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On the equation a2 + b2p = c5
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Imin Chen (Burnaby)

A solution (a, b, c) ∈ Z3 to the equation a2 + b2p = c5 is said to be
non-trivial if ab 6= 0 and proper if (a, b, c) = 1. This equation is a special
case of the generalized Fermat equation xp + yq = zr which has been the
focus of much interest since the resolution of Fermat’s Last Theorem (cf.
[20] and its references for a survey of recent work in this area).

In this paper, we show the following result.

Theorem 1. Let p > 17 be a prime such that p ≡ 1 (mod 4). Then the
equation a2 + b2p = c5 does not have any non-trivial proper solutions.

The method uses Galois representations and modular forms. A new fea-
ture which arises for this equation is the use of Q-curves defined over quartic
extensions of Q and the abelian varieties of GL2-type attached to them. We
use the results developed in [14], where the use of Q-curves for studying
cases of the generalized Fermat equation was first introduced. To deal with
Q-curves defined over quartic extensions of Q, it is also necessary to use
some other results from the theory of Q-curves [17], [30], [27], [15] and make
them sufficiently explicit.

Finally, we note the overall strategy still cannot handle certain primes p
due to our inability to apply Mazur’s method to analyze the rational points
on certain modular curves with non-split Cartan level structure (cf. Remark
3.7 in [14]). This happens because the sign of the functional equation for the
L-function of the jacobian of the modular curve XK

0,N ′(d, p) (see paragraph
after Theorem 45) for d = 2 and K = Q(

√
5) is −1, using [2] for instance, so

that conjecturally these jacobians do not have any non-zero quotients over
Q with rank 0 (see Section 6). The situation still does not change if the
N ′ level structure on mod p torsion points is replaced by a twisted C ′ level
structure.
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1. Setting up the problem. We begin by recalling the parametriza-
tion of proper solutions to the equation x2 + y2 = z5.

Lemma 2. A triple (x, y, z) ∈ Z3 with (x, y, z) = 1 satisfies x2 + y2 = z5

only if (x, y, z) = (u(u4 − 10u2v2 + 5v4), v(v4 − 10v2u2 + 5u4), u2 + v2) for
some (u, v) ∈ Z2 with (u, v) = 1.

Proof. This follows from factoring over the Gaussian integers.

Lemma 3. Let p be an odd prime. Suppose (a, b, c) ∈ Z3 satisfies a2 +
b2p = c5 with (a, b, c) = 1 and ab 6= 0. Then there exists (s, t) ∈ Z2 with
(s, t) = 1, st 6= 0, and such that the following properties hold:

• s2 − 10st+ 5t2 = 5jγp where 5 - γ,
• v = βp and j = 0 or v = 5kp−1βp and j = 1, where 5 - β and k ≥ 1,
• s = v2, t = u2.

Proof. As (u, v) = 1, we have (v, v4 − 10v2u2 + 5u4) | 5. Setting y to be
a pth power in Lemma 2, we obtain a solution to

v4 − 10v2u2 + 5u4 = 5jγp

where (u, v) = 1, uv 6= 0, 5 - γ and j ≥ 0. Setting s = v2, t = u2 we have

s2 − 10st+ 5t2 = 5jγp.

Since in fact (v2, v4−10v2u2 +5u4) | 5, we have either 5 - s and j = 0, or 5 | s
and j = 1. Thus, either v = βp and j = 0, or v = 5kp−1βp and j = 1, where
5 -β and k ≥ 1.

For the equation a2p + b2p = c5, one can set both x and y to be pth
powers and consider the resulting diophantine equations. Bennett [3] has
shown these equations can be resolved using the results in [4].

It is perhaps instructive to discuss in more detail how the argument
proceeds. If we use the constraint that y is a pth power, we can complete
the square in the following way to obtain a solution to an equation of the
form Aa′n +Bb′n = Cc′2:

v4 − 10v2u2 + 5u4 = 5(u2 − v2)2 − 4v4

=
{

5(u2 − v2)2 − 4β4p = γp if j = 0,
5(u2 − v2)2 − 4 · 54kp−4β4p = 5γp if j = 1.

In [4], this class of generalized Fermat equations was extensively studied
from the point of view of the modular method. The elliptic curve which
they attach to a solution (a′, b′, c′) is isomorphic over Q to Y 2 = X3 +
2c′CX2 + BCb′nX, and has the preconditions required to be a candidate
Frey curve for solving the constraints that v, s2 − 10st+ 5t2 are pth powers
up to S-units for a finite set of primes S, using the modular method.
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Unfortunately, in the case of j = 0, the solution corresponding to (u, v) =
(0, 1) persists for all p and the Frey curve [4] corresponding to this solution
does not have complex multiplication. This is a situation for which one is
not currently able to apply the modular method to obtain a full result in
every congruence class. In the case of j = 1, that is, when 5 | y, there is
an obstructing newform in S2(Γ0(40)) which prevents a resolution in the
situation when a′b′ is odd.

Some partial results are possible however. For instance, one can give a
computational criterion for resolving the cases of specific primes p when
5 | y, using the technique of [19] (cf. also [9]). Also, one has a resolution for
p ≥ 7 and y even using the results in [4]. Because of the symmetry between
a and b in the equation a2p+ b2p = c5, we may assume y is even, which gives
Bennett’s result [3].

Lemma 4. Let p be an odd prime. If s2 − 10st + 5t2 = 5jγp where
j ∈ {0, 1}, 5 - γ, and s, t ∈ Z are coprime squares, then s 6≡ t (mod 2) and
s2 − 10st+ 5t2 is not divisible by 2.

Proof. If s ≡ t (mod 2), then s ≡ t (mod 8) and s, t 6≡ 0 (mod 2) as s, t
are coprime squares. Then we would have 5jγp = s2 − 10st + 5t2 ≡ −4s2

(mod 8). This is a contradiction if p is an odd prime.

Lemma 5. Let p be an odd prime. If s2 − 10st + 5t2 = 5jγp where
j ∈ {0, 1}, 5 - γ, and s, t ∈ Z are coprime squares, then s2− 10st+ 5t2 is not
divisible by 3.

Proof. We note that s2− 10st+ 5t2 ≡ s2− st− t2 (mod 3) is irreducible
when considered as an element of F3[s, t].

For the next two lemmas, we note that v4−10v2t+5t2 = 5(t−v2)2−4v4

so integer solutions to v4 − 10v2t + 5t2 = c give rise to integer solutions to
5Y 2 − 4X4 = c.

Lemma 6. If (v, t) ∈ Z2 satisfies v4 − 10v2t + 5t2 = ±1, then v = ±1
and t = 0.

Proof. We use MAGMA [5] to determine the integer solutions to the
quartic equation 5Y 2 = 4X4 ± 1.

Lemma 7. If (v, t) ∈ Z2 satisfies v4 − 10v2t+ 5t2 = ±5, then v = 0 and
t = ±1.

Proof. We use MAGMA to determine the integer solutions to the quartic
equation 5Y 2 = 4X4 ± 5.

Corollary 8. Let p be an odd prime. Suppose (a, b, c) ∈ Z3 satisfies
a2 + b2p = c5 with (a, b, c) = 1 and ab 6= 0. Let s, t be as in Lemma 3. Then
s2 − 10st+ 5t2 is divisible by a prime not equal to 2, 3, 5.
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Proof. By Lemmas 3, 4, and 5, if s2 − 10st+ 5t2 is only divisible by the
primes 2, 3, 5, then s2 − 10st + 5t2 = ±1,±5. The result then follows from
Lemmas 6 and 7.

2. Q-curves and abelian varieties of GL2-type. Let K be a number
field and let C be an elliptic curve defined over K such that there is an
isogeny µC(σ) : σC → C defined over K for each σ ∈ GQ. Such an elliptic
curve C is called a Q-curve defined over K. This notion was originally
defined and studied for a CM-elliptic curve [17], [6], but was extended by
Ribet [30] to the non-CM case using different methods. Further explicit
considerations were developed in [27] which we will use in the following.
The exposition below follows closely the papers cited above as well as [15].

From here on, we choose the isogenies so that µC(σ) factors through
GK/Q and µC(σ) is the identity on GK . Furthermore, when we speak of a
Q-curve, we will assume that it does not have complex multiplication.

Let cC(σ, τ) = µC(σ)σµC(τ)µC(στ)−1 ∈ (HomK(C,C) ⊗Z Q)∗ = Q∗,
where µ−1

C := (1/degµC)µ′C and µ′C is the dual of µC . Then cC(σ, τ) de-
termines a class in H2(GQ,Q∗) which depends only on the Q-isogeny class
of C. The class cC(σ, τ) factors through H2(GK/Q,Q∗) and depends only on
the K-isogeny class of C. Moreover, cC(σ, τ) in fact lies in H2(GQ,Q∗)[2].

