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The structure of the tame kernels
of quadratic number fields (I)

by

H. R. Qin (Nanjing)

1. Introduction. We study the structure of the 2-Sylow subgroup of the
tame kernel of a number field. Although many results exist in this direction,
this subgroup is not yet well understood, even for quadratic number fields.
Let F be a number field with the ring of integers OF . Let KnOF denote the
nth Quillen K-group of OF . In particular, K2OF , the Milnor group of OF , is
isomorphic to the tame kernel of F . Recently, J. Rognes and C. Weibel [21]
gave the explicit structure of KnOF for some number fields. But it remains
a big challenge, even for n = 2 and F a quadratic number field.

For a positive integer n, let r2n = r2n(K2OF ) = 2n-rank of K2OF , i.e.,
the number of cyclic components of K2OF whose order is divisible by 2n.
To understand the 2-Sylow subgroup of K2OF , one needs to know r2n for
all n. We shall develop a method to treat r4 when F is a quadratic number
field.

We shall now give a brief indication of the contents.
In Section 2, we recall some known results which will be used repeatedly

in this paper, state some definitions, and derive some new results which give
a method of determining r4 for a quadratic field F .

In Sections 3 and 4, we use the results of the preceding section to study
the 2-Sylow subgroups of the tame kernel of real and imaginary quadratic
fields, respectively.

Let F = Q(
√
d), d ∈ Z square-free, be a quadratic field. When d has at

most three odd prime divisors, we know r4 in every case (see [18, 19]).
Let F = Q(

√
d) be a real quadratic field. We use NF for the set of norms

from F over Q. Let d ∈ N have prime factorization d = 2σl1 · · · ln, where
σ = 0 or 1.
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For j = 1, 3, 5, 7 we let mj denote the number of li’s which are ≡ j
(mod 8), and we call 2σ(m1,m3,m5,m7) the type of d. It is proved by
B. Brauckmann [1] that if d has a positive divisor ≡ 7 (mod 8), then r4 ≥ 1.

In Section 3, we give all real quadratic fields for which r4 ≥ 1. More
precisely, we have the following theorem:

Theorem A0. Let F = Q(
√
d) be a real quadratic field. Then r4(K2OF )

≥ 1 in the following cases:

(1) d has a positive divisor ≡ 7 (mod 8);
(2) d is odd and of type (m1, 0,m5, 0) with m5 ≥ 2 even;
(3) d = 2d′ is even and d′ is of type (m1,m3, 0, 0) with m3 ≥ 2 even.

Note that (2) and (3) are equivalent to the following (2′) and (3′) re-
spectively:

(2′) d ≡ 1 (mod 8) with −1 ∈ NF and −2 6∈ NF ;
(3′) d = 2d′, d′ ≡ 1 (mod 8) with −1 6∈ NF and −2 ∈ NF.
Let p ≡ 1 (mod 8) be a prime. It is known (Conner–Hurrelbrink [5]) that

for F = Q(
√
p) and also for F = Q(

√
2p) both sets of primes

{p ≡ 1 (mod 8) and r4(K2OF ) = 0},
{p ≡ 1 (mod 8) and r4(K2OF ) = 1}

have density 1/2 in the set of all primes p ≡ 1 (mod 8).
The following theorem generalizes this phenomenon to more than one

prime factor:

Theorem A1. Let n ≥ 2. Except for cases (1)–(3) listed above, there
is a set of positive density consisting of square-free integers d > 0 of given
parity and given type 2σ(m1,m3,m5,m7) such that for F = Q(

√
d) the 4-

rank of K2OF is 0, and there is a set of positive density of such d’s with
r4(K2OF ) ≥ 1.

Therefore, in view of Wiles’s result on the Birch–Tate conjecture, which
predicts that |K2OF | = |w2(F )ζF (−1)| for all totally real number fields, we
have some information on the even part of w2(F )ζF (−1). Here w2(F ) is the
order of the group of roots of unity in the algebraic closure of F fixed by the
square of the usual Galois action, and ζF (·) is the Dedekind zeta function
of F .

Theorems A0 and A1 follow from Theorem 3.1.
As a consequence of our results, we obtain necessary and sufficient con-

ditions, involving only some Legendre symbols, for the 2-Sylow subgroup of
K2OF to be elementary abelian, i.e., r4 = 0. This turns out to be the same
as to give necessary and sufficient conditions for r4 > 0.
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The same has also been done for imaginary quadratic fields in Section 4.
In fact, we have:

Theorem B0. Let F = Q(
√
−d), d ∈ N square-free, be an imaginary

quadratic field. If d ≡ 1 (mod 8) with d 6= 1, then r4 ≥ 1.

Unfortunately, for F imaginary the analogue of Theorem A1 is not valid
in general. But we have

Theorem B1. Let F = Q(
√
−d), d ∈ N square-free, be an imaginary

quadratic field. If d 6≡ 1 (mod 8) has at least four odd prime divisors, then
there is a set of positive density consisting of square-free integers d′ > 0
with the same parity and the same type as d, such that for F = Q(

√
−d′)

the 4-rank of K2OF is 0; and there exist infinitely many such d′’s with
r4(K2OF ) > 0. With some exceptional cases, the same is true for d having
at most three odd prime divisors.

Theorems B0 and B1 are consequences of Theorem 4.1, Corollary 4.1
and Remarks 1–3.

Again, as in real quadratic cases, we give necessary and sufficient condi-
tions for the 2-Sylow subgroup of K2OF to be elementary abelian.

Let us recall that in the imaginary quadratic case, a version of Lichten-
baum’s conjecture reads as follows:

3|D|3/2
π2R2(F )

ζF (2) = |K2OF |.

Here D is the discriminant of F = Q(
√
−d) and R2(F ) a twisted version of

the mth Borel regulator.

2. Preliminaries. Let d 6= 0 be an integer. We will use the following
notation:

S(d) =
{ {±1,±2} if d > 0,

{1, 2} if d < 0.

For an abelian group A, A2 will denote the 2-Sylow subgroup of A, and
2A = {x ∈ A | x2 = 1}. Let F be a number field. Denote by Ω the set of all
places of F .

For a finite place ℘ ∈ Ω, we use τ℘ for the tame symbol at ℘. For any
integer n, put 5n = {α ∈ K2OF | α = βn for some β ∈ K2OF }.

Lemma 2.1 (Browkin and Schinzel [3]). Let F = Q(
√
d), d ∈ Z square-

free. Then 2K2OF is generated by

{−1,m}, m | d,
together with

{−1, ui +
√
d}
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if {−1,±2} ∩ NF 6= ∅, where ui ∈ Z is such that u2
i − d = ciw

2
i for some

wi ∈ Z and ci ∈ {−1,±2} ∩NF.
Lemma 2.2 ([18, 19]). Let F = Q(

√
d), d ∈ Z square-free. Suppose that

m | d (m > 0 if d > 0, but m also takes on negative values if d < 0) and write
d = u2− 2w2 with u,w ∈ Z (u > 0 if d > 0) if 2 ∈ NF. Then {−1,m} ∈ 52

if and only if one can find an ε ∈ S(d) such that

(i)
(d/m

p

)
=
(
ε
p

)
for every odd prime p |m;

(ii)
(
m
p

)
=
(
ε
p

)
for every odd prime p | dm ;

and {−1,m(u+
√
d)} ∈ 52 if and only if one can find a δ ∈ S(d) such that

(iii)
(d/m

p

)
=
( δ(u+w)

p

)
for every odd prime p |m;

(iv)
(
m
p

)
=
( δ(u+w)

p

)
for every odd prime p | dm .

Lemma 2.3. Let F = Q(
√
d) be a quadratic field.

(i) Suppose m | d. Assume that m > 0 if d > 0, and m ≡ 1 (mod 4) if
d ≡ 1 (mod 8). Then there is a prime p ≡ 1 (mod 4) such that

ηpmZ2 = X2 + dY 2

is solvable for η = 1 or 2. Moreover :
If d ≡ 1 (mod 2), then

(
d
p

)
= 1; furthermore, η = 2 if d ≡ 5 (mod 8) and

m ≡ 3 (mod 4), and η = 1, otherwise.
For d = 2d′, we have η = 1, and

• if m ≡ 1 (mod 8), then
(
d′

p

)
= 1;

• if m ≡ 5 (mod 8), then
(
d′

p

)
= −1;

• if m ≡ 3 (mod 8) and d′ ≡ 1 (mod 4) then
(
d′

p

)
= 1;

• if m ≡ 3 (mod 8) and d′ ≡ 3 (mod 4) then
(
d′

p

)
= −1;

• if m ≡ 7 (mod 8) and d′ ≡ 1 (mod 4) then
(
d′

p

)
= −1;

• if m ≡ 7 (mod 8) and d′ ≡ 3 (mod 4) then
(
d′

p

)
= 1.

(ii) Suppose 2 ∈ NF , d = u2 − 2w2, where u,w ∈ Z and m | d. Assume
that mu > 0 if d > 0 and m(u + w) ≡ 1 (mod 4) if d ≡ 1 (mod 8). Then
there is a prime p ≡ 1 (mod 4) such that

pm(u+ w)Z2 = X2 + dY 2

is solvable (the solvability of pm(u+w)Z2 = X2 + dY 2 is equivalent to that
of 2pm(u+ w)Z2 = X2 + dY 2). Moreover ,

• if d ≡ 1 (mod 2), then
(
d
p

)
= 1.
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The proof of this lemma can be found in [20]. We note that the statement
of Lemma 2.3 is a more explicit version of Lemma 3.4 in [20].

Lemma 2.4. Let F = Q(
√
d), d ∈ Z square-free. Suppose that m | d.

(i) {−1,m} ∈ 52 if and only if εpZ2 = X2 − dY 2 is solvable for some
ε ∈ S(d), where p ≡ 1 (mod 4) is a prime such that ηpmZ2 = X2 + dY 2 is
solvable for η = 1 or 2.

(ii) If 2 ∈ NF, then {−1,m(u +
√
d)} ∈ 52 if and only if δpZ2 =

X2 − dY 2 is solvable for some δ ∈ S(d), where p ≡ 1 (mod 4) is a prime
such that pm(u+ w)Z2 = X2 + dY 2 is solvable.

