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1. Introduction. Let NV be a positive integer and let x be a primitive
multiplicative character (mod N). It is known that the absolute value of the
classical Gauss sum

r(x) = Nijnn) o (2"

n

is N1/2. However, it is difficult to determine the argument of this sum. In
1962, C. Chowla [I] and L. J. Mordell [7] independently proved that when
N is a prime number, the argument is a root of unity if and only if x is real.
When N = p" is an odd prime power with » > 2, R. Odoni [§] gave explicit
formulas for the argument of 7(y) by using p-adic analysis. An important
role in finding the argument of 7(x) is played by the fact that the group
(Z/p"Z)* is cyclic when p is an odd prime. Finally, T. Funakura [3] com-
puted the classical Gauss sums for all integer n and, further, gave a criterion
for the argument of a classical Gauss sum to be a root of unity. Moreover,
in 1983, J.-L. Mauclaire [5] provided another elementary proof giving the
argument of 7(x) when p is an odd prime. Furthermore, he completed the
remaining case of the prime number 2 in [6].

In this paper, we generalize the classical Gauss sums to polynomial Gauss
sums in the polynomial ring over the finite field F, of ¢ elements. For ¢
odd, we explicitly give the argument of a polynomial Gauss sum. We are
then able to generalize the classical Chowla—Mordell theorem to polynomial
Gauss sums, providing a necessary and sufficient condition for the argument
of a polynomial Gauss sum to be a root of unity.

Throughout this paper, p is an odd prime and ¢ = p” is a power of p. Let
[F, be the finite field of ¢ elements of characteristic p and let Tr, : F, — F),
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be the trace map onto F, (identified with Z/pZ). Let e, : F; — C* be the
standard additive character of IF, defined by

2mi Tr

eq(a) = exp<mq(a)> for all & in .
p

Let A = Fy[T] be the polynomial ring in 7" over F; and let Koo =

Fq((1/T)) denote the completion field of the rational function field Fy(T) at

the infinite place 1/T'; in other words, every a € Ko \{0} can be expressed

as
d

a= Z ciTi7
1=—00
where ¢; € F; and ¢4 # 0. The degree and absolute value of a are defined by
dega = d and |a| = ¢%. The residue of a at the infinite place is denoted by
reSso @ = ¢_1. The polynomial exponential map F : Ko, — C* is defined by

E(a) = eq(resca) for all a in K.

Let @ € A. For any multiplicative character y of A/QA, the polynomial
Gauss sum of x is defined by

o= ¥ ane(g).

[Fle(A/QA)x

It is well-known that for any primitive multiplicative character x of A/QA,
we have

00l = 1QI'?,

and there is no explicit method to evaluate ¢(7), the argument of 7(x). In
this paper, however, we determine €(7) in the case when @ = P" (n > 2)
for any monic irreducible polynomial P in A. It deserves to be mentioned
that while the multiplicative group (Z/p"Z)* with p an odd prime is always
cyclic, the multiplicative group (A/P"™A)* with n > 2 is not. This makes
finding the explicit value of 7(y) more difficult. Now, we give a brief account
of the main result of this paper:

Main result. If P is a monic irreducible polynomial in A and y is
a multiplicative character of A/P™A (n > 2), then there exists a specific
polynomial a (depending on x) with P { a and dega < (n/2)deg P such
that
0 if x is not primitive,
7(x) = { |P["?x(~a) if x is primitive and n is even,
|P|"/?2x(—a)es, if x is primitive and n is odd,

where €4, is a 4pth root of unity.
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From the main result, when n > 2, ¢(7) is a root of unity if and only if x
is primitive. For the remaining case n = 1, a criterion for €(7) being a root
of unity can be given by the results of Evans [2] and Yang—Zheng [9], since
A/PA =T, where d = deg P: when n = 1, the quantity ¢(7) is a root of

unity if and only if
-1 d—1
()

where f is the order of x, v runs from 1 to f and is coprime to f, and for
every positive integer a < ¢¢, S(a) is the sum of the digits appearing in the
p-adic representation of a; in other words,

dr—1 dr—1
S(G):Zaj fora:Zajpj with 0 < a; <p.
Jj=0 J=0

2. Auxiliary lemmas. Throughout this paper, let n > 2 be a positive
integer and m = [n/2], the greatest integer less than or equal to n/2. Let
P be a monic irreducible polynomial in A, and let (A/P™A)* denote the
unit group of the residue class ring A/P"A.

We introduce two types of special subgroups of (A/P™A)*:

Ky, ={[1+ fP"™] | deg f < mdeg P},

Hy, = {[1+ fP™ 4 gP?"] | deg f,degg < deg P}  (only for odd n).
Note that K, is isomorphic to the additive group A/P™A. The multiplica-
tive identity

[L+ fiP™ + g PP + foP™ + 2P
=[1+ (fi + f2)P" + (g1 + f1.f2 + g2) P*™]
proves that H,, is indeed a subgroup of (A/P"A)*.