Tate (cf. [32, Theorem 4]) showed that H2(GQ,Q
∗) is trivial where the

action of GQ on Q∗ is trivial, so that there is a continuous map β : GQ → Q∗

such that
cC(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles in H2(GQ,Q
∗). In such a case, we say that β is a splitting map

for C (or more precisely, for cC(σ, τ)).
Let A be an abelian variety defined over Q. The endomorphism algebra

EndQA of A is defined as the ring of endomorphisms of A defined over Q
tensored over Z with Q. Let RC be the Q-algebra generated over Q by λσ
for σ ∈ GK/Q with multiplication given by λστ cC(σ, τ) = λσλτ , where we
recall that cC(σ, τ) = µC(σ)σµC(τ)µC(στ)−1 depends on the function µC .
Consider the restriction of scalars ResKQ C, for which we recall its defining
functorial property that Hom(S,ResKQ C) ↔ Hom(S ⊗ K,C). There is a
natural isomorphism

RC → EndQ ResKQ C

which sends λσ to the endomorphism of ResKQ C defined by P 7→ τµC(σ)(P )
on στC.

Given a splitting map β for C, we now enlarge K if necessary so that
β factors through GK/Q. The map given by λσ 7→ β(σ) gives a surjective
homomorphism RC → Mβ = Q(β(σ)). As RC is a semisimple Q-algebra,
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there is a projection from RC onto the isomorphic copy of Mβ in RC . Let Aβ
be the image of this projection in the category of abelian varieties defined
over Q up to isogeny over Q.

We note the following twist on the construction of Aβ above which is
useful in practice to minimize the degree of the extension K required (recall
K needs to be large enough so that both cC(σ, τ) and β(σ) factor through
GK/Q). Suppose that

cC(σ, τ)ε(σ, τ) = β(σ)β(τ)β(στ)−1

as 2-cocycles, where ε(σ, τ) is the 2-coboundary obtained from a 1-cocycle
σ√γ/√γ where γ ∈ Q∗. By the way twisting affects the cocycles cC(σ, τ)
[27, p. 291] we see that the twist Cγ of C is such that

cCγ (σ, τ) = cC(σ, τ)ε(σ, τ) = β(σ)β(τ)β(στ)−1.

Thus, replacing C by Cγ allows us to only require that K be large enough
so that β(σ) factors through GK/Q.

Recall that an abelian variety defined over Q is of GL2-type if its en-
domorphism algebra is isomorphic to a number field M of degree equal to
the dimension of the abelian variety. An abelian variety defined over Q of
GL2-type is attached to a Q-curve C if C is its quotient over Q.

Theorem 9 (cf. [30, Theorem 6.1]). The abelian variety Aβ is an abelian
variety defined over Q of GL2-type attached to C, with endomorphism alge-
bra isomorphic to Mβ.

Proposition 10. If A is an abelian variety defined over Q of GL2-type
attached to a Q-curve C, then A is isogenous over Q to some Aβ where β
is a splitting map for C.

Proof. If C is a quotient of A defined over K, then there is a non-zero
homomorphism A→ ResKQ C defined over Q. Since A is simple up to isogeny
over Q, it follows that A is a quotient defined over Q of ResKQ C. As RC
is a semisimple Q-algebra, there is a projection RC → EndQA given by
λσ 7→ β(σ) say. We now see that β is a splitting map for C, and that Aβ is
isogenous over Q to A.

Proposition 11 (cf. [27, Proposition 5.1, Lemma 5.3]). Suppose that
RC is a product of fields. Then ResKQ C is isogenous over Q to a product of
pairwise non-isogenous abelian varieties defined over Q of GL2-type, each of
the form Aβ where β is a splitting map for C. Furthermore, Aβ1 is isogenous
over Q to Aβ2 if and only if β2 = σβ1 for some σ ∈ GQ.

For an abelian variety A defined over Q, let V̂p(C) denote the Qp[GQ]-
module which is the p-adic Tate module of C tensored over Qp.

Proposition 12. V̂p(ResKQ C) ∼= RC ⊗ V̂p(C) as RC ⊗Qp[GQ]-modules.
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Proof. The proof is a modification of [30, Corollary 6.6]. Recall that C is
a Q-curve defined over K and let A = ResKQ C. There is an isomorphism A ∼=
BK =

∏
σ∈GK/Q

σC defined over K by the defining property of restriction of
scalars. Let TK =

∏
σ∈GK/Q

Cσ where Cσ = C for all σ ∈ GK/Q. There is an
action ofRC on TK with λg taking the factor Cσ to Cgσ via multiplication by
cC(g, σ). Let ι : TK → BK be the map which takes the factor Cσ to σ−1

C via
the map σ−1

µC(σ). Then ι is an RC [GK ]-equivariant isomorphism. By the
above-defined action of RC on TK , we have V̂p(TK) ∼= RC ⊗ V̂p(C) as RC ⊗
Qp[GK ]-modules. Hence, V̂p(A) ∼= V̂p(BK) ∼= RC ⊗ V̂p(C) as RC ⊗Qp[GK ]-
modules. The action of GQ on A can be transferred to an action of GQ on
TK via the isomorphisms A ∼= BK ∼= TK . From this, it can be shown that the
explicit action of GQ on theRC⊗Qp-module V̂p(A) ∼= RC⊗V̂p(C) is given by

x⊗ y 7→ x · λσ−1 ⊗ (τµC(τ−1))−1(τ(y)).

From Proposition 12, it follows that V̂p(Aβ) ∼= Mβ ⊗ V̂p(C) as Mβ ⊗
Qp[GQ]-modules. Picking a prime π of Mβ above p, we get a representation
ρ̂C,β,π : GQ → GL2(Mβ,π). The explicit action of GQ on the Mβ⊗Qp-module
V̂p(Aβ) is then given by

x⊗ y 7→ x · β(σ−1)⊗ (τµC(τ−1))−1(τ(y)),

which can be simplified to

x⊗ y 7→ x · β(σ)−1 ⊗ µC(τ)(τ(y)).

Hence, if we regard Mβ,π as a subfield of Qp, then ρ̂C,β,π is a representation
with values in Q∗p · GL2(Qp), and it satisfies Pρ̂C,β,π|GK ∼= Pφ̂C,p, where
φ̂C,p : GK → GL2(Qp) is the representation of GK on V̂p(C).

Let εβ : GQ → Q∗ be defined by

εβ(σ) = β(σ)2/degµC(σ).

Then εβ is a character and

(1) det ρ̂C,β,π = ε−1
β · χp,

where χp : GQ → Z∗p is the pth cyclotomic character.
Given two splitting maps β, β′ for C, there is a character χ : GQ → Q∗

such that β′ = χβ. Conversely, if β is a splitting map, then β′ = χβ is a
splitting map for any character χ : GQ → Q∗. When Mβ′ = Mβ, we see that
ρC,β′,π = χ⊗ ρC,β,π are twists of each other, as are Aβ′ and Aβ.

We say that a Q-curve C is modular if for some positive integer N it
is the quotient over Q of J1(N). If a Q-curve C is modular, then there is
a newform f ∈ S2(Γ0(N), ε−1) such that Af is an abelian variety defined
over Q of GL2-type attached to C. This is because J1(N) decomposes into a
product of Af ’s up to isogeny over Q [29]. By Proposition 10, Af is isogenous
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to Aβ for some splitting map β, and hence for some splitting map β for C
we have ρC,β,π ∼= ρf,π for some newform f ∈ S2(Γ0(N), ε−1). Since any two
splitting maps differ by a character, we see that for every splitting map β we
have ρC,β,π ∼= ρf,π for some f ∈ S2(Γ0(N), ε−1). Conversely, if ρC,β,π ∼= ρf,π
for some newform f ∈ S2(Γ0(N), ε−1), then Aβ is isogenous over Q to Af
and hence the Q-curve C is modular.

In summary, we have shown that ρC,β,π∼=ρf,π for some f ∈S2(Γ0(N), ε−1)
if and only if the Q-curve C is modular.

3. Q-curves arising from the equation a2 + b2p = c5. Let p be an
odd prime. Suppose (a, b, c) ∈ Z3 satisfies a2 + b2p = c5 with (a, b, c) = 1
and ab 6= 0. Recall that Lemma 3 tells us that there exists (s, t) ∈ Z2 with
(s, t) = 1, st 6= 0, and such that

• s2 − 10st+ 5t2 = 5jγp where 5 - γ,
• v = βp and j = 0 or v = 5kp−1βp and j = 1, where 5 -β and k ≥ 1,
• s = v2, t = u2.

Consider the elliptic curve Es defined over Q(
√

5) given by

Es : Y 2 = X3 − 3δ((3 + 2
√

5)s− 3t)X(2)

+ 4v((17− 4
√

5)s− (45− 18
√

5)t).

Then

(3) ∆Es = 26 · 36 · η−3 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)

and

(4) jEs =
26 · 5

√
5 · η · ((3 + 2

√
5)s− 3t)3

(s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)
,

where δ = (−5 + 3
√

5)/2, η = κ−3, and κ = (−1 +
√

5)/2.
The Q-curve Es satisfies the preconditions required to be a candidate

Frey curve for solving the constraints that s is a square and s2 − 10st+ 5t2

is a pth power up to S-units for a finite set of primes S, using the modular
method.

Consider in addition the elliptic curve Et defined over Q(
√

5) given by

Et : Y 2 = X3 − 3 · 22 ·
√

5(3s− (15− 10
√

5)t)X(5)

+ 25 · 5u(9s− (45− 14
√

5)t).

Then

(6) ∆Et = 212 · 36 · 5
√

5 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)
and

(7) jEt =
64(3s− (15− 10

√
5)t)3

(s− (5 + 2
√

5)t)
2
(s− (5− 2

√
5)t)

.
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The Q-curve Et satisfies the preconditions required to be a candidate Frey
curve for solving the constraints that t is a square and s2−10st+5t2 is a pth
power up to S-units for a finite set of primes S, using the modular method.

