mzss and consequently it is equal to gm

2 for some
generating element g2 of H2. We note that {g1, g2} is a basis of G. Thus, S
is of the form given in (i).

Thus, we may assume s < n. Next, we show that if ϕ(hj) = ϕ(hk) for
j, k ∈ [1, (n−s+1)m], then hj = hk. As |h−1

j T | = (n−s+1−2)m+2m−1,
using again the projection ψ introduced above and Theorem 4.1, it
follows that there exists an admissible factorization T = S′0S

′
1 . . . S

′
n−s

with hj |S′0. Let ` ∈ [1, n − s] such that hjhk |S′0S′`. Let S′0S
′
` = T ′jT

′
k

such that hj |T ′j , hk |T ′k and |T ′j | = |T ′k| = m. As above, it follows that
σ(ϕ(T ′j)) = (a′ + 1)f1 and σ(ϕ(T ′k)) = −a′f1 for some a′ ∈ [0,m − 1]. We
note that σ(T ′jg

m−a′−1
1 )σ(T ′kg

a′
1 )σ(gm

1 )s−1
∏n−s

i=1,i 6=` σ(S′i) is a ml-mzss over H
and thus equals e′n for a generating element e′ ∈ H. As above, it follows
that σ(h−1

j hkT
′
jg

m−a′−1
1 ) = e′. Thus, hj = hk.

Consequently, we have

S = gsm−1
1

∏
x∈[0,m−1]

kvx
x

with ϕ(kx) = xf1 + f2 for x ∈ [0,m− 1] and suitable vx ∈ N0.
In the following we show that S is of the form given in (ii) or ord g1 = m.

At the end we show that if ord g1 = m, then S is of the form given in (i).
We start with the following assertion.

Assertion. Let T = S̄0S̄1 . . . S̄n−s be an admissible factorization. Let
kx | S̄0 and let ky | S̄i for some i ∈ [1, n−s]. If x < y, then ky−kx = (y−x)g1
and if x > y, then ky − kx = (y − x)g1 +mg1.

Proof of Assertion. We note that σ(ϕ(S̄0k
−1
x ky)) = (−x+ y + 1)f1 and

σ(ϕ(S̄ik
−1
y kx)) = (−y+x)f1. Thus, we have σ(ϕ(S̄0k

−1
x kyg

[x−y−1]m
1 )) = 0 =

σ(ϕ(S̄ik
−1
y kxg

[y−x]m
1 )). We observe that [x − y − 1]m + [y − x]m = m − 1.

Thus, as above, σ(S̄i) = σ(S̄ik
−1
y kxg

[y−x]m
1 ). Hence, ky = kx + [y − x]mg1.
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Consequently, if x < y, then ky − kx = (y − x)g1, and if x > y, then
ky − kx = (y − x)g1 +mg1, proving the Assertion.

First, we show that supp(S−1
0 T ) ⊂ supp(S0) or ord g1 = m. We assume

that there exists some i ∈ [1, n − s] and some kt |Si such that kt - S0 and
show that this implies ord g1 = m.

The sequence k−1
t SiS0 has length 2m − 1. Thus, as above, there exists

a subsequence S′′i | k
−1
t SiS0 such that σ(ϕ(S′′i )) = 0 and |S′′i | = m. Let

S′′0 = S′′−1
i SiS0 and S′′j = Sj for j /∈ {0, i}. We see that S′′0S

′′
1 . . . S

′′
n−s is

an admissible factorization of T . Since kt |S′′0 and kt - S0 and |supp(S0)| is
maximal (by assumption), there exists some ku |S0 such that ku - S′′0 and
thus ku |S′′i . Clearly ku 6= kt and thus t 6= u.

We apply the Assertion twice. First, to ku |S0 and kt |Si. If u < t, then
kt − ku = (t − u)g1 and if u > t, then kt − ku = (t − u)g1 + mg1. Second,
to kt |S′′0 and ku |S′′i . If t < u, then ku − kt = (u − t)g1 and if t > u, then
ku − kt = (u− t)g1 +mg1.

Thus, if u < t, then kt − ku = (t− u)g1 and ku − kt = (u− t)g1 + mg1.
Adding these two equations, we get mg1 = 0 and ord g1 = m. And, if u > t,
then kt − ku = (t − u)g1 + mg1 and ku − kt = (u − t)g1, again yielding
ord g1 = m.

Second, we show that |supp(S−1
0 T )| = 1 or ord g1 = m. We assume

that |supp(S−1
0 T )| ≥ 2, say it contains elements ku, kt with t > u. Let

i, j ∈ [1, n − s], not necessarily distinct, be such that ku |Si and kt |Sj . By
the above argument we may assume that supp(S−1

0 T ) ⊂ supp(S0). We apply
the Assertion with kt |S0 and ku |Si to obtain ku−kt = (u−t)g1+mg1. Then
we apply the Assertion with ku |S0 and kt |Sj to obtain kt− ku = (t− u)g1.
Thus, we obtain mg1 = 0.

Consequently, we have T = k
(n−s)m
u S0 and ku |S0 for some u ∈ [0,m−1]

or ord g1 = m.
We assume that T = k

(n−s)m
u S0 and ku |S0 for some u ∈ [0,m−1]. Since

n − s ≥ 1 and σ(km
u ) = e, it follows that ord ku = mn. Let f ′2 = ϕ(ku) =

uf1 + f2. It follows that {f1, f
′
2} is a basis of G/H.

