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1. Introduction. Let N be a positive integer and let χ be a primitive
multiplicative character (mod N). It is known that the absolute value of the
classical Gauss sum

τ(χ) =
N−1∑
n=1

χ(n) exp
(

2πin
N

)
is N1/2. However, it is difficult to determine the argument of this sum. In
1962, C. Chowla [1] and L. J. Mordell [7] independently proved that when
N is a prime number, the argument is a root of unity if and only if χ is real.
When N = pr is an odd prime power with r ≥ 2, R. Odoni [8] gave explicit
formulas for the argument of τ(χ) by using p-adic analysis. An important
role in finding the argument of τ(χ) is played by the fact that the group
(Z/prZ)× is cyclic when p is an odd prime. Finally, T. Funakura [3] com-
puted the classical Gauss sums for all integer n and, further, gave a criterion
for the argument of a classical Gauss sum to be a root of unity. Moreover,
in 1983, J.-L. Mauclaire [5] provided another elementary proof giving the
argument of τ(χ) when p is an odd prime. Furthermore, he completed the
remaining case of the prime number 2 in [6].

In this paper, we generalize the classical Gauss sums to polynomial Gauss
sums in the polynomial ring over the finite field Fq of q elements. For q
odd, we explicitly give the argument of a polynomial Gauss sum. We are
then able to generalize the classical Chowla–Mordell theorem to polynomial
Gauss sums, providing a necessary and sufficient condition for the argument
of a polynomial Gauss sum to be a root of unity.

Throughout this paper, p is an odd prime and q = pr is a power of p. Let
Fq be the finite field of q elements of characteristic p and let Trq : Fq → Fp
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be the trace map onto Fp (identified with Z/pZ). Let eq : Fq → C× be the
standard additive character of Fq defined by

eq(α) = exp
(

2πiTrq(α)
p

)
for all α in Fq.

Let A = Fq[T ] be the polynomial ring in T over Fq and let K∞ =
Fq((1/T )) denote the completion field of the rational function field Fq(T ) at
the infinite place 1/T ; in other words, every a ∈ K∞ \{0} can be expressed
as

a =
d∑

i=−∞
ciT

i,

where ci ∈ Fq and cd 6= 0. The degree and absolute value of a are defined by
deg a = d and |a| = qd. The residue of a at the infinite place is denoted by
res∞ a = c−1. The polynomial exponential map E : K∞ → C× is defined by

E(a) = eq(res∞ a) for all a in K∞.

Let Q ∈ A. For any multiplicative character χ of A/QA, the polynomial
Gauss sum of χ is defined by

τ(χ) =
∑

[f ]∈(A/QA)×

χ([f ])E
(
f

Q

)
.

It is well-known that for any primitive multiplicative character χ of A/QA,
we have

|τ(χ)| = |Q|1/2,

and there is no explicit method to evaluate ε(τ), the argument of τ(χ). In
this paper, however, we determine ε(τ) in the case when Q = Pn (n ≥ 2)
for any monic irreducible polynomial P in A. It deserves to be mentioned
that while the multiplicative group (Z/pnZ)× with p an odd prime is always
cyclic, the multiplicative group (A/PnA)× with n ≥ 2 is not. This makes
finding the explicit value of τ(χ) more difficult. Now, we give a brief account
of the main result of this paper:

Main result. If P is a monic irreducible polynomial in A and χ is
a multiplicative character of A/PnA (n ≥ 2), then there exists a specific
polynomial a (depending on χ) with P - a and deg a < (n/2) degP such
that

τ(χ) =


0 if χ is not primitive,
|P |n/2χ(−a) if χ is primitive and n is even,
|P |n/2χ(−a)ε4p if χ is primitive and n is odd,

where ε4p is a 4pth root of unity.
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From the main result, when n ≥ 2, ε(τ) is a root of unity if and only if χ
is primitive. For the remaining case n = 1, a criterion for ε(τ) being a root
of unity can be given by the results of Evans [2] and Yang–Zheng [9], since
A/PA ∼= Fqd , where d = degP : when n = 1, the quantity ε(τ) is a root of
unity if and only if

dr(p− 1)
2

≤ min
u

{
S

(
u
qd − 1
f

)}
where f is the order of χ, u runs from 1 to f and is coprime to f , and for
every positive integer a < qd, S(a) is the sum of the digits appearing in the
p-adic representation of a; in other words,

S(a) =
dr−1∑
j=0

aj for a =
dr−1∑
j=0

ajp
j with 0 ≤ aj < p.