The superscripts in Es and Et are intended to label the two different
Frey curves attached to a solution.

Proposition 13. Assume s/t ∈ Q. The j-invariant of Es does not lie
in Q unless

• s/t = 0, j = 1728,
• s/t = 1, j = 8000.

Proof. The j-invariant of Es lies in Q(
√

5), so is of the form α + β
√

5.
Setting β = 0 gives a system of equations which can be solved in MAPLE.

Proposition 14. Assume s/t ∈ Q. The j-invariant of Et does not lie
in Q unless

• s/t =∞, j = 1728,
• s/t = 5, j = 8000.

Proof. The j-invariant of Et lies in Q(
√

5), so is of the form α + β
√

5.
Setting β = 0 gives a system of equations which can be solved in MAPLE.

The elliptic curves with complex multiplication by an imaginary quadrat-
ic order O of class number 2 are listed below (cf. [24], [37]).

d(O) j

−15 (−191025± 85995
√

5)/2

−20 632000± 282880
√

5

−24 2417472± 1707264
√

2

−35 −58982400± 26378240
√

5

−40 212846400± 95178240
√

5

−51 −2770550784± 671956992
√

17

−52 3448440000± 956448000
√

13

−88 3147421320000± 2225561184000
√

2

−91 −5179536506880± 1436544958464
√

13

−115 −213932305612800± 95673435586560
√

5

−123 −677073420288000± 105741103104000
√

41

−148 19830091900536000± 3260047059360000
√

37

−187 −2272668190894080000± 551203000178688000
√

17

−232 302364978924945672000± 56147767009798464000
√

29

−235 −411588709724712960000± 184068066743177379840
√

5

−267 −9841545927039744000000± 1043201781864732672000
√

89

−403 −1226405694614665695989760000± 340143739727246741938176000
√

13

−427 −7805727756261891959906304000± 999421027517377348595712000
√

61
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Proposition 15. Assume s/t ∈ Q. The elliptic curve Es does not have
complex multiplication unless

• s/t = 0, j = 1728, d(O) = −4,
• s/t = 1, j = 8000, d(O) = −8,
• s/t = 1/2, j = 632000− 282880

√
5, d(O) = −20,

• s/t = 9, j = 212846400 + 95178240
√

5, d(O) = −40,
• s/t = 9/17, j = 212846400− 95178240

√
5, d(O) = −40,

• s/t =∞, j = 632000 + 282880
√

5, d(O) = −20.

Proof. As the j-invariant of Es lies in Q(
√

5), we see that if Es has
complex multiplication, then the ring of its endomorphisms defined over Q
is an imaginary quadratic order O of class number 1 or 2. In the former case,
j(Es) ∈ Q. In the latter case, the discriminant of O is one of −15, −20, −35,
−40, −115, −235. For each of the corresponding values of the j-invariant,
we can use MAPLE to compute the possible values for s/t ∈ Q.

Proposition 16. Assume s/t ∈ Q. The elliptic curve Et does not have
complex multiplication unless

• s/t = 5, j = 8000, d(O) = −8,
• s/t = 10, j = 632000 + 282880

√
5, d(O) = −20,

• s/t = 0, j = 632000− 282880
√

5, d(O) = −20,
• s/t = 85/9, j = 212846400 + 95178240

√
5, d(O) = −40,

• s/t = 5/9, j = 212846400− 95178240
√

5, d(O) = −40,
• s/t =∞, j = 1728.

Proof. As the j-invariant of Et lies in Q(
√

5), we see that if Et has
complex multiplication, then the ring of its endomorphisms defined over Q
is an imaginary quadratic order O of class number 1 or 2. In the former case,
j(Et) ∈ Q. In the latter case, the discriminant of O is one of −15, −20, −35,
−40, −115, −235. For each of the corresponding values of the j-invariant,
we can use MAPLE to compute the possible values for s/t ∈ Q.

Corollary 17. If s, t satisfy the conditions from Lemma 3, then Es

does not have complex multiplication unless

• s/t = 0, j = 1728, d(O) = −4,
• s/t =∞, j = 632000 + 282880

√
5, d(O) = −20.

Proof. We eliminate the cases s/t = 9, j = 212846400 + 95178240
√

5,
d(O) = −40 and s/t = 1, j = 8000, d(O) = −8 because p is an odd prime
(cf. Lemma 4). The other cases are eliminated because s/t is a square.

Corollary 18. If s, t satisfy the conditions from Lemma 3, then Et

does not have complex multiplication unless

• s/t = 0, j = 632000 + 282880
√

5, d(O) = −20,



354 I. Chen

• s/t =∞, j = 1728, d(O) = −4.

Proof. The other cases are eliminated because s/t is a square.

Assume that s, t satisfy the conditions from Lemma 3. The elliptic curves
Es, Et are Q-curves defined over Q(

√
5,
√

2) as long as s/t 6= 0,∞ by Corol-
laries 17 and 18. We note that E = Es, Et is not a Q-curve defined over
Q(
√

5) because the 2-isogeny between E and its conjugate under
√

5 7→ −
√

5
cannot in general be defined over Q(

√
5).

4. Splitting maps and models of Q-curves. Let E = Es or Et. We
have constructed representations ρ̂E,β,π : GQ → GL2(Mβ,π) attached to the
Q-curve E. However, the construction depends on the choice of a splitting
map β : GQ → Q∗ for E, which is related to picking a Q-curve E′ defined
over K ′ in the Q-isomorphism class of E such that the decomposition of
ResK

′
Q E′ up to isogeny over Q is a product of non-isogenous abelian varieties

of GL2-type (see previous discussion in Section 2).
Let GQ(

√
5)/Q = {σ1, σ5}. There is a 2-isogeny σ5E → E defined over

Q(
√

5,
√

2), whence we set µE(σ5) to be this isogeny and µE(σ1) = 1. The
cocycle cE(σ, τ) = µE(σ)σµE(τ)µE(στ)−1 can also be described as arising
from a cocycle αE ∈ H1(GQ,Q

∗
/Q∗) given by µE(σ)∗(ωE) = αE(σ)ωE′ ,

with ωE , ωE′ being the invariant differentials on E, E′ = σE, through the
formula

cE(σ, τ) = αE(σ)σαE(τ)αE(στ)−1,

which results from the map

H1(GQ,Q
∗
/Q∗)→ H2(GQ,Q∗),

which is derived from the short exact sequence

1→ Q∗ → Q∗ → Q∗/Q∗ → 1.

Explicitly,

αEs(σ1) = 1, αEs(σ5) =
1 +
√

5√
2

,

αEt(σ1) = 1, αEt(σ5) =
√

2.

This can be computed using the discussion in [27, p. 288].
Consider first E = Es. Let GQ(

√
5,
√

2)/Q = {σ1, σ2, σ5, σ10}. Then cE(σ, τ)
factors through this group and has the representative values

cE(σ2, σ2) = 1, cE(σ10, σ10) = 2, cE(σ2, σ10) = −cE(σ10, σ2).

It follows that RE ∼= M2(Q) and hence ResQ(
√

5,
√

2)
Q E is isogenous over Q

to B × B where B is an abelian surface defined over Q with EndQB = Q.
This means that taking K ′ = Q(

√
5,
√

2) and E′ = E is not a suitable choice
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for our purposes because the decomposition of ResQ(
√

5,
√

2)
Q E up to isogeny

over Q does not include any abelian varieties of GL2-type.

Proposition 19 (cf. [27, p. 294]). The map on cocycles given by

c(σ, τ) 7→ (sgn c(σ, τ), |c(σ, τ)|)
induces an isomorphism

H2(GQ,Q∗)[2]→ H2(GQ, {±1})×H2(GQ, P/P
2)

where P is the group of positive rational numbers.

We call c±(σ, τ) = sgn c(σ, τ) the sign component of c(σ, τ).

Proposition 20. The sign component c±E(σ, τ) ∈ H2(GQ, {±1}) of
cE(σ, τ) is given by the quaternion algebra (5, 2) ∈ H2(GQ, {±1}).

Proof. Let d(σ) = degµE(σ) be the degree map. In the terminology of
[27, p. 294], {a1} = {5} and {d1} = {2} are dual bases with respect to d(σ).
The conclusion then follows from [27, Theorem 3.1].

Let ε : GQ → Q∗ be a character and let θε(σ, τ)=
√
ε(σ)

√
ε(τ)

√
ε(στ)

−1
.

Then θε(σ, τ) ∈ H2(GQ, {±1}).

Proposition 21 (cf. [27, Theorem 4.2]). Let β(σ) =
√
ε(σ)

√
d(σ).

Then β(σ) is a splitting map for E if and only if θε(σ, τ) = c±E(σ, τ) as
classes in H2(GQ, {±1}).

Proposition 22 (cf. [27, p. 302]). θε(σ, τ) = c±E(σ, τ) as classes in
H2(GQ, {±1}) if and only if θε(σ, τ) = c±E(σ, τ) as classes in H2(GQp , {±1})
for all finite primes p.

Proposition 23. H2(GQp , {±1}) ∼= {±1} for all finite primes p.