Proof. (i) Let X0, Y0, Z0 ∈ Z with (X0, Y0) = (X0, Z0) = (Y0, Z0) = 1
be a solution of ηpmZ2 = X2 + dY 2. It follows from p ≡ 1 (mod 4) that
p = a2 + b2 for some a, b ∈ Z. Let pOF = ℘1℘2 and put

γ =
{

X0√
dY0

,
X2

0 + dY 2
0

X2
0

}{
b

a
,
p

b2

}
.

Then γ2 = {−1,m}. Computing the tame symbols at every finite (prime)
place, we see that

τ℘γ =
{−1 if ℘ = ℘1,

1 otherwise (including ℘ = ℘2).

Now the result follows from Lemma 3.1 of [17] and Lemma 3.1 of [18].
For the proof of (ii), see [18].

Consider the equation εpZ2 = X2 − dY 2, where p ≡ 1 (mod 4) is a
prime such that ηpmZ2 = X2 + dY 2 (resp., pm(u + w)Z2 = X2 + dY 2)
is solvable for η = 1 or 2. Let d = 2σl1 · · · ln be the prime factorization,
where σ = 0 or 1. Let δi =

(
εp
li

)
for 1 ≤ i ≤ n, where ε ∈ S(d). We obtain

a vector v(p, ε) = (δ1, . . . , δn). The Legendre Theorem on the solvability of
the quadratic homogeneous Diophantine equation aX2 +bY 2 +cZ2 = 0 (see
[9] or [13]) tells us that the above equation has a non-trivial solution if and
only if all components of the vector v(p, ε) are 1. This implies the following:

Lemma 2.5. With the above notation, we have {−1,m} ∈ 52 or {−1,
m(u+

√
d)} ∈ 52 if and only if v(p, ε) = (1, . . . , 1) for some ε ∈ S(d).

Definition 2.1. Let F = Q(
√
d), d ∈ Z, be a quadratic field. We know

that 2K2OF ∩ (K2F )2 is finitely generated. A set S = {m1, . . . ,mk} is
called a system of 5-representatives of F if {−1,m1}, . . . , {−1,mk} gen-
erate 2K2OF ∩ (K2F )2 and m1, . . . ,mk are multiplicatively independent
mod(F ∗2 ∪ 2F ∗2).

Remark 2.1. 1. Let F = Q(
√
d) be a real quadratic field. Suppose that

m | d. Recall from [17, 19] that {−1,m} ∈ 2K2OF ∩ (K2F )2 if and only if
m > 0 whenever d 6≡ 1 (mod 8), and if and only if m > 0 and m ≡ 1 (mod 4)
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whenever d ≡ 1 (mod 8). Moreover, {−1,m(u+
√
d)} ∈ 2K2OF ∩ (K2F )2 if

and only if m > 0 whenever d 6≡ 1 (mod 8), and if and only if m > 0 and
m(u+ w) ≡ 1 (mod 4) whenever d ≡ 1 (mod 8).

2. Let F = Q(
√
d) be an imaginary quadratic field. Suppose that m | d.

Recall from [18] that if d 6≡ 1 (mod 8), then {−1,m} ∈ 2K2OF ∩ (K2F )2;
if d ≡ 1 (mod 8) then {−1,m} ∈ 2K2OF ∩ (K2F )2 if and only if m ≡ 1
(mod 4). Moreover, {−1,m(u +

√
d)} ∈ 2K2OF ∩ (K2F )2 if and only if

m > 0 whenever d 6≡ 1 (mod 8), and if and only if m(u + w) ≡ 1 (mod 4)
whenever d ≡ 1 (mod 8).

Let ni | d with 1≤ i≤ t. Assume ηipiniZ2 =X2+dY 2 (or ηipini(u+ w)Z2

= X2 + dY 2) are solvable for primes pi ≡ 1 (mod 4) and ηi = 1 or 2
(1 ≤ i ≤ t). Note that for any integers X1, Y1,X2, Y2, we have the identity

(X2
1 + dY 2

1 )(X2
2 + dY 2

2 ) = (X1X2 − dY1Y2)2 + d(X1Y1 +X2Y2)2.

Therefore, the assumption implies that
∏t
i=1 piηiniZ

2 = X2 + dY 2 (or∏t
i=1 piηini(u+ w)tZ2 = X2 + dY 2) is solvable.

Similarly, suppose that ni | d with 1 ≤ i ≤ t. Assume ηipiniZ2 = X2 +
dY 2 (1 ≤ i ≤ t1) and ηipini(u + w)Z2 = X2 + dY 2 (t1 + 1 ≤ i ≤ t) are
solvable for primes pi ≡ 1 (mod 4) and ηi = 1 or 2 (1 ≤ i ≤ t). Then∏t
i=1 piηini(u+ w)t−t1Z2 = X2 + dY 2 is solvable.

Let p ≡∏t
i=1 pi (mod 4d) be any prime. Then p

∏t
i=1 ηiniZ

2 = X2+dY 2

(or p
∏t
i=1 ηini(u + w)tZ2 = X2 + dY 2, or p

∏t
i=1 ηini(u + w)t−t1Z2 =

X2 + dY 2) is solvable. Set

δj =
(∏t

i=1 ηi · p
lj

)

and for 1 ≤ i ≤ t and 1 ≤ j ≤ n, let

δi,j =
(
ηipi
lj

)
.

We observe that (δ1, . . . , δn) = (
∏t
i=1 δi,1, . . . ,

∏t
i=1 δi,n). When 2 ∈ NF , all

ηi can be chosen to be 1.
Keeping the same notation, we have

Lemma 2.6. {−1, n1 · · ·nt} ∈ 52 if and only if

v(p, ε) =
((

ε

l1

) t∏

i=1

δi,1, . . . ,

(
ε

ln

) t∏

i=1

δi,n

)
= (1, . . . , 1)

for some ε ∈ S(d).

The above discussion leads to

Definition 2.2. Let |d| = 2σl1 · · · ln. Let S = {m1, . . . ,mk} be a sys-
tem of 5-representatives of F = Q(

√
d), and suppose that the equations
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ηipimiZ
2 = X2 + dY 2 (or ηipimi(u + w)Z2 = X2 + dY 2) are solvable for

primes pi ≡ 1 (mod 4) and ηi ∈ {1, 2}. Let E = (ε1, . . . , εk) ∈ S(d)k. The
sign matrix of d with respect to S = {m1, . . . ,mk} and E = (ε1, . . . , εk) is
the k × n matrix (with entries in {−1, 1})

M(d, S,E) =
[(

εiηipi
lj

)]
.

As a particular case, taking E = (1, . . . , 1), we obtain the sign matrix

M(d, S) =
[(

ηipi
lj

)]
,

where

(
ηipi
lj

)
=





(
mi

lj

)(
resp.,

(
(u+ w)mi

lj

))
if lj -mi,

(
d/mi

lj

)(
resp.,

(
(u+ w)d/mi

lj

))
if lj |mi,

which we call the sign matrix with respect to the set S of 5-representatives.
Sometimes we simply write M(d) for M(d, S,E) or M(d, S) if we do not

need to emphasize S and E. For any given type T , let d(T ) denote the set of
all positive integers of type T . In symbols, d(T ) = {d | d ∈ N of type T}. If
d ∈ d(T ) is not fixed, we also use M(T ) to denote M(d), which is convenient
since in most cases below we have to find a d of a given type with a sign
matrix as described.

For the exact size of a sign matrix, we have

Lemma 2.7. Let d be a square-free integer with n odd prime divisors and
let M(d) be a sign matrix of size k × n. Then:

• For real quadratic fields,

k =





n if either (a) p ≡ 1 (mod 8) for every odd prime p | d and

u+ w ≡ 1 (mod 4), or (b) d 6≡ 1 (mod 8) and 2 ∈ NF ;

n− 1 if either (a) d ≡ 1 (mod 8), 2 6∈ NF and p ≡ 1 (mod 4) for

every prime p | d, or (b) d ≡ 1 (mod 8), 2 ∈ NF but either

u+ w ≡ 3 (mod 4) or d has a positive divisor ≡ 3 (mod 4),

or (c) d 6≡ 1 (mod 8) and 2 6∈ NF ;

n− 2 if d ≡ 1 (mod 8), 2 6∈ NF and d has a positive divisor

≡ 3 (mod 4).
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• For imaginary quadratic fields,

k =





n if d ≡ 1 (mod 8) and 2 ∈ NF ;

n− 1 if d ≡ 1 (mod 8) and 2 6∈ NF ;

n+ 1 if d 6≡ 1 (mod 8) and 2 ∈ NF ;

n if d 6≡ 1 (mod 8) and 2 6∈ NF.
Proof. Let F = Q(

√
d) be a real quadratic field. Let d = 2σl1 · · · ln be the

prime factorization, where σ = 0 or 1. Assume that d 6≡ 1 (mod 8). Then by
Remarks 2.1, we may choose {l1, . . . , ln−1} if 2 6∈ NF , and {l1, . . . , ln−1, u+√
d} if 2 ∈ NF , as a system of 5-representatives of F . If d ≡ 1 (mod 8), we

write d = l1 · · · lm · lm+1 · · · ln, where li ≡ 3 (mod 4) (1 ≤ i ≤ m), and lj ≡ 1
(mod 4) (m+ 1 ≤ j ≤ n). By Remarks 2.1 again, we can choose a system of
5-representatives of F to be {l1l2, l1l3, . . . , l1lm, lm+1, . . . , ln−1} if 2 6∈ NF ;
{l1l2, l1l3, . . . , l1lm, lm+1, . . . , ln−1, u+

√
d} if 2 ∈ NF and u+w ≡ 1 (mod 4);

and {l1l2, l1l3, . . . , l1lm, lm+1, . . . , ln−1, l1(u+
√
d)} if 2 ∈ NF and u+w ≡ 3

(mod 4).
Note that for an imaginary quadratic field F = Q(

√
d), −1 can be chosen

as an element in a system of 5-representatives if d 6≡ 1 (mod 8). If d ≡ 1
(mod 8) has a prime divisor p ≡ 3 (mod 4), then −p ≡ 1 (mod 4). Similarly,
we can assume that u+w ≡ 1 (mod 4) if d ≡ 1 (mod 8). So the result follows
and the lemma is proved.

Remark 2.2. In [8], J. Hurrelbrink and M. Kolster introduced a kind of
sign matrix to compute r4(K2OF ) via local Hilbert symbols.