In addition, we study the character groups AWA, I/(\m, and f[; of
A/P™A, K,,, and H,,, respectively. For any a in A, let ¢, : A/P™A — C*
be defined by

1) w1 = (1)

This is an additive character of A/P™A, and

A/PmA = {th, | a € A, dega < mdeg P}.
Further,
(2.2) Va1 Yay = Varta
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for all a; and ag in A with degay,degas < mdeg P, and

23) > wam={ e

deg f<m deg P 0 otherwise.

For the group K, let ¥, : K,, — C* be the multiplicative character
defined by

(2'4) Wa([l'i_fpnim]) Z%([f])
for all f in A with deg f < mdeg P. Since K, is isomorphic to the additive
group A/P™A the character group K,, is
(2.5) f(\m:{wa |a € A, dega < mdegP}.

When n is an odd integer, n = 2m + 1, since ¢ is odd, for any b and ¢
in A, we can define the function ¥, . : H,, — C* by

1

Then we have the following lemma.

___LeEmMMA 2.1. Ifn > 2 4s an odd integer, i.e., n = 2m+1, then the group
H,, of the multiplicative characters of the subgroup H,, is

H, = {Wc|b,ce A, degb,dege < deg P}.

Proof. Tt is not difficult to check that ¥, . is a multiplicative character
of H,,. Further, we prove that if by # by or ¢; # ¢z (mod P), then ¥, ., #
Uy co- If Wy, o = Wb, ¢, for some by, by and c1, ¢ in A, then

Wy ey ([L+ FP™ + gPP™]) = Wy, o ([L + fP™ + gP*™])

for all polynomials f and g with deg f,degg < deg P. Taking f = 0, we have
Wy, oy ([1+ gP?™]) = W, o, ([1 + gP?™)) for all g with degg < deg P, that is,

o) -#(%)

E((Cl ;02)9> -1

for all g with deg g < deg P. Hence, ¢; = ¢2 (mod P). Moreover, taking g = 0,
we get Wy, o ([1 + fP™]) = ¥, o, ([1 + fP™]) for all f with deg f < deg P,

that is,
B bif — 3e1f? B bof — 2cof? ‘
P P

This implies that

It follows that

=1

E<(b1 —bo)f _P%(Cl - 62)f2>
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for all f with deg f < deg P. Since we know that ¢; = ¢ (mod P), the above

is equivalent to
(b1 —bo) f
EFl———] =1
(5

for all f with deg f < deg P. Hence, by = by (mod P). Thus, we proved that
U, 1 7 Whoeo if b1 # bo (mod P) or ¢y # ¢z (mod P).

Finally, since the cardinality of ff\m is
[Hin| = [Hp| = |P|?

and the number of characters ¥, . with degb, degc < deg P is also equal to
|P|?, the desired conclusion follows. m

3. The arguments of polynomial Gauss sums. In this section, we
prove our main result. Let the integer m, the subgroups Kﬂ?ﬁm’ and the
characters 94, ¥,, ¥ be defined as in Section 2. Let (A/P™A)* be the
group of multiplicative characters x of (A/P™A)*. For convenience, we use
X(f) to represent the complex value x([f]). Recall that a multiplicative char-
acter x of A/P™A is called primitive if x does not factor through (A /P*A)*
for any integer k with 0 < k < n.

Consider the restriction x|g,, of the multiplicative character y to the
subgroup K,,. Since x|g,, is a multiplicative character of K,,, by
there exists a unique polynomial a in A with dega < mdeg P such that
x|k, = W,, that is,

3.1 x4+ fP"™) = Xlr,, (L4 FP*) = Wa([L+ fP*]) = a([f])

for all f in A with deg f < mdeg P. Moreover, if P divides a then y fac-
tors through (A /P"~'A)*. Conversely, if x is not primitive, then x factors
through (A/P" 'A)*. Hence,

(3.2) X is primitive if and only if P t a.

When n is odd, i.e., n = 2m + 1, consider the restriction x|g,,. Since
X|m,, is a multiplicative character of H,,, by Lemma there exist unique
polynomials b and ¢ in A with degb,degc < deg P such that x|p,, = ¥,
that is,

X(1+ fP™ + gP*™) = x|u,, (1 + fP" + gP*™) = U, ([1 + fP™ + gP*™])

for all f and g in A with deg f,degg < deg P. Moreover, if ¢ = 0 then y
factors through (A/P" 1A)*. Hence, if x is primitive then c # 0.