Proof. This follows from the fact that H2(GQp , {±1}) is contained in the
2-torsion of H2(GQp ,Q

∗
p) which can be identified with isomorphism classes

of simple algebras over Qp with center Qp and dimension 4 over Qp, that is,
quaternion algebras over Qp (cf. [31, Chapitre X, §5, Chapitre XIII, §4]). It
is also known that over Qp, there are precisely two isomorphism classes of
quaternion algebras (cf. [38, Theorem 1.1]).

Proposition 24 (cf. [27, p. 302]). θε(σ, τ)p = εp(−1) as classes in
H2(GQp , {±1}) ∼= {±1}.

The above results imply that a possible choice of splitting map β for E
is given by

(8) β(σ) =
√
ε(σ)

√
d(σ),

where d(σ) = degµE(σ), ε = ε4ε5, ε4 is the non-trivial character of (Z/4Z)∗,
and ε5 is a non-trivial character of (Z/5Z)∗. For this choice of β, we have
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εβ = ε and Mβ = Q(i). The character ε has kernel {±1}, regarded as a
character of (Z/20Z)×. To fix choices, suppose that ε(±3) = i ∈ C.

Explicitly, the coboundary relating the cocycles cE(σ, τ) and cβ(σ, τ) =
β(σ)β(τ)β(στ)−1 can be described as follows. We will use this coboundary
to find a Q-curve Eβ defined over a number field Kβ in the Q-isomorphism
class of E such that cEβ (σ, τ) = cβ(σ, τ) as cocycles (not just as classes).

Let α1(σ) = αE(σ)σ
√
γ1/
√
γ1, where γ1 = (5 +

√
5)/2. Then

α1(σ1) = 1, α1(σ5) =
√

2.

Recall that the cocycles α(σ), α1(σ) have values in Q∗/Q∗ so any equality
is regarded up to multiplication by an element in Q∗ (in this case, by ±1).

We wish to find a γ2 such that

(9) α2(σ) = α1(σ)
√

σγ2

γ2

satisfies
cβ(σ, τ) = α2(σ)σα2(τ)α2(στ)−1.

Let Kβ = Q(z) where z =
√

(5 +
√

5)/2 is a root of X4 − 5X2 + 5 and let
GKβ/Q = {σ±1 , σ

±
5 }. The unit group of Kβ is generated by

u1 = −1,

u2 = 2− z2,

u3 = −z2 + z + 2,

u4 = −z3 + z2 + 3z − 3,

and is isomorphic to Z/2Z× Z× Z× Z.
Let g = α2(σ+

5 ). Then g2/2 = σ+
5 γ2/γ2 is a necessary constraint on

g using (9). As an initial guess, suppose that g2/2 = u is a unit in Kβ.
This unit u = 2 − z can be obtained by noting (2) = (g2) in Kβ. Since
NKβ/Q(u) = 1, by Hilbert 90, there is a γ2 ∈ Kβ such that σγ2/γ2 = u,
where σ = σ+

5 . This γ2 can be obtained from the expression

γ′2 = z + uzσ + u1+σzσ
2

+ u1+σ+σ2
zσ

3

used in the proof of Hilbert 90. Then up to scaling by an element in Q∗, we
may take γ2 = 1/γ′2 = z3 + z2 − 2z.

Finally, if we let α2(σ) = αE(σ)
√

σγ/γ where

γ = z2(z3 + z2 − 2z) = 3z3 + 5z2 − 5z − 5 = z3/u3,

then the cocycle in H2(GQ,Q∗) arising from α2(σ) is precisely cβ(σ, τ) =
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β(σ)β(τ)β(στ)−1. For this fact, we list for convenience the following values:
σ+
5 γ

γ
=
g2

2
,

σ−5 γ

γ
=
g2

2
1
u2

4

,

σ+
1 γ

γ
= 1,

σ−1 γ

γ
= u2

3,

which show that α2(σ) has values in Kβ.
Let Eβ be the Q-curve defined over Kβ in the Q-isomorphism class of E

given by

Y 2 = X3 − 3δ((3 + 2
√

5)s− 3t)γ2X(10)

+ 4v((17− 4
√

5)s− (45− 18
√

5)t)γ3.

Then

∆Eβ = 26 · 36 · η−3 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)γ6,

where δ = (−5 + 3
√

5)/2, η = κ−3, and κ = (−1 +
√

5)/2 = −1/u2.
Let αEβ (σ) be the cocycle in H1(GQ,Q

∗
/Q∗) given by µEβ (σ)∗(ωEβ ) =

αEβ (σ)ωE′β where E′β = σEβ. From the consideration of how twisting affects
the αE(σ) [27, p. 291], we have

(11) αEβ (σ) = αE(σ)
σ√γ
√
γ

= α2(σ)ξ(σ)

where ξ(σ) ∈ {±1}. Replacing the choices of µEβ (σ) for Eβ (which result
from Eβ being a twist of E) by µEβ (σ)ξ(σ), we get a choice of µEβ (σ)’s for
Eβ which are locally constant on GKβ and such that the values α2(σ) lie
in Kβ. Hence, if we use Eβ instead of E, then Eβ is a Q-curve defined over
Kβ and we have

cEβ (σ, τ) = cβ(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles.
Now work of Quer [27, Theorem 5.4, Case (2)] implies that

ResKβQ Eβ ∼Q Aβ ×Aβ′ ,
where Aβ, Aβ′ are abelian varieties defined over Q of GL2-type with endo-
morphism algebra Q(i). Here, β′ = χ · β is a splitting map such that εβ′ = ε

and χ =
(

5
·
)

is the quadratic character attached to Q(
√

5).
A similar calculation can be made for E = Et with exactly the same β

as above but γ = z3 + z2− 2z. For this, it is convenient to simply note that
αEt(σ) = α1(σ).

Proposition 25. The elliptic curve E = Es (resp. E = Et) has the
following properties.
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• E has potentially good ordinary reduction in characteristic 3 if s 6≡
0 (mod 3) (resp. t 6≡ 0 (mod 3)) and potentially good supersingular
reduction in characteristic 3 if s ≡ 0 (mod 3) (resp. t ≡ 0 (mod 3)).
• The sign component

c±E(σ, τ) = sgnµE(σ)σµE(τ)µE(στ)−1 ∈ H2(GQ, {±1})
is trivial when restricted to GQ3.

Proof. The elliptic curve E has potentially good reduction because the
denominator of its j-invariant is not divisible by a prime above 3 by (4), (7)
and Lemma 5. Its j-invariant is zero in characteristic 3 if and only if s ≡ 0
(mod 3) (resp. t ≡ 0 (mod 3)), so E is supersingular in characteristic 3 if
and only if s ≡ 0 (mod 3) (resp. t ≡ 0 (mod 3)). Since the sign component
c±E(σ, τ) is given by the quaternion algebra (5, 2) by Proposition 20, we see
that it is trivial when restricted to GQ3 .

Theorem 26. The abelian varieties Aβ and Aβ′ are modular.

Proof. In the case of potentially good ordinary reduction, E satisfies the
hypotheses of [15, Theorem 5.1] because of Proposition 25, so we deduce
that it is modular. In the case of potentially good supersingular reduction,
we note that PρE,β,π is unramified at 3, so by [15, Theorem 5.2] we also
deduce that E is modular.

The abelian varieties Aβ and Aβ′ are not isogenous over Q since β′ 6= σβ
for any σ ∈ GQ. Let f and f ′ be the newforms attached to Aβ and Aβ′
respectively.

Theorem 27. Aβ′ is isogenous over Q to a twist of Aβ by χ−1 = χ
=
(

5
·
)

and hence f ′ is a twist of f by χ−1 = χ =
(

5
·
)
.

Proof. This can be seen from the Galois action on the Tate module of
Aβ and Aβ′ which is given by

x⊗ y 7→ x · β(σ)−1 ⊗ µE(τ)(τ(y)),

x⊗ y 7→ x · β′(σ)−1 ⊗ µE(τ)(τ(y)).

Since β′ = χ ·β, we see that ρ̂A,β′,π(σ) = ε−1(σ)ρ̂A,β,π(σ), where π is a prime
of Mβ′ = Mβ = Q(i) above p.

5. Serre invariants attached to Q-curves. For E = Es or Et, let
ρE,β,π : GQ → F∗p GL2(Fp) be the reduction of ρ̂E,β,π. Assume that this
reduction is irreducible. We now determine the character, conductor, and
weight of ρE,β,π from the relation between E and Eβ.

The discriminant of Kβ is given by dKβ/Q = 24 · 53 = 2000. The prime
factorizations of (2), (3), and (5) in Kβ are given as follows:

(2) = q2
2, (3) = q3, (5) = q4

5.
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Let ν2 = −2 + 3z + z2 − z3, ν3 = 3, ν5 = z be uniformizers for q2, q3, q5

whose associated valuations are denoted v2(·), v3(·), v5(·).
Let M be a number field. For a prime π of M , let V̂π be a free Mπ-

module of rank n with a continuous Mπ-linear action of GK . A collection
{V̂π} of such V̂π’s where π runs through all primes of M is called a system
of Mπ[GK ]-modules.

Let A be an abelian variety of dimension g defined over K with endomor-
phism algebra equal to a number field M . The p-adic Tate module V̂p(A) of
A is isomorphic to Md

p , where Mp = M ⊗Qp =
∏
π|pMπ and [M : Q]d = 2g.