2. Auxiliary lemmas. Throughout this paper, let n ≥ 2 be a positive
integer and m = bn/2c, the greatest integer less than or equal to n/2. Let
P be a monic irreducible polynomial in A, and let (A/PnA)× denote the
unit group of the residue class ring A/PnA.

We introduce two types of special subgroups of (A/PnA)×:

Km := {[1 + fPn−m] | deg f < m degP},
Hm := {[1 + fPm + gP 2m] | deg f, deg g < degP} (only for odd n).

Note that Km is isomorphic to the additive group A/PmA. The multiplica-
tive identity

[1 + f1P
m + g1P

2m][1 + f2P
m + g2P

2m]

= [1 + (f1 + f2)Pm + (g1 + f1f2 + g2)P 2m]

proves that Hm is indeed a subgroup of (A/PnA)×.

In addition, we study the character groups Â/PmA, K̂m, and Ĥm of
A/PmA, Km, and Hm, respectively. For any a in A, let ψa : A/PmA→ C×
be defined by

(2.1) ψa([f ]) = E

(
af

Pm

)
.

This is an additive character of A/PmA, and

Â/PmA = {ψa | a ∈ A, deg a < m degP}.

Further,

(2.2) ψa1ψa2 = ψa1+a2
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for all a1 and a2 in A with deg a1,deg a2 < mdegP , and

(2.3)
∑

deg f<m deg P

ψa([f ]) =
{
|Pm| if a = 0,
0 otherwise.

For the group Km, let Ψa : Km → C× be the multiplicative character
defined by

(2.4) Ψa([1 + fPn−m]) = ψa([f ])

for all f in A with deg f < m degP . Since Km is isomorphic to the additive
group A/PmA, the character group K̂m is

(2.5) K̂m = {Ψa | a ∈ A, deg a < m degP}.
When n is an odd integer, n = 2m + 1, since q is odd, for any b and c

in A, we can define the function Ψb,c : Hm → C× by

(2.6) Ψb,c([1 + fPm + gP 2m]) = E

(
bf + cg − 1

2cf
2

P

)
.

Then we have the following lemma.

Lemma 2.1. If n ≥ 2 is an odd integer, i.e., n = 2m+ 1, then the group
Ĥm of the multiplicative characters of the subgroup Hm is

Ĥm = {Ψb,c | b, c ∈ A, deg b,deg c < degP}.
Proof. It is not difficult to check that Ψb,c is a multiplicative character

of Hm. Further, we prove that if b1 6≡ b2 or c1 6≡ c2 (mod P ), then Ψb1,c1 6=
Ψb2,c2 . If Ψb1,c1 = Ψb2,c2 for some b1, b2 and c1, c2 in A, then

Ψb1,c1([1 + fPm + gP 2m]) = Ψb2,c2([1 + fPm + gP 2m])

for all polynomials f and g with deg f, deg g < degP . Taking f = 0, we have
Ψb1,c1([1 + gP 2m]) = Ψb2,c2([1 + gP 2m]) for all g with deg g < degP , that is,

E

(
c1g

P

)
= E

(
c2g

P

)
.

This implies that

E

(
(c1 − c2)g

P

)
= 1

for all g with deg g<degP . Hence, c1 ≡ c2 (mod P ). Moreover, taking g = 0,
we get Ψb1,c1([1 + fPm]) = Ψb2,c2([1 + fPm]) for all f with deg f < degP ,
that is,

E

(
b1f − 1

2c1f
2

P

)
= E

(
b2f − 1

2c2f
2

P

)
.

It follows that

E

(
(b1 − b2)f − 1

2(c1 − c2)f2

P

)
= 1
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for all f with deg f < degP . Since we know that c1 ≡ c2 (mod P ), the above
is equivalent to

E

(
(b1 − b2)f

P

)
= 1

for all f with deg f < degP . Hence, b1 ≡ b2 (mod P ). Thus, we proved that
Ψb1,c1 6= Ψb2,c2 if b1 6≡ b2 (mod P ) or c1 6≡ c2 (mod P ).