Let M(T ) = [δi,j ] be a sign matrix of d. The following operations are
called elementary operations:

(I) Multiplying the ith row of M(T ) by the jth row. (This corresponds
to replacing mi by mimj in the set of 5-representatives of F—see the
discussion after Remarks 2.1.)

(II) Interchanging the ith and jth rows. (This corresponds to inter-
changing mi and mj .)

(II′) Interchanging the ith and jth columns. (This corresponds to inter-
changing li and lj .)

(III) Multiplying the ith row by a vector (δ1, . . . , δn) where δj =
(
ε
lj

)

for some ε ∈ S(d). (This corresponds to changing the ith entry in the set
E = (ε1, . . . , εk).)

However, one should be careful when applying elementary operations
(II′) if li 6≡ lj (mod 8) since in elementary operations (III) one may have(
ε
li

)
6=
(
ε
lj

)
. So, one has to remember the congruences of li and lj (mod 8).

Usually, we fix a suitable order of {li}.
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Assume that A and B are sign matrices. We say that A is equivalent
to B and write A ∼= B if A can be transformed into B by a sequence of
elementary operations. We call a row in a sign matrix totally positive if its
entries are all 1.

For a quadratic field F = Q(
√
d), if d has exactly n odd prime divi-

sors l1, . . . , ln, then for a system of 5-representatives of F , we have only
finitely many different sign matrices, and at most 4n if we fix the order
of l1, . . . , ln. Any two of them are equivalent. Clearly, if {−1,m} ∈ 52,
then m (modF ∗2 ∪ 2F ∗2) is the product of some elements in a system of
5-representatives of F . Multiplying the rows corresponding to these gener-
ators and by a suitable choice of ε, i.e., multiplying by

((
ε
l1

)
, . . . ,

(
ε
ln

))
, we

get a totally positive row. Conversely, if some elementary operations yield a
totally positive row, then we have an element {−1,m} ∈ 2K2OF ∩ (K2F )2

such that {−1,m} ∈ 52.

Remark 2.3. We can see easily that a totally positive row can be ob-
tained (if at all) by the application of elementary operations (I) and (II)
and at most one elementary operation (III), carried out as the last step of
the process. See Lemma 2.6.

Lemma 2.8. Let F = Q(
√
d) be a quadratic field , where d is square-free

and has n odd prime divisors. Consider sign matrices of size k×n, viewed as
matrices over Z/2Z. Then r4(K2OF ) coincides with the maximum of k − r
if F is real , and k−r−1 if F is imaginary , where r runs through the values
of ranks of all sign matrices of F .

The following is another property of a sign matrix.

Lemma 2.9. Let d ∈ Z be square-free, and let M(d, S,E) be the sign
matrix of d with respect to S = {m1, . . . ,mk} and E = (ε1, . . . , εk).

Suppose d is odd. Then the product of all entries in the ith row of
M(d, S,E) is:

•
(
εi
|d|
)

if d 6≡ 5 (mod 8) or mi 6≡ 3 (mod 4);

• −
(
εi
|d|
)

if d ≡ 5 (mod 8) and mi ≡ 3 (mod 4).

Suppose d = 2d′ is even and mi | d. Then the product of all entries in the
ith row of M(d, S,E) is

(
εi
|d′|
)(
d′

p

)
, where

(
d′

p

)
has been given explicitly in

Lemma 2.3 (by taking m = mi).

Proof. Let d = 2σl1 · · · ln be the prime factorization, where σ = 0 or 1.
Then

M(d, S,E) = [δi,j ] =
[(

εiηipi
lj

)]
.
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So,

n∏

j=1

δi,j =
n∏

j=1

(
εiηipi
lj

)
=





(
εiηipi
|d|

)
if d is odd,

(
εiηipi
|d′|

)
if d = 2d′ is even.

If d is odd, then
(
pi
|d|
)

=
(
d
pi

)
since pi ≡ 1 (mod 4). By Lemma 2.3, we

know that
(
d
pi

)
= 1, moreover, if d 6≡ 5 (mod 8) or mi 6≡ 3 (mod 4) then

ηi = 1, so (
εiηipi
|d|

)
=
(
εi
|d|

)
,

and if d ≡ 5 (mod 8) and mi ≡ 3 (mod 4), then ηi = 2, so
(
εiηipi
|d|

)
= −

(
εi
|d|

)
.

Similarly, if d = 2d′ is even, then ηi = 1 by Lemma 2.3, so
(
εiηipi
|d′|

)
=
(
εi
|d′|

)(
d′

pi

)

and the lemma is proved.

Lemma 2.10. Let n ≥ 2 be an integer. Assume that for 1 ≤ i < j ≤ n
and 1 ≤ k ≤ n we are given εij ∈ {±1} and odd integers tk. Then there are
infinitely many integers d such that d has exactly n odd prime divisors, say ,
l1, . . . , ln, with

(
li
lj

)
= εij and lk ≡ tk (mod 8) for all 1≤ i< j≤ n, 1≤k≤n.

Moreover , for any fixed n − 1 primes, say, l1, . . . , ln−1, and any given odd
integer t, the set

{
l
∣∣ ( li

l

)
= εin, 1 ≤ i ≤ n − 1

}
has a positive density as a

subset of the set of all primes ≡ t (mod 8).

Proof. We argue by induction on n. Since there are infinitely many
primes in an arithmetical progression, which is needed throughout the proof,
we may choose l1 ≡ t1 (mod 8) to be a prime. Let c2 be an integer such that
c2 ≡ t2 (mod 8) and

(
c2
l1

)
= ε12 if t1 or t2 ≡ 1 (mod 4), while

(
c2
l1

)
= −ε12

if t1 ≡ t2 ≡ 3 (mod 8). Then we can find a prime l2 from the arithmetical
progression 8l1k + c2.

Suppose that we have primes l1, . . . , ln−1 with
(
li
lj

)
= εij and li ≡ ti

(mod 8) for 1 ≤ i < j ≤ n− 1. Then ln can be chosen from the arithmetical
progression 8l1 · · · ln−1k + cn, where cn ≡ tn (mod 8) and

(
cn
lj

)
= εjn (1 ≤

j ≤ n − 1). The Dirichlet density theorem implies that
{
l |
(
li
l

)
= εin, 1 ≤

i ≤ n− 1
}

has a positive density. The lemma is proved.
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3. Real quadratic fields

Definition 3.1. For any given type 2σ(m1,m3,m5,m7 ) and any
given odd primes p1, . . . , pt, we say that the set {p1, . . . , pt} satisfies
(m1,m3,m5,m7 ) if the product p1 · · · pt is of type (n1, n3, n5, n7) with
ni ≤ mi for i = 1, 3, 5, 7. In this paper, except for the case where we say
that a prime p has type T , we always assume that

∑
(mi − ni) = 1.

Theorem 3.1. Let F = Q(
√
d), d ∈ N square-free, be a real quadratic

field. Then r4(K2OF ) ≥ 1 in the following cases:

(i) d has a positive divisor d′ ≡ 7 (mod 8);
(ii) d is odd and of type (m1, 0,m5, 0) with m5 ≥ 2 even;
(iii) d is even and of type 2(m1,m3, 0, 0) with m3 ≥ 2 even.

For each of the types

(iv) (m1, 0,m5, 0) with m5 odd and m1 +m5 ≥ 2;
(v) 2(m1, 0,m5, 0) with m5 > 0 and m1 +m5 ≥ 3;
(vi) (m1,m3, 0, 0) with m3 > 0 and m1 +m3 ≥ 3;

(vii) 2(m1,m3, 0, 0) with m3 odd and m1 +m3 ≥ 2;
(viii) (m1, 0, 0, 0);

(ix) 2(m1, 0, 0, 0),

the following is true:
If T = 2δ(m1,m3,m5,m7) is one of these types and if Λ = {p1, . . . , pt}

is any set of odd primes satisfying (m1,m3,m5,m7), let

P (T,Λ) = {p prime | d = 2δpp1 · · · pt is of type T}.
Then the sets of primes

P0(T,Λ) = {p ∈ P (T,Λ) | r4(K2OQ(
√
d)) = 0}

and
P1(T,Λ) = {p ∈ P (T,Λ) | r4(K2OQ(

√
d)) ≥ 1}

have positive density.

Remark 3.1. Some cases for which we know everything about r2 and r4

are not included in the theorem. Let F = Q(
√
d) be a real quadratic field.

If d = p or 2p with p a prime, then for p ≡ ±3 (mod 8), it is easy to see
that r4(K2OF ) = 0. For p ≡ 7 (mod 8), we always have r4(K2OF ) = 1 (see,
e.g., [1]). For p ≡ 1 (mod 8), see [5]. If d has 2 or 3 odd prime divisors, then
r4(K2OF ) is listed completely in [19]. See also [16] for densities of 4-ranks
of K2OF .

Proof. (i) See [1], also [8] and [20]. We will give another proof after
showing (ii).
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(ii) We see from Lemma 2.9 that in this case for any sign matrix
M(d, S,E) of d with respect to S = {m1, . . . ,mk} and E = (ε1, . . . , εk),
the product of all entries in any row of M(d, S,E) is 1 since d ≡ 1 (mod 8),
which follows from the assumption that m5 is even.

First we assume that m1 = 0, i.e., d has no prime divisor p ≡ 1 (mod 8).
Keeping the notation as before, we suppose that M(d) = [δi,j ] is the sign
matrix with respect to {p1, . . . , pm5−1}. If δi,j = 1 for all i, j, then r4 =
m5 − 1 ≥ 1, so we are done. Assume now that δi,j = −1 for some i, j.
Performing some elementary operations if necessary, we may assume that
δ1,1 = −1. If δi,1 = −1 for some i > 1, then multiplying the ith row by the
first row, we see that

M(d) =




−1 δ1,2 . . . δ1,m5

1
... N
1


 ,

where N is an (m5 − 2) × (m5 − 1) sign matrix. If every entry of N is 1,
then we have r4 ≥ 1 again; if not, then as before we may assume that N has
(1, 1) entry −1. We may assume that δ1,2 = 1 (otherwise multiply the first
row of M(d) by the second).

For N , we perform elementary operations just as for M(d) to get

M(d) ∼=




−1 1 . . .
1 −1 . . .
...

...
1 1 . . .


 .