The π-adic Tate module V̂π(A) of A is isomorphic to Md
π and can be ob-

tained as V̂π(A) = V̂p(A)⊗Mp Mπ, where Mπ is regarded as an Mp-module
under the projection Mp →Mπ.

For each prime π of M , there exists an Mπ-basis for V̂π such that the
Oπ-module Λπ generated by this basis is GK-invariant. This follows from
the compactness of GK and the continuity of its action on V̂π. The kπ[GK ]-
module V̂π = Tπ/πTπ is called a reduction of V̂π. Let ρπ : GK → GL(V̂π) be
its associated representation.

Let IK be the inertia subgroup of GK , where K is a local field whose
residue field has characteristic ` 6= p. Suppose that {V̂π} is a system of
Mπ[GK ]-modules such that

• there is an open subgroup of IK whose action on V̂π is unipotent,
• the character of V̂π as an Mπ[GK ]-module has values in M which are

independent of π.

Let Gi be the lower index ramification subgroups of I with the normalization
G0 = I.

We define the conductor exponent of {V̂π} as

(12) e(π) = codimMπ V̂
IK
π +

∞∑
i=1

1
[G0 : Gi]

codimkπ V
Gi
π

for any π - `. This quantity is a non-negative integer which is independent of
π from arguments found in Ogg [25] and Serre–Tate [34].

Suppose that {V̂π} is a system of Mπ[GK ]-modules, where K is a global
field. We define the conductor of {V̂π} to be the ideal

∏
λ λ

eλ , where λ runs
through all finite primes λ of K, and eλ is the conductor exponent of {V̂π},
regarded as a system of Mπ[GKλ ]-modules by restriction to a decomposition
group above λ.

Lemma 28. The conductor exponent of a system of Mπ[GK ]-modules is
additive on direct sums.

Proof. This follows from formula (12) defining the conductor exponent.
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The conductor of an abelian variety A defined over K is defined as the
conductor of the system of Qp[GK ]-modules {V̂p(A)}.

Lemma 29. Let A be an abelian variety defined over K with endomor-
phism algebra equal to a number field M . Let NQ denote the conductor
of {V̂p(A)}, regarded as a system of Qp[GK ]-modules, and let NM denote
the conductor of {V̂π(A)}, regarded as a system of Mπ[GK ]-modules. Then
NQ = N

[M :Q]
M .

Proof. By results in [1, Theorem 4.3], the system of representations con-
sidered satisfy the conditions required for the definition of conductor to
be independent of π. Fix a prime λ | ` of K and then compare the con-
ductor exponents e(p) and e(π) for V̂p = V̂p(A) and V̂π = V̂π(A), consid-
ered as Qp[GKλ ]- and Mπ[GKλ ]-modules, where π | p and p 6= `. Since we
are free to choose p 6= `, we can assume that p is unramified in M . Let
fπ = [Mπ : Qp] = [kπ : Fp] be the inertia degree of π. Now,

dimQp Ŵ = fπ dimMπ Ŵ

for an Mπ-submodule Ŵ of V̂π. Also,

dimFpW = fπ dimkπ W

for a kπ-submodule W of Vπ. Since

V̂p(A) =
⊕
π|p

V̂π(A),

it follows that e(p) =
∑

π|p fπe(π). Since the e(π)’s are all equal, we conclude
that e(p) = [M : Q]e(π).

Lemma 30. Suppose that E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where the ai, a′i lie in a discrete valuation ring O with uniformizer ν, and
the Weierstrass equations are in minimal form. If E has reduction type I∗0
and a′i ≡ ai (mod ν4), then E′ also has reduction type I∗0 .

Proof. Since the Weierstrass equations for E and E′ are in minimal
form, when E and E′ are processed through Tate’s algorithm [36], the algo-
rithm terminates at one of Steps 1–10 and does not reach Step 11 to loop
back a second time. As E has reduction type I∗0 , the algorithm applied to
E terminates at Step 6. Since the transformations used in Steps 1–10 are
translations, they preserve the congruences ai ≡ a′i (mod ν4) as E and E′

are processed through the algorithm, and since the conditions to exit at
Steps 1–6 are congruence conditions modulo ν4 on the coefficients of the
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Weierstrass equations, we see that if the algorithm applied to E terminates
at Step 6, it must also terminate at Step 6 for E′.

Lemma 31. Suppose that E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where the ai, a′i lie in a discrete valuation ring O with uniformizer ν, and
the valuation at ν of the discriminants is equal to 12. If E has reduction type
II∗ and a′i ≡ ai (mod ν6), then E′ also has reduction type II∗. If E has
reduction type I0 and a′i ≡ ai (mod ν6), then E′ also has reduction type I0.

Proof. As v(∆) = 12, when E and E′ are processed through Tate’s
algorithm [36], the algorithm terminates at one of Steps 1–10 or reaches
Step 11 to loop back a second time before terminating.

If E has reduction type II∗, the algorithm applied to E terminates at
Step 10. Since the transformations used in Steps 1–10 are translations, they
preserve the congruences ai ≡ a′i (mod ν6) as E and E′ are processed
through the algorithm, and since the conditions to exit at Steps 1–10 are
congruence conditions modulo ν6 on the coefficients of the Weierstrass equa-
tions, we see that if the algorithm applied to E terminates at Step 10, it
must also terminate at Step 10 for E′.

If E has reduction type I0, the algorithm applied to E reaches Step 11
to loop back a second time to terminate at Step 1 (because the valuation
of the discriminant of the model for E is equal to 12). Again, since a′i ≡ ai
(mod ν6), it follows that the algorithm applied to E′ also reaches Step 11
to loop back a second time and terminate at Step 1 (again because the
valuation of the discriminant of the model for E′ is equal to 12).

Theorem 32. The conductor of Eβ = Esβ is

m = qα2 · q2
3 · qε5 ·

∏′

q|s2−10st+5t2

q,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4 and
ε = 0, 2 according as s ≡ 0 (mod 5), s 6≡ 0 (mod 5).

Proof. Recall that Eβ is given by

Y 2 = X3 − 3δ((3 + 2
√

5)s− 3t)γ2X(13)

+ 4v((17− 4
√

5)s− (45− 18
√

5)t)γ3,

with

(14) ∆Eβ = 26 · 36 · η−3 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t) · γ6,
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where

δ =
−5 + 3

√
5

2
, η = κ−3,

κ =
−1 +

√
5

2
, γ = z2(z3 + z2 − 2z).

Let
c4 = −24 · 3 · −3δ((3 + 2

√
5)s− 3t)γ2,

c6 = −25 · 33 · 4v((17− 4
√

5)s− (45− 18
√

5)t)γ3.
(15)

Let q be a prime not dividing 2 · 3 · 5 but dividing ∆Eβ . The elliptic curve
Eβ has multiplicative bad reduction at q if one of c4, c6 6≡ 0 (mod q). Since δ
and γ are not divisible by q and (s, t) = 1, we note that c4 ≡ c6 ≡ 0 (mod q)
happens if and only if

(3 + 2
√

5)s− 3t ≡ 0 (mod q),

(17− 4
√

5)s− (45− 18
√

5)t ≡ 0 (mod q).

But since the determinant of this linear system is 48(2 −
√

5), which is
not divisible by q, we see that c4 ≡ c6 ≡ 0 (mod q) if and only if s ≡
t ≡ 0 (mod q), which does not happen because (s, t) = 1. Hence, Eβ has
multiplicative bad reduction at q.

If s 6≡ 0 (mod 3), then v3(c4) = 2. If s ≡ 0 (mod 3), then by (14) we have
v3(∆Eβ ) = 6. Hence, by [26, Tableaux II], (13) is in minimal form at q3. We
go through all possibilities for (v, t) modulo ν4

3 , and in each case we compute
the reduction type of Eβ at q3 using MAGMA, which all turn out to be I∗0 .
By Lemma 30, this determines all the possible conductor exponents for Eβ
at q3.

We change the model for elliptic curve Eβ by replacing γ by µ = γ/z2

in (13). This has the effect of reducing v5(∆Eβ ) because now v5(µ) = 1.
Note this is only done for the purpose of computing the conductor exponent
at q5; we do not actually use this modified model in the overall argument.
The modified model is given by

Y 2 = X3 − 3δ((3 + 2
√

5)s− 3t)µ2X(16)

+ 4v((17− 4
√

5)s− (45− 18
√

5)t)µ3

with

(17) ∆Eβ = 26 · 36 · η−3 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t) · µ6,

If s 6≡ 0 (mod 5), then by (17), we have v5(∆Eβ ) = 6 so (16) is minimal
at q5. We go through all possibilities for (v, t) modulo ν4

5 subject to s 6≡ 0
(mod 5), and in each case we compute the reduction type of Eβ at q5 using
MAGMA, which all turn out to be I∗0 . By Lemma 30, this determines all
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the possible conductor exponents for Eβ at q5. If s ≡ 0 (mod 5), then
v5(s) ≥ 4. It follows from (15)–(17) that v5(c4) ≥ 4, v5(c6) ≥ 6, v5(∆Eβ )
= 12. Replacing (X,Y ) by (Xν2

5 , Y ν
3
5) yields a model for Eβ which has good

reduction at q5.
Since s 6≡ t (mod 2), by (14) we see that v2(∆Eβ ) = 12. We go through all

possibilities for (v, t) modulo ν6
2 , and in each case we compute the reduction

type of Eβ at q2 using MAGMA, which all turn out to be II∗ or I0. By
Lemma 31, this determines all the possible conductor exponents for Eβ
at q2.