Finally, since the cardinality of Ĥm is

|Ĥm| = |Hm| = |P |2

and the number of characters Ψb,c with deg b,deg c < degP is also equal to
|P |2, the desired conclusion follows.

3. The arguments of polynomial Gauss sums. In this section, we
prove our main result. Let the integer m, the subgroups Km, Hm, and the
characters ψa, Ψa, Ψb,c be defined as in Section 2. Let ̂(A/PnA)× be the
group of multiplicative characters χ of (A/PnA)×. For convenience, we use
χ(f) to represent the complex value χ([f ]). Recall that a multiplicative char-
acter χ of A/PnA is called primitive if χ does not factor through (A/P kA)×

for any integer k with 0 ≤ k < n.
Consider the restriction χ|Km of the multiplicative character χ to the

subgroup Km. Since χ|Km is a multiplicative character of Km, by (2.5)
there exists a unique polynomial a in A with deg a < m degP such that
χ|Km = Ψa, that is,

(3.1) χ(1 + fPn−m) = χ|Km(1 + fPn−m) = Ψa([1 + fPn−m]) = ψa([f ])

for all f in A with deg f < mdegP . Moreover, if P divides a then χ fac-
tors through (A/Pn−1A)×. Conversely, if χ is not primitive, then χ factors
through (A/Pn−1A)×. Hence,

(3.2) χ is primitive if and only if P - a.

When n is odd, i.e., n = 2m + 1, consider the restriction χ|Hm . Since
χ|Hm is a multiplicative character of Hm, by Lemma 2.1 there exist unique
polynomials b and c in A with deg b,deg c < degP such that χ|Hm = Ψb,c,
that is,

χ(1 + fPm + gP 2m) = χ|Hm(1 + fPm + gP 2m) = Ψb,c([1 + fPm + gP 2m])

for all f and g in A with deg f,deg g < degP . Moreover, if c = 0 then χ
factors through (A/Pn−1A)×. Hence, if χ is primitive then c 6= 0.

To abbreviate our proof of the main theorem, we prove Lemma 3.1 below
first. In the proof of this lemma, we use a result of Hsu [4] saying that when



398 C.-N. Hsu and T.-T. Nan

P is a monic polynomial in A, then

(3.3)
∑

deg f<deg P

E

(
f2

P

)
= |P |1/2i(|P |−1)2/4.

Lemma 3.1. Let n ≥ 2 be an odd integer, i.e., n = 2m+ 1, and let χ be
a primitive multiplicative character of (A/PnA)×. If χ|Hm = Ψb,c for some
b, c in A with deg b,deg c < degP , then c 6= 0 and∑

deg f<deg P

χ(1 + fPm) = |P |1/2E

( 1
2b

2c′

P

)(
−2c
P

)
i(|P |−1)2/4,

where c′ denotes the polynomial in A such that deg c′ < degP , c′c ≡ 1
(mod P ), and

(−2c
P

)
is the polynomial quadratic residue symbol.

Proof. Since χ is primitive, we know that c 6= 0. Since χ|Hm = Ψb,c and
q is odd, from (2.6) we have∑

deg f<deg P

χ(1 + fPm) =
∑

deg f<deg P

Ψb,c([1 + fPm])

=
∑

deg f<deg P

E

(
bf − 1

2cf
2

P

)

= E

( 1
2b

2c′

P

) ∑
deg f<deg P

E

(−1
2c(f − bc

′)2

P

)

= E

( 1
2b

2c′

P

) ∑
deg f<deg P

E

(−1
2cf

2

P

)
.

Furthermore, since −1
2c 6= 0, we have∑

deg f<deg P

χ(1 + fPm) = E

( 1
2b

2c′

P

) ∑
deg f<deg P

(−1
2c

P

)
E

(
f2

P

)

= E

( 1
2b

2c′

P

)(−1
2c

P

) ∑
deg f<deg P

E

(
f2

P

)
.

It follows directly from (3.3) that∑
deg f<deg P

χ(1 + fPm) = E

( 1
2b

2c′

P

)(−1
2c

P

)
· |P |1/2i(|P |−1)2/4

= |P |1/2E

( 1
2b

2c′

P

)(
−2c
P

)
i(|P |−1)2/4.