If, for x ∈ [0,m − 1], an element h ∈ supp(T ) = supp(S0) exists with
ϕ(h) = −xf1 + f ′2 (as shown above there is at most one such element), then
we denote it by k′−x. In particular, ku = k′0.

For each k′−x ∈ supp(S0), as above, σ(k′m0 ) = σ(k′m−1
0 k′−xg

x
1 ). Thus, we

have k′0 = k′−x + xg1. Let xi ∈ [0,m − 1] be such that S0 =
∏m

i=1 k
′
−xi

. We
know that

∑m
i=1(−xif1) = f1, i.e.,

∑m
i=1 xi ≡ m− 1 (mod m).

We show that
∑m

i=1 xi = m − 1 or ord g1 = m. Assume the former
does not hold, and let ` be maximal such that

∑`
i=1 xi = c < m. We

observe that σ(k′m−`
0 (

∏`
i=1 f

′
−xi

)gc
1) = σ(k′m−`−1

0 (
∏`+1

i=1 f
′
−xi

)g[c+x`+1]m
1 ). By
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the choice of ` it follows that [c+ x`+1]m = c+ x`+1 −m. Thus, k′0 + cg1 =
k−x`+1

+ (c + x`+1 −m)g1 and k′0 = k−x`+1
+ (x`+1 −m)g1, which implies

mg1 = 0.
So, ord g1 = m, or S is of the form, where k′0 = g2,

S = gsm−1
1 g

(n−s)m
2

m∏
i=1

(−xig1 + g2)

with xi ∈ [0,m − 1] and
∑m

i=1 xi = m − 1. Clearly, {g1, g2} is a generating
set of G. Moreover, we know that if s ≥ 2, then σ(gm

1 ) = e = σ(gm
2 ). Thus,

S is of the form given in (ii).
Finally, suppose ord g1 = m. We have s = 1. Let ω : G → G/〈g1〉

denote the canonical map. The sequence ω(
∏mn

i=1 hi) is a mzss. Thus, by
Theorems 4.1 and 4.2, G/〈g1〉 is a cyclic group of order mn and ω(

∏mn
i=1 hi) =

ω(g2)mn for some g2 ∈ G, and ord g2 = mn. Thus, {g1, g2} is a basis of G
and S has the form given in (i).

Case 2: ϕ(S) is of the form given in (4.2). If m = 2, then bf1 +2f2 = f1

and the sequence ϕ(S) is also of the form given in (4.1). Thus, we as-
sume m ≥ 3. Moreover, we note that with respect to the basis f ′1 =
f1 and f ′2 = bf1 + f2, we have f2 = (m − b)f ′1 + e′2 and bf1 + 2f2 =
(m − b)f ′1 + 2f ′2. Thus, we may assume that b < m/2. Let S = FT with
ϕ(T ) = fm

1 (bf1 + f2)m−1fm−1
2 (bf1 + 2f2). We note that F =

∏n−2
i=1 Fi with

ϕ(Fi) ∈ {fm
1 , f

m
2 , (bf1 +f2)m} for each i ∈ [1, n−2]. Suppose T = T1T2 such

that σ(ϕ(Ti)) = 0 and Ti 6= 1 for i ∈ [1, 2]. Then σ(T1)σ(T2)
∏n−2

i=1 σ(Fi) is a
ml-mzss over H and thus equal to en for some generating element e of H. It
follows that for each factorization T = T1T2 with σ(ϕ(Ti)) = 0 and Ti 6= 1
for i ∈ [1, 2], we have σ(T1) = σ(T2) = e.

Let T ′1 |T be such that ϕ(T ′1) = f b
1(bf1 + f2)m−1f2 and let T ′2 = T ′−1

1 T .
Suppose that, for some i ∈ [1, 2], there exist distinct elements gi, g

′
i ∈

supp(S) such that ϕ(gi) = ϕ(g′i) = fi. We may assume that gi |T ′1 and
g′i |T ′2. It follows that σ(g−1

i g′iT
′
1) = e = σ(T ′1), a contradiction. Thus,

ϕ−1(fi) ∩ supp(S) = {gi} for i ∈ [1, 2].
Now, let T ′′1 |T be such that ϕ(T ′′1 ) = f2b

1 (bf1 + f2)m−2f2
2 and T ′′2 =

T ′′−1
1 T . We can argue in the same way that ϕ−1(bf1 +f2)∩ supp(S) = {kb}.

Finally, let k |S be such that ϕ(k) = bf1 + 2f2. It follows that

S = gs1m
1 gs2m−1

2 ks3m−1
b k.

We note that ord g1 = mn and that {g1, g2} is a generating set of G.
Since, as above, σ(km−2

b kgb
1) = e = σ(km−1

b kgm−1
2 ), it follows that bg1 =

kb + (m − 1)g2. Moreover, σ(g2b
1 k

m−2
b g2

2) = e = σ(gb
1k

m−1
b g2) implies that

bg1 +g2 = kb. Thus, mg2 = 0 and {g2, g1} is a basis of G. Moreover, we have
s2 = 1. Additionally, we get k + (m− 1)g2 = bg1 + g2, i.e., k = bg1 + 2g2.
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We observe that the projection to 〈g1〉 (with respect to G = 〈g1〉 ⊕ 〈g2〉)
of the sequence g−(m−1)

2 S , i.e., the sequence gs1m
1 (bg1)s3m, is a mzss. Since

s1 + s3 = n, this implies b = 1. Thus, S is of the form given in (i).
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