Theorem 33. The conductor of Eβ = Etβ is

m = qα2 · q2
3 · qε5 ·

∏′

q|s2−10st+5t2

q,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and
ε = 0, 2 according as s 6≡ 0 (mod 5), s ≡ 0 (mod 5).

Proof. Recall that Eβ is given by

Y 2 = X3 − 3 · 22 ·
√

5(3s− (15− 10
√

5)t)γ2X(18)

+ 25 · 5u(9s− (45− 14
√

5)t)γ3.

with

(19) ∆Eβ = 212 · 36 · 5
√

5 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)γ6

where
γ = z3 + z2 − 2z.

Let

c4 = −24 · 3 · −3 · 22 ·
√

5(3s− (15− 10
√

5)t)γ2,

c6 = −25 · 33 · 25 · 5u(9s− (45− 14
√

5)t)γ3.

Let q be a prime not dividing 2 ·3 ·5 but dividing ∆Eβ . The elliptic curve Eβ
has multiplicative bad reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is
not divisible by q and (s, t) = 1, we note that c4 ≡ c6 ≡ 0 (mod q) happens
if and only if

3s− (15− 10
√

5)t ≡ 0 (mod q),

9s− (45− 14
√

5)t ≡ 0 (mod q).

But since the determinant of this linear system is 48
√

5, which is not divisible
by q, we see that c4 ≡ c6 ≡ 0 (mod q) if and only if s ≡ t ≡ 0 (mod q),
which does not happen because (s, t) = 1. Hence, Eβ has multiplicative bad
reduction at q.

If t 6≡ 0 (mod 3), then v3(c4) = 2. If t ≡ 0 (mod 3), then by (19) we
have v3(∆Eβ ) = 6. Hence, by [26, Tableaux II], (18) is in minimal form
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at q3. We go through all possibilities for (u, s) modulo ν4
3 , and in each case

we compute the reduction type of Eβ at q3 using MAGMA, which all turn
out to be type I∗0 . By Lemma 30, this determines all the possible conductor
exponents for Eβ at q3.

We change the model for elliptic curve Eβ by replacing γ by µ = γ/z2

in (13). This has the effect of reducing v5(∆Eβ ) because now v5(µ) = −1.
This is only done for the purpose of computing the conductor exponent
at q5. The modified model is given by

Y 2 = X3 − 3 · 22 ·
√

5(3s− (15− 10
√

5)t)µ2X(20)

+ 25 · 5u(9s− (45− 14
√

5)t)µ3

with

(21) ∆Eβ = 212 · 36 · 5
√

5 · (s− (5 + 2
√

5)t)2(s− (5− 2
√

5)t)µ6.

If s 6≡ 0 (mod 5), then v5(∆Eβ ) = 0 so Eβ has good reduction at q5.
If s ≡ 0 (mod 5), then by (21), we have v5(∆Eβ ) = 6 so (20) is minimal
at q5. We go through all possibilities for (u, s) modulo ν4

5 subject to s 6≡ 0
(mod 5), and in each case we compute the reduction type of Eβ at q5 using
MAGMA, which all turn out to be type I∗0 . By Lemma 30, this determines
all the possible conductor exponents for Eβ at q5.

We change the model for elliptic curve Eβ by replacing γ by µ = γ/ν2
2

in (13). This has the effect of reducing v2(∆Eβ ) because now v2(µ) = −2.
Again, this is only done for the purpose of computing the conductor expo-
nent at q2.

Since s 6≡ t (mod 2), then by (19) we see that v2(∆Eβ ) = 12. We go
through all possibilities for (u, s) modulo ν6

2 , and in each case we compute
the reduction type of Eβ at q2 using MAGMA, which all turn out to be II∗

or I0. By Lemma 31, this determines all the possible conductor exponents
for Eβ at q2.

Theorem 34. The conductor of ResKβQ Esβ is

d2
Kβ/Q ·NKβ/Q(m) = 28+2α · 38 · 56+ε ·

∏′

q|s2−10st+5t2

q4,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4 and
ε = 0, 2 according as s ≡ 0 (mod 5), s 6≡ 0 (mod 5).

Proof. See [22, Lemma, p. 178]. We also note that Kβ is unramified
outside {2, 5} so the product is of the form stated.

Theorem 35. The conductor of ResKβQ Etβ is

d2
Kβ/Q ·NKβ/Q(m) = 28+2α · 38 · 56+ε ·

∏′

q|s2−10st+5t2

q4,
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where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and
ε = 0, 2 according as s 6≡ 0 (mod 5), s ≡ 0 (mod 5).

Proof. See [22, Lemma, p. 178]. We also note that Kβ is unramified
outside {2, 5} so the product is of the form stated.

From now on, we choose E to be Es if s ≡ 0 (mod 5) and Et if s 6≡ 0
(mod 5). Thus, ε = 0 from the theorems above.

In our situation, REβ ∼= Mβ ⊕Mβ′
∼= Q(i) ⊕ Q(i). Let M = Q(i). The

conductor of the system of Mπ[GQ]-modules {V̂π(ResKβQ Eβ)} is one of

24 · 34 · 53
∏′

q|s2−10st+5t2

q2, 28 · 34 · 53
∏′

q|s2−10st+5t2

q2,

using Theorems 34 and 35, and Lemmas 28 and 29.
We note that the trivial solution s = 0, t = 1 gives rise to the last case

and E0 = Esβ has complex multiplication by
√
−4 in this situation. The

trivial solution s = 1, t = 0 gives rise to the first case and E1 = Etβ has
complex multiplication by

√
−4 in this situation.

For future reference, we will use the notation Dq and Iq for a decompo-
sition and inertia group of GQ over the prime q.

Theorem 36 (cf. [7, Théorème 2.1], [8, Théorème (A)], [12, Theorem
3.1], [18, (0.1)]). Let f ∈ S2(Γ0(N), ψ) be a newform.

(1) The conductor of {ρ̂f,π} is equal to N .
(2) Suppose q 6= p and q ‖ N . If q does not divide the conductor of ψ,

then ρ̂f,π|Dq is of the form (
χχp ∗

0 χ

)
.

If q divides the conductor of ψ, then ρ̂f,π|Dq is of the form(
χ−1χpψ 0

0 χ

)
.

Here χ is the unramified character of D` which sends Frq to aq and
χp : GQ → Z∗p is the pth cyclotomic character.

The conductor of the system of Mπ[GQ]-modules {V̂π(Aβ)} is then equal
to the level of f . Similarly, the conductor of the system of Mπ[GQ]-modules
{V̂π(Aβ′)} is equal to the level of f ′.

We now recall some results about twists of newforms (see [2]). Let f ∈
Sk(Γ0(N), ψ) where ψ is a character of conductorN ′ |N . Let χ be a character
of conductor M . Then the twist fχ of f by χ lies in Sk(Γ0(Ñ), ψχ2) where
Ñ = lcm(N,N ′M,M2).
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Theorem 37 (cf. [2, Theorem 3.1]). Let q be a prime and Q be the
q-primary factor of the positive integer N . Write N = QM . Let f be a
newform in Sk(Γ0(N), ψ) where the conductor of the q-primary part ψq of ψ
is equal to qα with α ≥ 0. Let χ be a character of conductor qβ with β ≥ 1.
Put Q′ = max(Q, qα+β, q2β). Then

• fχ is of level dividing Q′M ,
• for each prime q′ |M , fχ is not of level Q′M/q′,
• the exact level of fχ is Q′M provided

(a) max(qα+β, q2β) < Q if Q′ = Q or
(b) the conductor of ψqχ is equal to max(qα, qβ) if Q′ > Q.

Since f ′ is a twist of f by the character χ−1 = χ =
(

5
·
)

of conductor 5,
Theorem 37 shows that the level of one of f or f ′ is equal to one of

22 · 32 · 5
∏′

q|s2−10st+5t2

q = 180
∏′

q|s2−10st+5t2

q,

24 · 32 · 5
∏′

q|s2−10st+5t2

q = 720
∏′

q|s2−10st+5t2

q.

We will for convenience switch the roles of f and f ′ if necessary so the level
of f is as stated above.

For the next two theorems, it is useful to note that s − (5 + 2
√

5)t and
s− (5− 2

√
5)t are coprime by Lemma 4.

Theorem 38. The representation φE,p|Ip is finite flat for p 6= 2, 3, 5.

Proof. This follows from the fact that E has good or multiplicative bad
reduction at primes above p when p 6= 2, 3, 5, and in the case of multiplicative
bad reduction, the exponent of a prime above p in the minimal discriminant
of E is divisible by p. Also, p is unramified in Kβ so that Ip ⊆ GKβ .

Theorem 39. The representation φE,p|I` is trivial for ` 6= 2, 3, 5, p.

Proof. This follows from the fact that E has good or multiplicative bad
reduction at primes above ` when ` 6= 2, 3, 5, and in the case of multiplicative
bad reduction, the exponent of a prime above ` in the minimal discriminant
of E is divisible by p. Also, ` is unramified in Kβ so that I` ⊆ GKβ .

Theorem 40. Suppose p 6= 2, 3. The conductor of ρ = ρE,β,π ∼= ρf,π is
one of 180, 720.