Here in the first and second columns, M(d) has −1 in the (1, 1) and (2, 2) po-
sitions and 1 elsewhere. We repeat this process. If some row of an equivalent
form of M(d) is all 1’s, then r4 ≥ 1. Otherwise, we end up with

M(d) ∼=




−1 . . . ∗
−1 . . . ∗

...
...

. . . ∗


 ,

where the (i, i) entries are −1, and all other entries are 1, except in the last
column: every ∗ must be −1, since the product of all entries in any row is 1.
Multiplying the first row by the remaining m5 − 2 rows, we see that

M(d) ∼=



−1 −1 . . . −1

. . .
...

−1 −1


 ,

where the first row has −1’s everywhere, and the fact that the last entry is
−1 follows from the assumption that m5 ≡ 0 (mod 2).
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The above argument works also for m1 ≥ 1. One sees that the only case
in which we might have r4 = 0 is

M(d) ∼=



−1 −1

. . .
...

−1 −1


 .

Here is another way to see this. Let M be a sign matrix and let M ′ be the
(m5 +m1−1)×m5 matrix consisting of the first m5 columns of M . Suppose
that M ′ has at least m1 totally positive rows; without loss of generality, the
last m1 rows of M ′ are totally positive. Then

M =




±1 . . . . . . ±1
...

...
±1 . . . . . . ±1
1 . . . 1
...

... N
1 . . . 1



,

where N is an m1 ×m1 matrix. (Remember, however, that we do not want
to interchange columns corresponding to the primes pi and columns corre-
sponding to the primes lj .) Then the point here is that the column-rank of
N is at most m1−1, because of the condition that the product of the entries
in any row is 1, and hence the row-rank of the square matrix over Z/2Z is
also at most m1 − 1. So a suitable sequence of row operations on the last
m1 rows of M will give a totally positive row.

Thus, if at any stage we obtain a sign matrix M for which M ′ has at
least m1 totally positive rows, we are done. If not, we end up with a sign
matrix as above which is equivalent to M .

As usual, we may assume that the first m5 columns correspond to
p1, . . . , pm5 . Multiplying the first row by rows 2 to m5, we see that M(d) is
equivalent to a sign matrix whose first row is

(

m5︷ ︸︸ ︷
−1, . . . ,−1,

m1︷ ︸︸ ︷
1, . . . , 1) =: (−1...m5 , 1...m1).

In both cases (m1 = 0 or not), applying an elementary operation (III) by
taking ε = 2, we obtain a new equivalent form of M(d), whose first row is
all 1’s. Thus we have shown that r4 ≥ 1.

We use the above approach to prove (i):

Case 1: m3 +m5 6= 0. Note that for any two primes p, q, if both p, q 6≡ 1
(mod 8) and p 6≡ q (mod 8), then for any δ1, δ2 ∈ {±1}, there exists ε ∈
{±1,±2} such that (

ε

p

)
δ1 =

(
ε

q

)
δ2 = 1.
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Case 2: m3 = m5 = 0,m7 6= 0. If d ≡ 1 (mod 8) is of type (m1, 0, 0,m7),
then the product of all entries in a row of any A ∼= M(d) is always 1. In
this case, M(d) is of size (m1 + m7 − 1) × (m1 + m7). If d 6≡ 1 (mod 8) is
of type (m1, 0, 0,m7) or d is even of type 2(m1, 0, 0,m7), then M(d) is of
size (m1 + m7) × (m1 + m7). Applying an elementary operation (III), we
can assume that one column in M(d), corresponding to a fixed prime p ≡ 7
(mod 8), is totally positive.

In both cases, by elementary operations (I) and (II), we can transform
M(d) into a sign matrix which has at least one totally positive row.

(iii) is the same as (ii).
Now we prove that when the type T = 2σ(m1,m3,m5, 0) belongs to one

of cases (iv)–(ix) of the theorem, then for any Λ satisfying (m1,m3,m5, 0)
the sets P0(T,Λ) and P1(T,Λ) have positive density.

For each of the given types T = 2σ(m1,m3,m5, 0), we describe a matrix
M0(T ) with ±1 entries for which no combination of elementary operations
will produce a totally positive row (see Step 1 of case (iv) below).

Now, given a set Λ = {p1, . . . , pn−1} of odd primes satisfying (m1,m3,
m5, 0) and a choice, S, of 5-representatives for type T , one gets a sign
matrix with respect to S (described below in case (iv)). One can show that
for a suitable choice of S, it is possible to find p ∈ P (T,Λ) for which the sign
matrix can be transformed by elementary operations to M0(T ) (see Step 2
of case (iv)).

Lemma 2.10 guarantees that the set of such p’s has positive density.
Lemma 2.8, together with the stated property of M0(T ), guarantees that
the set of such p’s is contained in P0(T,Λ) (see Step 3 of case (iv)).

We will explain the structure of the argument by treating the case (iv)
in detail. For each of the remaining cases, we will give M0(T ), but we will
omit the verification (apart from some illustrations in cases (v) and (vii))
since it is a routine matter and similar to case (iv).

So let us consider case (iv): T = (m1, 0,m5, 0), m5 ≡ 1 (mod 2) and
m5 +m1 ≥ 2.

Step 1. Put

M0(T ) =



−1 −1

. . .
...

−1 −1


 .

Here M0(T ) is an (m5 +m1 − 1)× (m5 +m1) sign matrix, whose (i, i) and
(i,m5 +m1) entries are −1 and all other entries are 1.

For a given type T and d ∈ d(T ), if M(d) is a sign matrix of d, we recall
that a necessary and sufficient condition for r4(K2OQ(

√
d)) ≥ 1 is that M(d)

is equivalent to a matrix having all entries 1 on some rows. It is easy to see
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that we have to make all signs below p1, . . . , pm5 equal if we want to get a
totally positive row.

Following Remark 2.3, we apply elementary operations (I) and (II) to
M0(T ). Multiplying the first row by rows 2 to m5, which is the only way to
make all signs below p1, . . . , pm5 equal, we see that the first row will be

(−1...m5 , 1...m1−1,−1)

where the last component is −1 because m5 ≡ 1 (mod 2). Since for any
choice of ε, there is no way to change the last component −1 into 1, we
obtain r4 = 0.

Step 2. Given a set Λ = {p1, . . . , pn−1} of odd primes satisfying T =
(m1, 0,m5, 0) (remember that n = m1 +m5) with m5 odd, we are going to
show that one can find p ∈ P (T,Λ) for which the sign matrix of p1 · · · pn−1 ·p
can be transformed by elementary operations to M0(T ).

We choose S = Λ = {p1, . . . , pn−1} as a system of 5-representatives of
F = Q(

√
p1 · · · pn−1 · p). Let 2 ≤ i ≤ n be any integer. We let the ith column

correspond to p, and the jth column correspond to pj if j < i, and to pj+1

if j ≥ i. Then the sign matrix M(T ) of p1 · · · pn−1 · p is



x1,1 a1,2 . . . a1,i−1 y1,i a1,i+1 . . . a1,n

a2,1 x2,2 . . . a2,i−1 y2,i a2,i+1 . . . a2,n
...

...
. . .

...
...

...
...

ai−1,1 ai−1,2 . . . xi−1,i−1 yi−1,i ai−1,i+1 . . . ai−1,n

ai,1 ai,2 . . . ai,i−1 yi,i xi,i+1 . . . ai,n
...

...
. . .

...
...

...
. . .

...
an−1,1 an−1,2 . . . an−1,i−1 yn−1,i an−1,i+1 . . . xn−1,n




,

where

ak,j =





(
pk
pj

)
for j ≤ i− 1,

(
pk
pj−1

)
for j ≥ i+ 1,

xj,j =
(
d/pj
pj

)
for j ≤ i− 1,

xj,j+1 =
(
d/pj
pj

)
for j ≥ i,

yk,i =
(
pk
p

)
for any k.

Note that xj,j (j ≤ i− 1) and xj,j+1 (j ≥ i) may take any value ±1.
Apply elementary operations (I) and (II) toM(T ) to convert it toM0(T ):
We begin by setting x1,1 = −1. Apply elementary row operations to

obtain 1 below x1,1. Then set x2,2 = −a1,2 (a1,2 = a2,1). The (2, 2) entry is
now −1 by some elementary row operations, and we obtain 1 below x2,2.
The method can be extended to xi−1,i−1, and so the (i−1, i−1) entry is −1
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and all elements below xi−1,i−1 are 1 after giving xi−1,i−1 a suitable value
and applying some elementary row operations.

We continue our process by assigning xi,i+1 a suitable value (±1) such
that the (i + 1, i + 1) entry is now −1. Then the elements below the
(i + 1, i + 1) entry can be made 1. Repetition of the process leads to a
sign matrix (equivalent to M(T )) with 1 below any xj,j+1.

Now, apply elementary row operations to eliminate all −1 above xj,j and
xj,j+1.

Note that when the value of xj,j (xj,j+1) is given, the value of yj,i is
obtained by the rule that the product of all entries in any row is 1.

Thus, with a suitable choice of the values of xj,j or xj,j+1 and by ele-
mentary operations (I) and (II), we obtain a sign matrix

M(T ) ∼=




−1 1 . . . 1 −1 1 . . . 1
1 −1 . . . 1 −1 1 . . . 1
...

...
. . .

...
...

...
...

1 1 . . . −1 −1 1 . . . 1
1 1 . . . 1 −1 −1 . . . 1
...

...
. . .

...
...

...
. . .

...
1 1 . . . 1 −1 1 . . . −1




,

where again all elements in the ith column are −1 because the product of
all entries in any row is 1.

Multiplying rows 1 to n− 2 by the last row, we obtain a new equivalent
form of M(T ):

M(T ) ∼=




−1 1 . . . 1 1 1 . . . −1
1 −1 . . . 1 1 1 . . . −1
...

...
. . .

...
...

...
...

1 1 . . . −1 1 1 . . . −1
1 1 . . . 1 1 −1 . . . −1
...

...
. . .

...
...

...
. . .

...
1 1 . . . 1 −1 1 . . . −1




.

Let N be the submatrix of the above matrix consisting of rows i to n−2. By
interchanging the nth and (n− 1)th rows, which can be realized by a series
of elementary row operations, we see that the above matrix is ∼= M0(T ).