To abbreviate our proof of the main theorem, we prove Lemma 3.1 below
first. In the proof of this lemma, we use a result of Hsu [4] saying that when
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P is a monic polynomial in A, then
2
deg f<deg P

LEMMA 3.1. Let n > 2 be an odd integer, i.e., n =2m + 1, and let x be
a primitive multiplicative character of (A/P"A)*. If X|H,, = Wy for some
b,c in A with degb,degc < deg P, then ¢ # 0 and

S x4 fPm) = !P!1/2E( oL /) (_20> (Pl-1)2/4
X — |t ,
deg f<deg P P i

where ¢ denotes the polynomial in A such that degcd < deg P, dc
(mod P), and ( 20) 1s the polynomial quadratic residue symbol.

If
—

Proof. Since x is primitive, we know that ¢ # 0. Since x|u,, = ¥, and
q is odd, from ([2.6) we have

Yooox(+ P = Y ([l + fPT)

deg f<deg P deg f<deg P
LS (M)
P
deg f<deg P
122 v 1 /\2
sbc —sc(f —bd)
S 2 E 2
7). 2 )
deg f<deg P
172 1 1 2
sb*c —scf
— (2 E( -2 :
SO
deg f<deg P

Furthermore, since —fc = 0, we have

5 o) 5 ()(5)

deg f<deg P deg f<deg P

12 —1c 12
=E|(2 X E(% ).
deg f<deg P
It follows directly from ({3.3]) that

S X +fPm)=E <b2 )( ) p2IP 1

deg f<deg P
|P|1/2E( e )( )i,

The formula for the argument of 7(x) is given in
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THEOREM 3.2. Let n > 2 be an integer, let x be a multiplicative char-
acter of A/P"™A, and let m = |n/2]. Let a be the polynomial in A with
dega < mdeg P such that x|k,, = Wa. Then

(1) if x is not primitive, then 7(x) = 0;
(2) if x is primitive and n is even, then P{a and

7(x) = |P["*x(~a);

(3) if x is primitive, n is odd, and x|m,, = W, with b,c in A and
degb,degc < deg P, then Pta, ¢ # 0, and

112
7(x) = |P|n/2X(—a)E<2b c’) <_P)20>’L.(P—1)2/4.

P
Proof. Every element [f] in (A/P™A)* can be uniquely represented as

[9)[1 + hP™],

where g € A with degg < mdegP, P t g, and h € A with degh <
(n —m) deg P. From the definition of the polynomial Gauss sum, we have

o= Y, x(f)E<]fn>

[fle(A/PA)x
1+ hpP™
= > > x(g(1+hPm))E<g(pn)>-
deg g<m deg P, Ptg deg h<(n—m)deg P
Since x is a multiplicative character of A/P™A, we have

(3.4) x(g(1+hP™)) = x(g)x(1 + hP™).

Applying the definition of res,, and degg < mdeg P, we get E(%) =1
and

_ g ghP™\ gh
2w )2 () = =)
Combining and yields
h
36) 0= Y a3 x(1+hPm)E( g )

pn—m
deg g<m deg P, Ptg deg h<(n—m) deg P

When n is even, n = 2m, we have

(x) = > xto D) x(1+hP”_m)E(]€,Z>-

deg g<mdeg P, Ptg deg h<mdeg P
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Applying (3.1), , and to the above expression, we get
T(x) = S xte) D val[A)wg([h])

deg g<mdeg P, Ptg deg h<mdeg P

= > X(9) D Yargl(h]).

deg g<m deg P, Ptg deg h<mdeg P
According to (2.3]), we have

> wa+g<[h]>={'Pm’ g =-a,

deg h<mdeg P 0 otherwise.

From (3),
() 0 if x is not primitive,
W= |P|™x(—a) if x is primitive.

When n is odd, n = 2m + 1, we write h in (3.6) as hg + h1 P, where
ho, h1 € A with deg hg < deg P and deg h; < mdeg P. Hence, (3.6 becomes

m m ho + h P
T(x) = Z x(9) Z X(1+hoP™ + hy P H)E(g(;m,:)>
deg g<mdeg P deg ho<deg P
Ptg deg h1 <mdeg P
m gh
S IR I MR R NE e v (V=)
deg g<m deg P, P{g degh1<mdeg P
m gho
x> x(14heP )E<Pn_m>.
deg ho<deg P
Since
deg gho = deg g + deghg < (n — m)deg P — 2,
we have E( ngiom) =1 and so
n—m ghi
T(x) = > x9) Y xU+mPTME( S0

deg g<m deg P, Ptg deg hy<mdeg P
x> x(14heP™).
deg ho<deg P
Similar to the discussion in the case of even n, we obtain
0 if x is not primitive,

7(X) =1 |P|"x(—a) Z X(1+ hoP™) if x is primitive,
deg ho<deg P
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and Lemma [3.1] yields

0 if x is not primitive,
172
T(x) = |P|”/2x(—a)E<2bc> (26>z’(|P|1)2/4 if y is primitive. m
P P
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