Proof. Suppose ` 6= 2, 3, 5, p. Since ` 6= 2, 5, we see that Kβ is unramified
at ` and henceGKβ contains I`. Now, in our case, ρ|GKβ is isomorphic to φE,p.
Since φE,p|I` is trivial, we see that ρ|I` is trivial so ρ is unramified outside
{2, 3, 5, p}.
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Suppose ` = 2, 3, 5. The representation φ̂E,p|I` factors through a finite
group of order only divisible by the primes 2, 3. Now, in our case, ρ̂|GKβ
is isomorphic to φ̂E,p. Hence, the representation ρ̂|I` also factors through a
finite group of order only divisible by the primes 2, 3. It follows that the
exponent of ` in the conductor of ρ is the same as in the conductor of ρ̂ as
p 6= 2, 3.

Theorem 41. Suppose p 6= 2, 3, 5. Then the weight of ρE,β,π ∼= ρf,π is 2.

Proof. The weight of ρ is determined by ρ|Ip . Since p 6= 2, 5, we see that
Kβ is unramified at p and hence GKβ contains Ip. Now, in our case, ρ|GKβ
is isomorphic to φE,p. Since φE,p|Ip is finite flat and its determinant is the
pth cyclotomic character, the weight of ρ is 2 [33, Proposition 4].

Theorem 42. The character of ρE,β,π ∼= ρf,π is ε−1.

Proof. This follows from (1).

Theorem 43 (cf. [14, Proposition 3.2]). Suppose the representation ρE,β,π
is reducible for p 6= 2, 3, 5, 7, 13. Then E has potentially good reduction at
all primes above ` > 3.

Corollary 44. The representation ρE,β,π is irreducible for p 6= 2, 3, 5,
7, 13.

Proof. This follows from the fact that a non-trivial proper solution giving
rise to E will be such that E has a prime of multiplicative bad reduction
above a prime not equal to 2, 3, 5 by Corollary 8.

Theorem 45 (cf. [14, Proposition 3.4]). Suppose the representation ρE,β,π
has image lying in the normalizer of a split Cartan subgroup for p 6= 2, 3, 5,
7, 13. Then E has potentially good reduction at all primes ` > 3.

We note in the context of [14, Propositions 3.2 and 3.4] that the reference
to a Q-curve of degree d over a quadratic number field K does not require
the isogeny between E and its conjugate to be also defined over K. More
precisely, we have the following fact.

Let XK
0,B(d, p), XK

0,N (d, p), XK
0,N ′(d, p) be the modular curves with level p

structure corresponding to a Borel subgroup B, to the normalizer of a split
Cartan subgroup N , and to the normalizer of a non-split Cartan subgroup
N ′ of GL2(Fp) respectively, and with level d structure consisting of a cyclic
subgroup of order d, twisted by the quadratic character associated to K
through the action of the Fricke involution wd.

Lemma 46. Let E be a Q-curve defined over K ′, K be a quadratic num-
ber field contained in K ′, and d a prime number such that

• the elliptic curve E is defined over K,
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• the choices of µE(σ) are constant on GK cosets, µE(σ) = 1 when
σ ∈ GK , and degµE(σ) = d when σ 6∈ GK ,
• µE(σ)σµE(σ) = ±d whenever σ /∈ GK .

If ρE,β,π has image lying in a Borel subgroup, in the normalizer of a split
Cartan subgroup, or in the normalizer of a non-split Cartan subgroup of
F×p GL2(Fp), then E gives rise to a Q-rational point on the corresponding
modular curve above.

Proof. This proof is based on [14, Proposition 2.2]. Note that Ellenberg’s
PρE,p : GQ → PGL2(Fp) is simply the projectivization of our ρE,β,π : GQ →
F×p GL2(Fp) (this does not depend on the choice of β). The action of GQ
on PE[p] is given by x 7→ µE(σ)(σx). Suppose PρE,β,π has image lying in
a Borel subgroup. Then µE(σ)(σCp) = Cp for some cyclic subgroup Cp of
order p in E[p] and all σ ∈ GQ. Let Cd be the cyclic subgroup of order
d in E[d] defined by µE(τ)(τE[d]) where τ is an element of GQ which is
non-trivial on K. This does not depend on the choice of τ .

Suppose τ is an element of GQ which is non-trivial on K. The ker-
nel of µE(τ) is precisely τCd as µE(τ)(τCd) = µE(τ)τµE(τ)(τ

2

E[d]) =
[±d](τ

2

E[d]) = 0. Hence, we see that

wd
τ(E,Cd, Cp) = wd(τE, τCd, τCp)

= (µE(τ)(τE), µE(τ)(τE[d]), µE(τ)(τCp)) = (E,Cd, Cp)

so τ(E,Cd, Cp) = wd(E,Cd, Cp) as wd is an involution.
Suppose σ is an element of GQ which is trivial on K. In this case, we

have σ(E,Cd, Cp) = (E,Cd, Cp). For this, note that
σCd = σµE(τ)(τE[d]) = σµE(τ)(στE[d]) = σµE(τ)(τE[d])

= ±µE(τ)(τE[d]) = Cd.

We have σµE(τ) = ±µE(στ) = ±µE(τ) because E does not have complex
multiplication and GK is normal in GQ. Thus, (E,Cd, Cp) gives rise to a
Q-rational point on X0,B(d, p).

The case when the image of ρE,β,π lies in the normalizer of a Cartan
subgroup is similar except that now we have the existence of a set of distinct
points Sp = {αp, βp} of PE[p] ⊗ Fp2 such that the action of σ ∈ GQ by
x 7→ µE(σ)(σx) fixes Sp as a set.

Hence, we may apply Ellenberg’s result to E/Q(
√

5) as initially given
because the hypotheses are satisfied (with K ′ = Q(

√
5,
√

2), K = Q(
√

5),
d = 2).

Corollary 47. The image of the representation ρE,β,π does not lie in
the normalizer of a split Cartan subgroup for p 6= 2, 3, 5, 7, 13.
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Proof. This follows from the fact that a non-trivial proper solution giving
rise to E will be such that E has a prime of multiplicative bad reduction
above a prime not equal to 2, 3, 5 by Corollary 8.

It follows from work on the refined Serre conjectures that ρf,π ∼= ρg,π for
a newform g ∈ S2(Γ0(M), ε−1) where M = 180, 720. We have σf = f ⊗ ε
and σf ′ = f ′⊗ε where σ is the non-trivial automomorphism of M = Q(i) by
[29, Example 3.7]. We have GKβ/Q ∼= (Z/20Z)∗/{±1} = {±1,±3,±7,±9}
and ±7 and ±3 are each generators of this cyclic group of order 4. Recall
we have normalized ε(±3) = i. From the inner twist property of f and f ′

above (cf. [29, §3]), we see that ε(q) = ±i implies that aq(f) = u+iv satisfies
u±v = 0. Thus, if q ≡ ±3 (mod 20), then u+v = 0, and if q ≡ ±7 (mod 20),
then u− v = 0.

Suppose that Kg is strictly larger than Q(i). Let q 6= 2, 3, 5 be a prime
such that aq(g) 6∈ Q(i). Assume that p 6= q. Then

p |N(aq(g)2 − ε−1(q)(q + 1)2) if q | s2 − 10st+ 5t2,

p |N(aq(g)− aq(f)) if q - s2 − 10st+ 5t2.

The former case follows from Theorem 36. In the latter case, we also note
that aq(f) is restricted by the properties of inner twist above and also by
the fact that |aq(f)| < 2

√
q. Hence, for each such prime q, we find that p is

restricted to belong in a finite subset of primes. Taking the intersection of
these subsets for different q further restricts the possibilities for p.

A computation of S2(Γ0(180), ε−1) reveals two newforms g such that Kg

strictly contains Q(i). For these, we obtain a bound of p ∈ {2, 3, 5, 7, 17}.
There are three newforms g such that Kg = Q(i) and these all have complex
multiplication by Q(

√
−4).

A computation of S2(Γ0(720), ε−1) reveals four newforms g such that
Kg strictly contains Q(i). For these, we obtain a bound of p ∈ {2, 3, 5, 7}.
There are three newforms g such that Kg = Q(i) and these all have complex
multiplication by Q(

√
−4).

The computations of modular forms were performed in MAGMA using
W. Stein’s modular symbols package. They are posted at www.math.sfu.ca/
˜ichen/x225-data for the reader’s convenience.

Theorem 48. Let p > 17 be a prime such that p ≡ 1 (mod 4). Then the
equation a2 + b2p = c5 does not have any non-trivial proper solutions.

Proof. If p /∈ {2, 3, 5, 7, 13} ∪ {2, 3, 5, 7, 17}, then we must have ρf,π ∼=
ρg,π, where g has complex multiplication by Q(

√
−4). If p ≡ 1 (mod 4),

then ρf,π ∼= ρg,π would have image lying in the normalizer of a split Cartan
subgroup, contradicting Corollary 47.