Step 3. Finally we show that the density of P0(T,Λ) is positive.
In fact, taking

i =

{
m5 if p ≡ 5 (mod 8),

m5 + 1 if p ≡ 1 (mod 8),
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one sees from the discussion above that p ∈ P0(T,Λ) if and only if for each
1 ≤ j ≤ n− 1,

(pj
p

)
takes a suitable value from {±1}. So the result follows

from Lemma 2.10.
The claim that P1(T,Λ) has a positive density will be proved after we

present M0(T ) for cases (v)–(ix).
One can check that each M0(T ) given below is really a sign matrix for

some d ∈ d(T ), and that r4 = 0.
In case (iv), it is an immediate consequence of Lemma 2.10 that there are

(infinitely many) d ∈ d(T ) such that M(d) ∼= M0(T ). In each of the cases
below, we can easily see that M0(T ) is equivalent to a sign matrix with
entries 1 everywhere except for the principal diagonal and the last column.
The reason that we first present M0(T ) rather than its equivalent form is
that we want to convince the reader that M0(T ) is a sign matrix for some
d ∈ d(T ) according to Lemma 2.10, although it is more convenient for us
to use that equivalent form to verify that r4 = 0 and that the density of
P0(T,Λ) is positive.

So for each M0(T ), by Lemma 2.10, we can choose d ∈ d(T ) with prime
factorization d = 2σp1 · · · pmt l1 · · · lm1 , where t = 3 or 5, i.e., pi ≡ 5 or 3
(mod 8), lj ≡ 1 (mod 8) (1 ≤ i ≤ mt, 1 ≤ j ≤ m1) and σ = 0 or 1 such
that M(d) = M0(T ). Except for case (vi) with m3 ≡ 0 (mod 2), we always
choose S = {p1, . . . , pmt , l1, . . . , lm1−1} as a system of 5-representatives.
In fact, one may begin by letting p1 ≡ t (mod 8) (or l1 ≡ 1 (mod 8)) be
any prime and then pick up the remaining primes such that the Legendre
symbols concerning them are as described in M0(T ).

We make the following assumption:

In a sign matrix, we arrange the columns so that the first mt columns
correspond to all primes ≡ t (mod 8) and the last m1 columns correspond
to primes ≡ 1 (mod 8), where t = 3 or 5.

Now Lemma 2.10 implies that there are infinitely many d ∈ d(T ) such
that M(d) = M0(T ). Of course, this does not mean that P0(T,Λ) has a
positive density, which requires a proof as in case (iv).

(v) T = 2(m1, 0,m5, 0):

If m1 ≤ 1, let

M0(T ) =




1 −1
−1 1

. . .
...

−1 1




(δ1,m5+m1 = −1, δi,i = −1, 2 ≤ i ≤ m5 +m1 − 1);
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if m1 ≥ 2, let

M0(T ) =




1 −1
−1 1

. . .
...

−1 1
−1 −1

. . .
...

−1 −1




(δ1,m5+m1 = −1, δi,i = δj,m5+m1 = −1,

2 ≤ i ≤ m5 +m1 − 1, m5 + 1 ≤ j ≤ m5 +m1 − 1).

In both cases, multiplying rows 2 to m5, we get

M0(T ) ∼=




1 −1
−1 −1

. . .
...

−1 −1


 .

Given a set of Λ = {p1, . . . , pn−1} odd primes satisfying T = 2(m1, 0,m5, 0)
(n = m1 + m5), we suppose that p1 ≡ · · · ≡ pk ≡ 5 (mod 8) and pk+1 ≡
· · · ≡ pn−1 ≡ 1 (mod 8). Choose S = {p1, p1p2, . . . , p1pk, pk+1, . . . , pn−1} as
a system of 5-representatives of F = Q(

√
p1 · · · pn−1 · p). Let 2 ≤ i ≤ n

be any integer. We let the ith column correspond to p, and the jth column
correspond to pj if j < i, and to pj+1 if j ≥ i. Then we obtain the sign
matrix M(T ). Setting x1,1 = 1 and applying an elementary operation (III)
by taking E = (ε1, . . . , εn−1), where εj = 1 if j = 1 or aj,1 = 1, and εj = 2
if aj,1 = −1, we see that all elements in the first column are 1. Then the
same discussion as in (iv) gives the desired result.

(vi) T = (m1,m3, 0, 0):

(a) If m3 ≡ 1 (mod 2), let

M0(T ) =




−1 −1
...

. . .
...

−1 . . . −1 −1
−1 −1

. . .
...

−1 −1




(δi,j = −1, δi,m3+m1 = (−1)i, 1 ≤ j ≤ i ≤ m3;

δi,i = δi,m3+m1 = −1, m3 + 1 ≤ i ≤ m3 +m1 − 1).
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We have

M0(T ) ∼=



−1 −1

. . .
...

−1 −1




(δi,i = −1, δi,m3+m1 = −1, 1 ≤ j ≤ i ≤ m3 +m1).

(b) If m3 ≡ 0 (mod 2), let

M0(T ) =




1 −1 1 . . . −1
1 −1 −1 . . . 1
1 −1 −1 . . . −1
...

...
...

. . .
...

1 −1 −1 . . . −1 (−1)m3−2

−1 . . . −1
. . .

...
−1 1 −1




(δi,j = −1, δi,m3+m1 = (−1)i, 1 ≤ i ≤ m3 − 1, 2 ≤ j ≤ i+ 1;

δi,i = δi,m3+m1 = −1, m3 ≤ i ≤ m3 +m1 − 2).

Then

M0(T ) ∼=




1 −1 1 . . . 1 1 −1
1 1 −1 . . . 1 1 1
1 1 1 . . . 1 1 −1
...

...
...

. . .
...

...
...

1 1 1 . . . 1 −1 −1




(δi,i+1 = −1, δi,m3+m1 = −1, 1 ≤ i ≤ m3 +m1 − 2),

and r4 = 0.

We have a little difference here. Note that for any x ∈ Z with x ≡ 3
(mod 4), x is not the sum of two squares in F = Q(

√
d), since d ≡ 1 (mod 8).

We choose d ∈ d(T ) with prime factorization d = p1 · · · pm3 l1 · · · lm1 ,
where pi ≡ 3 (mod 8) (1 ≤ i ≤ m3) and lj ≡ 1 (mod 8) (1 ≤ j ≤ m1). We
choose {p1p2, p1p3, . . . , p1pm3 , l1, . . . , lm1−1} as a system of 5-representa-
tives. Suppose that qi ≡ 1 (mod 4) (1 ≤ i ≤ m3+m1−2) are primes such that
either qip1pi+1Z

2 = X2 +dY 2 if 1 ≤ i ≤ m3−2, or qm3−2+iliZ
2 = X2 +dY 2

if 1 ≤ i ≤ m1, have non-trivial solutions in Z. Letting p1 ≡ 3 (mod 8) be
any prime, we choose pj with

( pj
p1

)
= 1 for all 2 ≤ j ≤ m3 such that(pj

pi

)
(i 6= j, i 6= 1) are as described in M0(T ).

(vii) 2(m1,m3, 0, 0) with m3 odd and m1 +m3 ≥ 2:
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If m1 ≤ 1, let

M0(T ) =




1 1 1 . . . −1
−1 1 1 . . . 1
−1 −1 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . (−1)m3+m1−1




(δi,j = −1, δk,m3+m1 = (−1)k, 1≤j < i ≤ m3 +m1−1, 1≤k≤m3 +m1−1);

if m1 ≥ 2, let

M0(T ) =




1 1 1 . . . −1
−1 1 1 . . . 1
−1 −1 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . 1 . . . −1((−1)m3)
−1 −1

...
−1 −1




(δi,j = −1, δk,m3+m1 = (−1)k, 1 ≤ j < i ≤ m3, 1 ≤ k ≤ m3;

δi,i = δi,m3+m1 = −1, m3 + 1 ≤ i ≤ m3 +m1 − 1).

By elementary row operations (including interchanging the first and
(n− 1)th rows), we see that in both cases

M0(T ) ∼=




−1 1 1 . . . 1 −1
1 −1 1 . . . 1 −1
...

...
...

...
...

1 1 1 . . . −1 −1
1 1 1 . . . 1 −1




(δ1,m3+m1 = −1, δi+1,i = −1, 1 ≤ i ≤ m3 +m1 − 1).

Given a set Λ = {p1, . . . , pn−1} of odd primes satisfying T = 2(m1,m3, 0, 0)
(n = m1 + m3), we suppose that p1 ≡ · · · ≡ pk ≡ 3 (mod 8) and pk+1 ≡
· · · ≡ pn−1 ≡ 1 (mod 8). Choose S = {p1p2, . . . , p1pk, pk+1, . . . , pn−1, p1} as
a system of 5-representatives of F = Q(

√
p1 · · · pn−1 · p). Then repeat the

same discussion as in (iv).
Observe that for m1 = 0 and m1 > 0, the M0(T ) are essentially the

same.
We now use Lemmas 2.2 and 2.10 to show that for cases (iv)–(vii) the

density of P1(T,Λ) is positive.
It is sufficient to show that for any given type T = 2δ(m1,m3,m5, 0),

where δ = 0 or 1, and any given set Λ = {p1, . . . , pn−1} of primes (n =
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m1 + m3 + m5) satisfying (m1,m3,m5, 0), there exist primes p ∈ P (T,Λ)
such that {−1,m} ∈ 52 for some divisor m of p1 · · · pn−1 · p. Moreover, the
condition for {−1,m} ∈ 52 will be

(
pi
p

)
= εi for εi = ±1 (1 ≤ i ≤ n − 1),

so Lemma 2.10 implies that the density of P1(T,Λ) is positive.
First of all, for any given type T = 2δ(m1,m3,m5, 0), where δ = 0 or 1,

and any given primes p1, . . . , pn−1, if p1 · · · pn−1 is of type (m1−1,m3,m5, 0),
then the density of P1(T,Λ) is obviously positive. In fact, we can take primes
p ≡ 1 (mod 8) such that

(
pi
p

)
= 1 for 1 ≤ i ≤ n− 1. Clearly, {−1, p} ∈ 52.