The formula for the argument of τ(χ) is given in
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Theorem 3.2. Let n ≥ 2 be an integer, let χ be a multiplicative char-
acter of A/PnA, and let m = bn/2c. Let a be the polynomial in A with
deg a < mdegP such that χ|Km = Ψa. Then

(1) if χ is not primitive, then τ(χ) = 0;
(2) if χ is primitive and n is even, then P - a and

τ(χ) = |P |n/2χ(−a);

(3) if χ is primitive, n is odd, and χ|Hm = Ψb,c with b, c in A and
deg b,deg c < degP , then P - a, c 6= 0, and

τ(χ) = |P |n/2χ(−a)E
( 1

2b
2c′

P

)(
−2c
P

)
i(|P |−1)2/4.

Proof. Every element [f ] in (A/PnA)× can be uniquely represented as

[g][1 + hPm],

where g ∈ A with deg g < m degP , P - g, and h ∈ A with deg h <
(n−m) degP . From the definition of the polynomial Gauss sum, we have

τ(χ) =
∑

[f ]∈(A/PnA)×

χ(f)E
(
f

Pn

)

=
∑

deg g<m deg P, P -g

∑
deg h<(n−m) deg P

χ(g(1 + hPm))E
(
g(1 + hPm)

Pn

)
.

Since χ is a multiplicative character of A/PnA, we have

(3.4) χ(g(1 + hPm)) = χ(g)χ(1 + hPm).

Applying the definition of res∞ and deg g < m degP , we get E
( g

Pn

)
= 1

and

E

(
g(1 + hPm)

Pn

)
= E

(
g + ghPm

Pn

)
(3.5)

= E

(
g

Pn

)
E

(
ghPm

Pn

)
= E

(
gh

Pn−m

)
.

Combining (3.4) and (3.5) yields

(3.6) τ(χ) =
∑

deg g<m deg P, P -g

χ(g)
∑

deg h<(n−m) deg P

χ(1 + hPm)E
(

gh

Pn−m

)
.

When n is even, n = 2m, we have

τ(χ) =
∑

deg g<m deg P, P -g

χ(g)
∑

deg h<m deg P

χ(1 + hPn−m)E
(
gh

Pm

)
.
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Applying (3.1), (2.1), and (2.2) to the above expression, we get

τ(χ) =
∑

deg g<m deg P, P -g

χ(g)
∑

deg h<m deg P

ψa([h])ψg([h])

=
∑

deg g<m deg P, P -g

χ(g)
∑

deg h<m deg P

ψa+g([h]).

According to (2.3), we have∑
deg h<m deg P

ψa+g([h]) =
{
|Pm| if g = −a,
0 otherwise.

From (3.2),

τ(χ) =
{

0 if χ is not primitive,
|P |mχ(−a) if χ is primitive.

When n is odd, n = 2m + 1, we write h in (3.6) as h0 + h1P , where
h0, h1 ∈ A with deg h0 < degP and deg h1 < mdegP . Hence, (3.6) becomes

τ(χ) =
∑

deg g<m deg P
P -g

χ(g)
∑

deg h0<deg P
deg h1<m deg P

χ(1 + h0P
m + h1P

m+1)E
(
g(h0 + h1P )

Pn−m

)

=
∑

deg g<m deg P, P -g

χ(g)
∑

deg h1<m deg P

χ(1 + h1P
m+1)E

(
gh1

Pn−m−1

)

×
∑

deg h0<deg P

χ(1 + h0P
m)E

(
gh0

Pn−m

)
.

Since
deg gh0 = deg g + deg h0 ≤ (n−m) degP − 2,

we have E
( gh0

Pn−m

)
= 1 and so

τ(χ) =
∑

deg g<m deg P, P -g

χ(g)
∑

deg h1<m deg P

χ(1 + h1P
n−m)E

(
gh1

Pm

)
×

∑
deg h0<deg P

χ(1 + h0P
m).

Similar to the discussion in the case of even n, we obtain

τ(χ) =


0 if χ is not primitive,
|P |mχ(−a)

∑
deg h0<deg P

χ(1 + h0P
m) if χ is primitive,
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and Lemma 3.1 yields

τ(χ) =


0 if χ is not primitive,

|P |n/2χ(−a)E
( 1

2b
2c

P

)(
−2c
P

)
i(|P |−1)2/4 if χ is primitive.
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