For the latter fact about the image, we give some details. We know that
g has complex multiplication by F = Q(

√
−4) in the sense that aq(g)φ(q) =
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aq(g) for all but finitely many primes q, where φ is the quadratic Dirichlet
character associated to F . By [35], Ag is isogenous over Q to the power of
an elliptic curve C with complex multiplication by F , which we shall take
to be E0 or E1 defined previously. Hence, Ag is an abelian variety of GL2-
type defined over Q attached to C. We have shown that Ag is isogenous
over Q to Aβ for some splitting map β for cC(σ, τ). However, we know
that det ρ̂g,π = ε−1χp so the splitting character εβ = ε. It follows that β
is as defined in (8), up to multiplication by a quadratic Galois character
unramified outside {2, 3, 5}. Thus, Kβ is unramified outside {2, 3, 5}. We
may now take the field of definition of the isogeny between Ag and C2 to
be Kβ by the construction of Aβ. Let L = Kβ · F . There is an injection
of M = F · Kg into the endomorphism algebra of Ag defined over L and
V̂p(Ag) ∼= M ⊗ Qp as GL-modules. Since p ≡ 1 (mod 4), p is split in M
and so ρg,π|GL has image in a split Cartan subgroup of GL2(kπ) = GL2(Fp).
This implies that in fact ρg,π|GF has image in a split Cartan subgroup of
GL2(Fp). For we know that ρg,π|GF is abelian [28, Proposition (4.4)] so
if it does not lie in a split Cartan subgroup of GL2(Fp), it must lie in a
non-split Cartan subgroup of GL2(Fp). Therefore ρg,π|GL lies in the center
of GL2(Fp), implying further that det ρg,π|GL lies in the subgroup of squares
of F×p . However, det ρg,π|GL = ε−1χp is surjective to F×p since L does not
contain a primitive pth root of unity for p > 5. Finally, as [GQ : GF ] = 2 it
follows that ρg,π itself has image in the normalizer of a split Cartan subgroup
of GL2(Fp) by the classification of subgroups of GL2(Fp).

6. The inapplicability of Mazur’s method in the non-split Car-
tan case. Let d be a prime and d 6= p. Let χ be the Dirichlet character
associated to a quadratic field K. The Q-curves E which we associate to
a hypothetical solution give rise to a non-cuspidal Q-rational points on the
modular curve XK

0,N ′(d, p) in the situation when ρE,β,π ∼= ρg,π where g has
complex multiplication by F , p is inert in F , and where K = Q(

√
5).

Let X0,N ′(d, p) be the modular curve with level p structure corresponding
to the normalizer of a non-split Cartan subgroup N ′ of GL2(Fp) and level
d structure consisting of a cyclic subgroup of order d. Let J0,N ′(d, p) be the
jacobian of X0,N ′(d, p), and JK0,N ′(d, p) be the jacobian of XK

0,N ′(d, p).
From the arguments in [15], there is an isogeny

(22) π : J0,N ′(d, p)

→
∏

[f ]∈N+
2 (Γ0(p2))

A[f ]

∏
[f ]∈N+

2 (Γ0(p2))

A[f ]

∏
[f ]∈N+,+

2 (Γ0(dp2))

A[f ]

∏
[f ]∈N−,+2 (Γ0(dp2))

A[f ],

where A[f ] is the abelian variety attached to [f ], the Galois conjugacy class
of f . Here N+

2 (Γ0(p2)) is the set of Galois conjugacy classes of newforms of
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weight 2 and level p2 such that wp2f = f ; N∓,+2 (Γ0(dp2)) is similarly defined
except wdf = ∓f , wp2f = f , and the level is dp2. Note that the Atkin–
Lehner involutions commute with the action of Galois on the coefficients of
modular forms so N+

2 (Γ0(p2)) and N∓,+2 (Γ0(dp2)) are well-defined.
Let

π1 : J0,N ′(d, p)→
∏

[f ]∈N+
2 (Γ0(p2))

A[f ],

π2 : J0,N ′(d, p)→
∏

[f ]∈N+
2 (Γ0(p2))

A[f ],

π3 : J0,N ′(d, p)→
∏

[f ]∈N+,+
2 (Γ0(dp2))

A[f ],

π4 : J0,N ′(d, p)→
∏

[f ]∈N−,+2 (Γ0(dp2))

A[f ]

be the homomorphisms obtained by composing the projection to the given
group of factors with π. Then πi ◦wd = πi for i = 1, 3 and πi ◦wd = −πi for
i = 2, 4 [15].

The isogeny arises from the fact that J0,N ′(d, p) is isogenous over Q to
the p-new quotient of J0(dp2)/wp (cf. [13]) which decomposes up to isogeny
over Q into the above product (cf. [29]).

The twist by χ is obtained through the action of wd on X0,N ′(d, p).
Hence, JK0,N ′(d, p) is isogenous over Q to∏
[f ]∈N+

2 (Γ0(p2))

A[f ]

∏
[f ]∈N+

2 (Γ0(p2))

A[fχ]

∏
[f ]∈N+,+

2 (Γ0(dp2))

A[f ]

∏
[f ]∈N−,+2 (Γ0(dp2))

A[fχ]

where

fχ =
∑
n

χ(n)an(f)qn.

Let λQ(f) be the pseudo-eigenvalue [2] for a newform f ∈ Sk(Γ0(N), ε)
with respect to the Atkin–Lehner involution wQ where Q is a q-primary
factor of N .

Theorem 49. Let f be a newform in Sk(Γ0(N), ε) and χ a character of
conductor m prime to N . Then fχ is a newform in Sk(Γ0(Nm2), εχ2) and

λNm2(fχ) = ε(m)χ(−N)
g(χ)
g(χ)

λN (f).

Proof. See the statement in [2, p. 228] based on a theorem of Weil [39]
stated in [21, Theorem 6].
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Suppose K is real, d is inert in K, and the conductor of χ is equal to
m which is prime to N . In our situation, K = Q(

√
5), χ =

(
5
·
)
, m = 5,

d = 2, and N = dp2. Then χ(−p2) = 1 and χ(−dp2) = −1. For [f ] ∈
N+

2 (Γ0(p2)), λp2m2(fχ) = χ(−p2)λp2(f) = 1 by Theorem 49. For [f ] ∈
N−,+2 (Γ0(dp2)), λdp2m2(fχ) = χ(−dp2)λdp2(f) = 1 by Theorem 49. Thus,
for [f ] ∈ N+

2 (Γ0(p2)) and [f ] ∈ N−,+2 (Γ0(dp2)), L([fχ], s) has sign −1 in
its functional equation because the sign for L(fχ, s) is −λNm2(fχ) (cf. [23,
Theorem 4.3.6] in case k = 2).

This implies every non-zero quotient of JK0,N ′(d, p) has even order of
vanishing at s = 1 and hence positive rank over Q, assuming the Birch–
Swinnerton-Dyer conjectures for abelian varieties. Hence, Mazur’s method
is inapplicable to the modular curves XK

0,N ′(d, p) in our situation.

7. Conclusion. It would be interesting to see if a few more cases of
the generalized Fermat equation can be handled using Q-curves. Indeed, it
would be worthwhile to have a more conceptual and precise understanding
as to which exponents we can expect to resolve using elliptic curves and
what properties these elliptic curves should have (thanks to C. Skinner for
asking this question and pointing out the references below). In the case of
prime exponents, this was analyzed in [16], and in [11] one has a conceptual
starting point to answer this question.

In order to construct Frey curves for use in the modular method, a
natural class of objects to consider are genus zero congruence subgroups of
SL2(Z) with exactly three special points (i.e. elliptic points or cusps). From
[10], the following is the list of such modular curves:

• X(1), (2, 3,∞),
• X0(2), (2,∞,∞),
• X0(3), (3,∞,∞),
• X(2), (∞,∞,∞),
• X0(4), (∞,∞,∞),

where we list the orders of the stabilizers in PSL2(Z) of the three special
points.

Let l1(u, v), l2(u, v), l3(u, v) be three homogeneous linear polynomials in
Q[u, v]. It is possible to construct a Frey curve from X0(2) which can poten-
tially solve the system of equations l1(u, v) = c2, l2(u, v) = ap, l3(u, v) = bp.
For example, if l1(u, v) = u+v and l2(u) = u and l3(v) = v, then the result-
ing Frey curve potentially solves ap + bp = c2. The construction proceeds as
follows. The j-invariant is a rational function of a uniformizer t for X0(2),
and we have

j = (t+ 256)3/t2, j − 1728 =
(t+ 64)(t− 512)2

t2
,
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for one such choice of uniformizer t. Let s1, s2, s3 be the roots corresponding
to l1, l2, l3. Let t be a Möbius transformation of s such that s = s1, s2, s3 are
sent to t = −64, 0,∞. Writing j as a rational function of s, and then taking
E to be an elliptic curve with j-invariant equal to j, gives the desired Frey
curve after setting s = u/v. It is usually beneficial to twist the resulting
Frey curve E so that its conductor is smaller than initially given.

An additional constraint on E is that it should have attached Galois
representations which we are able to handle through modularity. In the
example given above, E would be defined over Q and so we can attach to
E the usual 2-dimensional `-adic representations of GQ.

Another situation is when l1(u, v) ∈ Z[u, v] and l2(u, v)l3(u, v) is irre-
ducible in Z[u, v]. In this case, E is a Q-curve defined over some number
field containing the associated roots of l2(u, v)l3(u, v), and it is possible to
attach 2-dimensional `-adic representations of GQ to E. For example, when
l1(u, v) = u or v, and l2(u, v)l3(u, v) = u2− 10uv+ 5v2, the above construc-
tion gives the Q-curves Es and Et used in this paper.
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