We now suppose that p1 · · · pn−1 is of type (m1,m3 − 1, 0, 0) or (m1, 0,
m5 − 1, 0):

• T = (m1, 0,m5, 0): We choose p ≡ 5 (mod 8) such that
(
p1
p

)
= 1 for

1 ≤ i ≤ n− 1 and we have {−1, p} ∈ 52.
• T = 2(m1, 0,m5, 0),m5 ≡ 1 (mod 2): We choose p ≡ 5 (mod 8) such

that
(
pi
p

)
= −1 for all pi ≡ 5 (mod 8) and

(
pi
p

)
= 1 for all pi ≡ 1 (mod 8)

and taking ε = 2 we have {−1, p} ∈ 52.
• T = 2(m1, 0,m5, 0),m5 ≡ 0 (mod 2): Suppose that p1 ≡ 5 (mod 8). If(p2···pn−1

p1

)
= 1, we choose p ≡ 5 (mod 8) such that

(
pi
p

)
=
(
pi
p1

)
for all pi ≡ 1

(mod 8) and
(
pi
p

)
= −

(
pi
p1

)
for all pi ≡ 5 (mod 8) and taking ε = 2 we have

{−1, pp1} ∈ 52. If
(p2···pn−1

p1

)
= −1, we choose p ≡ 5 (mod 8) such that(

pi
p

)
=
(
pi
p1

)
for 1 ≤ i ≤ n− 1 and taking ε = 1 we have {−1, pp1} ∈ 52.

• T = (m1,m3, 0, 0),m3 ≡ 1 (mod 2): Suppose that p1 ≡ 5 (mod 8). We
choose p ≡ 3 (mod 8) such that

(
p
pi

)
= 1 for 1 ≤ i ≤ n− 1 and taking ε = 1

we have {−1, p} ∈ 52.
• T = (m1,m3, 0, 0),m3 ≡ 0 (mod 2): Suppose that p1 ≡ 3 (mod 8).

If
(p2···pn−1

p1

)
= 1, we choose p ≡ 3 (mod 8) such that

(
p
pi

)
=
(
p1
pi

)
for

2 ≤ i ≤ n−1 and taking ε = 1 we have {−1, pp1} ∈ 52. If
(p2···pn−1

p1

)
= −1,

we choose p ≡ 3 (mod 8) such that
(
p
pi

)(
p1
pi

)
=
(

2
pi

)
for 2 ≤ i ≤ n − 1 and

taking ε = 2 we have {−1, pp1} ∈ 52.
• T = 2(m1,m3, 0, 0),m3 ≡ 1 (mod 2): We choose p ≡ 3 (mod 8) such

that
(
p
pi

)
=
(

2
pi

)
for 1 ≤ i ≤ n− 1 and taking ε = 2 we have {−1, p} ∈ 52.

For the cases T = (m1, 0, 0, 0) and T = 2(m1, 0, 0, 0), we shall use some
results from [5] to show that both P0(T,Λ) and P1(T,Λ) have positive den-
sity. In [16], R. Osburn used a similar technique to study the densities of
4-ranks of K2OF .

(viii) T = (m1, 0, 0, 0): For any prime p ≡ 1 (mod 8), we have an expres-
sion p = u2 − 2w2 with u,w ∈ N, and

(
u+w
p

)
= 1 if and only if u + w ≡ 1

(mod 4) if and only if p = x2 + 32y2 for some x, y ∈ Z (see [5]). Note
that if p ≡ q ≡ 1 (mod 8) with p = u2

1 − 2w2
1 and q = u2

2 − 2w2
2, where
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u1, u2, w1, w2 ∈ N, then there are u,w ∈ N such that pq = u2 − 2w2; more-
over, u+ w ≡ (u1 + w1)(u2 + w2) (mod 4).

Let N denote the normal closure of Q(
√

1 +
√

2). Then the Galois group
Gal(N/Q) is the dihedral group of order 8. For a prime p ≡ 1 (mod 8), we
have p = x2 + 32y2 for some x, y ∈ N if and only if p splits completely in
N if and only if for any prime ideal P ⊂ OE with P | p, the Artin symbol(N/Q

P

)
is trivial.

For any given primes pi ≡ 1 (mod 8), 1 ≤ i ≤ m1 − 1 (with prescribed
values

(
pi
pj

)
), by suitable choice of a prime p ≡ 1 (mod 8), we may make the

modified sign matrix M ′(d) for d = p1 · · · pm1−1 · p equivalent to


−1 −1

. . .
...

−1 −1


 ,

where −1 appears exactly in all (i, i) entries and the last column. Here
we have removed u +

√
d from a system of 5-representatives, so M ′(d) is

not a sign matrix if u + w ≡ 1 (mod 4) (d = u2 − 2w2). We know that if
d = p1 · · · pm1−1 · p is chosen to correspond to M ′(d), then for any positive
divisor m of d, {−1,m} 6∈ 52. On the other hand, a necessary and suffi-
cient condition for {−1,m(u+

√
d )} ∈ 52 is that the Diophantine equation

m(u+w)Z2 = X2 − dY 2 has a non-trivial solution in Z. It follows immedi-
ately that if

(
u+w
d

)
= −1, then {−1,m(u +

√
d)} 6∈ 52. So if

(
u+w
d

)
= −1

together with M ′(d) being as above, then r4 = 0.
Now applying the Chebotarev Density Theorem to the number field E

which is the compositum of N and Q(
√
pi ), 1 ≤ i ≤ m1 − 1, we see that for

any given primes pi ≡ 1 (mod 8), 1 ≤ i ≤ m1 − 1, P0(T,Λ) has a positive
density.

(ix) 2(m1, 0, 0, 0) is similar. In fact, we take the same sign matrix as in
the case (m1, 0, 0, 0). Analogously, we see that if

(
u+w
d/2

)
= −1 (d = u2−2w2),

then for any divisor m of d, {−1,m(u+
√
d)} 6∈ 52. Note that

(
u+w
d/2

)
= −1 if

and only if
( −2
u+w

)
= −1. On the other hand, if d/2 = u′2−2w′2 ≡ 1 (mod 8),

then w′ is even and d = (2u′+2w′)2−2(u′+2w′)2. Hence
( −2
u+w

)
= −1 if and

only if
(−2
u′
)

= −1. Observe that if p ≡ q ≡ 1 (mod 8) with p = u2
1−2w2

1 and
q = u2

2 − 2w2
2, where u1, u2, w1, w2 ∈ N, then there are U,W ∈ N such that

pq = U2 − 2W 2; moreover, U ≡ u1 · u2 (mod 8). For a prime p ≡ 1 (mod 8)
with p = u2 − 2w2 for some u,w ∈ N, it follows from [5] that

(−2
u

)
= −1

if and only if either p 6= x2 + 32y2 for all x, y ∈ N and p ≡ 1 (mod 16), or
p = x2 + 32y2 for some x, y ∈ N and p ≡ 9 (mod 16). Let E = Q(ζ16). It
is easy to see that p ≡ 1 (mod 16) if and only if p splits completely in E if
and only if for any prime ideal P ⊂ OE with P | p, the Artin symbol

(E/Q
P

)
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is trivial. As in the case T = (m1, 0, 0, 0), applying the Chebotarev Density
Theorem, we deduce again that P0(T,Λ) has a positive density.

This concludes the proof.

Corollary 3.1. Let F = Q(
√
d) with d ∈ d(T ). Then in cases (iv)–

(ix), (K2OF )2 is elementary abelian if and only if M(d) ∼= M0(T ).

By [26], we have

Corollary 3.2. Let r2 be the 2-rank of K2OF . In cases (i)–(iii), we
have 2r2+1 |w2(F )ζF (−1). And in cases (iv)–(ix), 2r2 ‖w2(F )ζF (−1) if and
only if M(d) ∼= M0(T ).

Remark 3.1. Let T = (2, 1, 0, 0). Suppose that

Λ1 =
{
p, q primes

∣∣∣∣ p, q ≡ 3, 1 (mod 8),
(
p

q

)
= 1
}
.

Then P (T,Λ1) = {l prime | p·q ·l is of type T} = {l prime | l ≡ 1 (mod 8)},
the set P0(T,Λ1) = {l ∈ P (T,Λ1) | r4(K2OQ(

√
pql)) = 0} has density 3/4,

and P1(T,Λ1) = {l ∈ P (T,Λ1) | r4(K2OQ(
√
pql)) = 1} has density 1/4.

On the other hand, if we put

Λ2 =
{
p, q primes

∣∣∣∣ p, q ≡ 3, 1 (mod 8),
(
p

q

)
= −1

}
,

then P (T,Λ2) = {l prime | p · q · l is of type T} = {l prime | l ≡ 1 (mod 8)},
the set P0(T,Λ1) = {l ∈ P (T,Λ1) | r4(K2OQ(

√
pql)) = 0} has density 1/4,

and P1(T,Λ1) = {l ∈ P (T,Λ1) | r4(K2OQ(
√
pql)) = 1} has density 3/4.

This example shows that P0(T,Λ) and P1(T,Λ) depend on the Legendre
symbol

(
p
q

)
.

So in general, given a type T and a set Λ of odd primes, the densities of
P0(T,Λ) and P1(T,Λ) as subsets of P (T,Λ) depend not only on T and Λ,
but also on the Legendre symbols concerning the primes in Λ.

So we may ask:

Question. What are the exact values of the densities of P0(T,Λ) and
P1(T,Λ)?

4. Imaginary quadratic fields. For convenience, we introduce the
following

Notation. Let d ∈ N be square-free of type 2σ(m1,m3,m5,m7). Write
m for m1, n for m3, s for m5 and t for m7. With this notation, d or d/2
equals d1 · d3 · d5 · d7, where d1 = l1 · · · lm, d3 = p1 · · · pn, d5 = q1 · · · qs and
d7 = r1 · · · rt with li ≡ 1 (mod 8), pj ≡ 3 (mod 8), qk ≡ 5 (mod 8) and rh ≡ 7
(mod 8) are primes (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ s and 1 ≤ h ≤ t).
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For a given type T = 2σ(m1,m3,m5,m7), where σ = 0 or 1, we say
T ≡ 1 (mod 8) if σ = 0 and m3 ≡ m5 ≡ m7 (mod 2); otherwise, T 6≡ 1
(mod 8).

We introduce the following two kinds of sign matrices:

D(k) =



−1 −1

. . .
...

−1 −1


 ,

where D(k) is of size (k − 1)× k with −1 in the indicated places only, and

E(k, l) =




−1 1 1 . . . −1
−1 −1 1 . . . 1
−1 −1 −1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . −1 1 . . . (−1)k

−1 . . . −1
. . .

...
−1 −1




(δi,j = −1, δi,k+l = (−1)i, 1 ≤ j ≤ i ≤ k;

δi,i = δi,k+l = −1, k + 1 ≤ i ≤ k + l − 1),

where E(k, l) is of size (k + l − 1)× (k + l).
We will keep this notation throughout this section.

Let F = Q(
√
−d), d ∈ N square-free, be an imaginary quadratic field.

Since we know r4(K2OF ) when d has at most three odd prime divisors (see
[18]), we will focus on the cases in which d has at least four odd prime
divisors.

First we note that for the symbols generating 2K2OF , there are some
differences between real and imaginary quadratic fields F : there is a non-
trivial element (i.e., 6= 1, 2) in F ∗ which is in the Tate kernel of an imaginary
quadratic field; and we may have {−1,−m} ∈ 52 or {−1,−m(u +

√
−d)}

∈ 52, where m is a positive divisor of d. In particular, it is possible that
{−1,−1} ∈ 52. In fact, we have

Lemma 4.1. Let F = Q(
√
−d), d ∈ N square-free, be an imaginary

quadratic field. Then {−1,−1} ∈ 52 if and only if d or d/2 is of one of the
following types: (m1, 0, 0, 0); (m1,m3, 0, 0) (m1≥0); (m1, 0,m5, 0) (m1 ≥ 0).

The proof can be found in [18]. The result will be used repeatedly.
It is not difficult to see that if we take −1 as an element in a system of

5-representatives, then the remaining elements in the system can be chosen
positive, and when 2 ∈ NF , the u in the expression u+

√
−d can be chosen

positive.
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As in the real case, we want to find all totally positive rows in any sign
matrix (with all possible choices of ε1, . . . , εk, where k is the number of
rows of the matrix). Since we know necessary and sufficient conditions for
{−1,−1} ∈ 52, for simplicity, we shall not consider −1 in any system of
5-representatives of F ; instead, we let ε ∈ {±1,±2}. So except for the case
d ≡ 7 (mod 8), the sign matrices in this section are modified, i.e., we remove
−1 from a system of 5-representatives of F .

Theorem 4.1. Let F = Q(
√
−d), d ∈ N square-free having at least 4

prime divisors, be an imaginary quadratic field.
If d ≡ 1 (mod 8), then r4(K2OF ) ≥ 1.
If d 6≡ 1 (mod 8) is of type T = 2σ(m1,m3,m5,m7), where σ = 0 or 1,

then for any given set Λ = {p1, . . . , pn−1} of odd primes which satisfies
(m1,m3,m5,m7), and for

P (T,Λ) = {p prime | d = 2σpp1 · · · pn−1 is of type T = 2σ(m1,m3,m5,m7)},
the set

P0(T,Λ) = {p ∈ P (T,Λ) : r4(K2OQ(
√
−d)) = 0}

has a positive density. And there exist infinitely many square-free integers
d′ > 0 of type T such that r4(K2OF ) > 0, where F = Q(

√
−d′).

With some exceptional cases, the same is true for d having at most three
odd prime divisors.

Proof. In any case, there is always an element τ in a system of 5-
representatives such that τ ∈ 52. If we want to show that r4 ≥ 1, we
need to find two such elements. On the other hand, if we show that there is
only one such element, then r4 = 0.

The structure of argument here is the same as in the real case. In par-
ticular, the treatment of case (iv) there provides a “standard” approach
applicable to all cases.

When T 6≡ 1 (mod 8), we will give M0(T ) and M1(T ) in each case. The
same approach as in the real case shows that the density of P0(T,Λ) is
positive. We suggest the following steps to conclude the verification for each
case:

Step 1. Check that r4 = 0 for M0(T ).

Step 2. IntroduceM(T ) as in case (iv) of the real case. Choose the values
of xj,j , xj,j+1 such that M(T ) ∼= M0(T ). If the product of all entries in any
row of M0(T ) is 1, the same method as in case (iv) works; if there are some
rows in M0(T ) for which the product of all entries is −1, apply elementary
row operations to get an equivalent form of M0(T ) with the product of all
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entries in the first row equal to −1, and equal to 1 for the remaining rows.
See the illustration of case (vii); if there is a column, e.g., the first one, with
all entries 1 in M0(T ), apply an elementary operation (III) to M(T ) to get
all entries 1 in the first column. See the illustration of case (v).

Step 3. Using Lemma 2.10, show that the density of P0(T,Λ) is positive.

On the other hand, Lemma 2.10 implies that there exist infinitely many
square-free integers d ∈ d(T ) such that the sign matrices M(d) are the
same as M1(T ) (in fact, one may choose any prime p satisfying T , then
choose the remaining primes with described Legendre symbols; clearly, there
are infinitely many such p), which turns out to be that for F = Q(

√
d),

r4(K2OF ) > 0.

In the following cases (A)–(H) and (A)–(H), for any given type T , when
we write down d, we mean that d is of type T . For i = 3, 5, 7, we assume
that mi ≥ 1 (n, s, t ≥ 1), and only m1 (= m) may be 0. In a sign matrix,
we arrange the columns so that the first t columns correspond to r1, . . . , rt,
columns t+ 1 to t+ s correspond to q1, . . . , qs, columns t+ s+ 1 to t+ s+n
correspond to p1, . . . , pn, and columns t+s+n+1 to t+s+n+m correspond
to l1, . . . , lm.

(A) T = (m1, 0, 0,m7):

A1. t > 0 even. We have
(
u+w
d

)
= 1 if d is of type T .

Suppose that M(T ) is a sign matrix with respect to a given system of
5-representatives. Applying elementary rows operations to M(T ), we find
a totally positive row in M(T ) since M(T ) is of size (m+ t)× (m+ t). We
assume this row is the last one.

By Lemma 2.9, we know that the product of all entries in any row of
M(T ) is 1, hence, if there are two totally positive rows in M(T ), then r4 ≥ 1;
if this is not the case, then we see that

M(T ) ∼=




−1 −1
. . .

...
−1 −1

1 . . . 1 1




(δi,i = −1, δi,m+t = −1, but δm+t,m+t = 1).

Multiplying the first t rows together, we get a new row: (−1...t, 1...m). Note
that the first t columns correspond to r1, . . . , rt. Taking ε = −1 shows that
all −1 entries in the row are transformed into 1. Hence r4 ≥ 1.
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A2. t is odd. Let

M0(T ) =
(

E(t,m)
∗ ∗ . . . ∗ ∗

)

where the last row is arranged to correspond to u +
√
−d, on which we do

not put any restriction. For M0(T ), one can check that r4 = 0.
To find d ∈ d(T ) with M(d) = M0(T ), we choose primes r1, . . . , rt,

l1, . . . , lm and let {−r1, . . . ,−rt, l1, . . . , lm−1, u +
√
−d} if m > 0, and

{−r1, . . . ,−rt−1, u+
√
−d} if m = 0, be a system of 5-representatives.

If t ≥ 3, we put

M1(T ) =




1 1 1 . . . 1
−1 −1 1 . . . 1
−1 −1 1 . . . 1
...

...
...

...


 .

If m ≥ 2, we put

M1(T ) =




1 1 1 . . . 1
∗ ∗ ∗ . . . ∗
...

...
...

...
∗ ∗ ∗ . . . ∗
1 1 1 . . . 1



,

where the first and last rows are totally positive. Then we have r4 ≥ 1. Note
that if m = 1, then t ≥ 3.

As in the real quadratic case, without loss of generality, we will assume
m > 0 when we give a system of 5-representatives and sign matrices in the
following.

(B) T = (m1, 0,m5, 0): We have {−1,−1} ∈ 52.

B1. s > 0 even. Hence T ≡ 1 (mod 8). For M(T ) = D(s+m), we have
the minimum r4. Multiplying together the first s− 1 rows if m = 0, or the
first s rows if m ≥ 1, we get a row vector which has −1 in the first s entries
and 1 elsewhere. Since

(
2
p

)
= −1 for any prime p ≡ 5 (mod 8), taking ε = 2,

we obtain another element in 52. Therefore r4 ≥ 1.

B2. s is odd. Let M0(T ) = D(s+m). Then r4 = 0.
To find d ∈ d(T ) with M(d) = M0(T ), we choose primes q1, . . . , qs,

l1, . . . , lm and let {q1, . . . , qs, l1, . . . , lm−1} be a system of 5-representatives.
On the other hand, taking the first row of M1(T ) totally positive, we see

that r4 ≥ 1.
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(C) T = (m1,m3, 0, 0): We have {−1,−1} ∈ 52.

C1. n > 0 is even. Since
(

2
p

)
= −1 for any prime p ≡ 3 (mod 8), the

situation here is the same as the case of (m1, 0,m5, 0) with s = m5 > 0
even.

C2. n is odd. Let M0(T ) = E(n,m). Then r4 = 0.
To find d ∈ d(T ) with M(d) = M0(T ), we choose primes p1, . . . , pn,

l1, . . . , lm and let {−p1, . . . ,−pn, l1, . . . , lm−1} be a system of 5-represent-
atives. For this system, Lemma 2.3 shows that we can choose η = 1 always.

If we take the first row of M1(T ) totally positive, then r4 > 0.

(D) T = (m1, 0,m5,m7):

D1. T ≡ 1 (mod 8), i.e., both t and s are even (positive). For M(T ) =
D(t+s+m), we have the minimum r4. Multiplying the first t rows together
and taking ε = −1 and multiplying rows t+ 1 to t+ s together and taking
ε = 2, respectively, we get two distinct elements in 52. Hence, r4 ≥ 1.

D2. T 6≡ 1 (mod 8). Let M0(T ) = E(t, s+m). Then r4 = 0. In fact, one
can get the unique element in 52 by

• taking ε = −1 to the tth row, if t is even and s is odd;
• multiplying rows t+ 1 to t+ s together and taking ε = 2, if s is even and
t is odd;

• multiplying rows t to t+ s and taking ε = −2, if both s and t are odd.

Note that if both t and s are even, then T ≡ 1 (mod 8), which is the case
of D1.

To find d ∈ d(T ) with M(d) = M0(T ), we choose primes r1, . . . , rt,
q1, . . . , qs, l1, . . . , lm and let {−r1, . . . ,−rt, q1, . . . , qs, l1, . . . , lm−1} be a sys-
tem of 5-representatives.

We can take the first row of M1(T ) totally positive in any case and take
the (t+1)th row totally positive if s+m ≥ 2, or the second as (−1, . . . ,−1, 1)
if s = 1,m = 0 and t is even, or the second totally negative if s = 1,m = 0
and t is odd. Then r4 > 0.

(E) T = (m1,m3, 0,m7):

E1. T ≡ 1 (mod 8) is the same as D1.
E2. T 6≡ 1 (mod 8). Let M0(T ) = E(t + n,m). Then r4 = 0 and the

unique element in 52 can be obtained by

• taking ε = −1 to the (t+ n)th row, if t+ n is even (hence both t and n
are odd);

• taking ε = −2 to the tth row, if t is even and n is odd;
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• multiplying the tth and the (t+ n)th rows together and taking ε = 2, if
t is odd and n is even.

To find d ∈ d(T ) with M(d) = M0(T ), we choose primes r1, . . . , rt,
p1, . . . , pn, l1, . . . , lm and let {−r1, . . . ,−rt,−p1, . . . ,−pn, l1, . . . , lm−1} be a
system of 5-representatives.

To obtain r4 > 0, we may take the first row of M1(T ) totally positive
and both the second and third to be (−1,−1, 1, . . . , 1).

(F) T = (m1,m3,m5, 0):

F1. T ≡ 1 (mod 8) is the same as D1.

F2. T 6≡ 1 (mod 8). Let

M0(T ) =




−1 −1
. . .

...
−1 −1

−1 (−1)1

...
. . .

...
−1 . . . −1 (−1)n

−1 −1
. . .

...
−1 −1




(δi,i = δi,s+n+m = −1, 1 ≤ i ≤ s;
δi,j = −1, δi,s+n+m = (−1)i−s, s+ 1 ≤ i ≤ s+ n;

δi,i = δi,s+n+m = −1, s+ n+ 1 ≤ i ≤ s+ n+m− 1).

Then one can check as above that r4 = 0.

To find d ∈ d(T ) with M(d) = M0(T ), we choose primes q1, . . . , qs,
p1, . . . , pn, l1, . . . , lm and let {q1, . . . , qs,−p1, . . . ,−pn, l1, . . . , lm−1} be a sys-
tem of 5-representatives.

If we take the first two rows of M1(T ) totally positive, then we get r4 > 0.

(G) T = (m1,m3,m5,m7):

G1. T ≡ 1 (mod 8). We must have t ≡ s ≡ n (mod 2).

For M(T ) = D(t + s + n), we have the minimum r4. Multiplying the
first t+ s rows together and taking ε = −2, and multiplying rows from t+ 1
to t + s + n if m > 0, and to t + s + n − 1 if m = 0, and taking ε = 2,
respectively, we will obtain two elements in 52.
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G2. T 6≡ 1 (mod 8). Let

M0(T )=




−1 −1
...

. . .
...

−1 . . . −1 (−1)t

−1 −1
. . .

...
−1 −1

−1 . . . −1 −1 (−1)1

...
...

...
. . .

...
−1 . . . −1 −1 . . . −1 (−1)n

−1 −1
. . .

...
−1 −1




(δi,j = −1, δi,t+s+n+m = (−1)i, 1 ≤ j ≤ i ≤ t;
δi,i = δi,t+s+n+m = −1, t+ 1 ≤ i ≤ s+ t;

δi,j = −1, δi,t+s+n+m = (−1)i−(t+s), s+ t+ 1 ≤ i ≤ s+ t+ n, 1 ≤ j ≤ t
or s+ t+ 1 ≤ j ≤ i;

δi,i = δi,t+s+n+m = −1, s+ t+ n+ 1 ≤ i ≤ s+ t+ n+m− 1).

Then we have r4 = 0.
To find d ∈ d(T ) with M(d) = M0(T ), we choose primes r1, . . . , rt,

q1, . . . , qs, p1, . . . , pn, l1, . . . , lm and let {−r1, . . . ,−rt, q1, . . . , qs, −p1, . . .
. . . ,−pn, l1, . . . , lm−1} be a system of 5-representatives.

To obtain r4 > 0, we can take the first row and the (t+ 1)th of M1(T )
totally positive.

(H) T = (m1, 0, 0, 0): In this case, {−1,−1} ∈ 52.

We have
(
u+w
d

)
= 1. Since any sign matrix is of size m×m, there exists

another element ∈ 52. Hence r4 ≥ 1.

We now turn to the case in which d ∈ d(T ) is even. We will give M0(T )
and M1(T ).

To find d ∈ d(T ) with M(d) = M0(T ), we choose primes r1, . . . , rt,
q1, . . . , qs, p1, . . . , pn, l1, . . . , lm such that d = 2 · r1 · · · rt · q1 · · · qs · p1 · · · pn ·
l1 · · · lm is of type T . Here t, s, n and m are allowed to be 0. We choose
{r1, . . . , rt, l1, . . . , lm−1, u +

√
−d} and {l1, . . . , lm−1, u +

√
−d} as a sys-

tem of 5-representatives for cases (A) and (H) respectively, and we choose
{r1, . . . , rt, q1, . . . , qs, p1, . . . , pn, l1, . . . , lm−1} for the other cases. Without
loss of generality, we assume that m > 0 in the following.
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(A) T = 2(m1, 0, 0,m7):

A1. t > 0 even. We choose {r1, . . . , rt, l1, . . . , lm−1, u+
√
−d} as a system

of 5-representatives. Let

M0(T ) =
(

E(t,m)
∗ ∗ . . . ∗ ∗

)

where the last row is arranged to correspond to u+
√
−d. We observe that

a necessary condition for (u + w)mZ2 = X2 − dY 2 to have a non-trivial
solution is

(
u+w
d/2

)
= 1, where m is a divisor of d. It follows that if the

product of all elements in the last row is −1, then r4 = 0. We see that the
product is 1 if and only if

(
2

|u+w|
)

= 1 if and only if d/2 ≡ 1 (mod 16). So
letting the sign matrix be as above and letting d1 ≡ 9 (mod 16), we have
M0(T ).

To obtain r4 > 0, we can take the first two rows of M(T ) to be (1, . . . , 1)
and (−1...t, 1...m).

A2. t odd. Let

M0(T ) =




1 1 1 . . . −1
−1 1 1 . . . 1
−1 −1 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . 1 −1
−1 −1

. . .
...

−1 −1
∗ ∗ ∗ . . . ∗ ∗




(δi,j = −1, δk,t+m = (−1)k, 1 ≤ j < i ≤ t, 1 ≤ k ≤ t;
δi,i = δi,t+m = −1, t+ 1 ≤ i ≤ t+m− 1),

where the last row is arranged to correspond to u +
√
−d. Then we have

r4 = 0.
To obtain r4 > 0, we can take the first two rows of M(T ) to be

(−1...t, 1...m) and (1, . . . , 1).

(B) T = 2(m1, 0,m5, 0): We have {−1,−1} ∈ 52.

For the sign matrix
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M0(T ) =




1 −1
−1 1

. . .
...

−1 1
−1 −1

. . .
...

−1 −1




(δi,i = −1, 2 ≤ i ≤ s, δ1,s+m = −1;

δi,i = δi,s+m = −1, s+ 1 ≤ i ≤ s+m− 1),

we have r4 = 0, while for

M(T ) =




1 −1
. . .

...
1 −1

1 . . . 1
. . .

...
1 1




(δi,s+m = −1, 1 ≤ i ≤ s),

we have r4 ≥ 1.

(C) T = 2(m1,m3, 0, 0): We have {−1,−1} ∈ 52.

Let

M0(T ) =




−1 1 1 . . . (−1)n

−1 −1 1 . . . (−1)n+1

...
...

...
...

...
−1 −1 −1 . . . −1 1 . . . (−1)2n+1

−1 −1
. . .

...
−1 −1




(δi,j = −1, δi,n+m = (−1)n+i−1, 1 ≤ j ≤ i ≤ n;

δi,i = δi,n+m = −1, n+ 1 ≤ i ≤ n+m− 1).

Then we have r4 = 0.

On the other hand, if we let the first two rows of M(T ) be (−1, 1, . . . , 1)
if n is even, and let the first row be totally positive if n is odd, then r4 ≥ 1.
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(D) T = 2(m1, 0,m5,m7): Let

M0(T ) =




−1 (−1)t−1

−1 −1 (−1)t−2

...
. . .

...
−1 . . . −1 1
1 . . . 1 1 −1

−1 1
. . .

...
−1 1

−1 −1
. . .

...
−1 −1




(δi,j = −1, δi,t+s+m = (−1)t−i, 1 ≤ j ≤ i ≤ t;
δt+1,t+s+m = −1, δi,i = −1, t+ 2 ≤ i ≤ t+ s;

δi,i = δi,t+s+m = −1, t+ s+ 1 ≤ i ≤ t+ s+m− 1).

Then r4 = 0.
To obtain r4 > 0, if t (> 0) is even, we can take the first two rows to be

(1, . . . , 1) and (−1...t, 1...s+m); if both s and t are odd, we can take them to
be (−1...t, 1...s+m) and (1...t,−1...s, 1...m); if s is even, take the first row to
be (−1...t, 1...s+m) and the (t+ 1)th and (t+ 2)th to be (1, . . . , 1,−1).

(E) T = 2(m1,m3, 0,m7): Let

M0(T ) =




−1 (−1)t+n+1

−1 −1 (−1)t+n+2

...
. . .

...
−1 . . . −1 −1 (−1)n

−1 . . . −1 (−1)n
...

. . .
...

−1 . . . −1 −1
−1 −1

. . .
...

−1 −1




(δi,j = −1, δi,t+n+m = (−1)i+t+n, 1 ≤ j ≤ i ≤ t;
δi,j = −1, δi,t+n+m = (−1)t+n+1−i, t+ 1 ≤ j ≤ i ≤ t+ n;

δi,i = δi,t+n+m = −1, t+ n+ 1 ≤ i ≤ t+ n+m− 1).

Then r4 = 0.
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To obtain r4 > 0, when t+ n is even, if t ≥ 2, we can take the first row
totally positive and the second (−1...t+n, 1...m); if t = 1, take the first row
totally positive and the second (−1, 1, . . . , 1); when t+n is odd, we can take
the first row to be (−1...t+n, 1...m) and the (t+ 1)th totally positive.

(F) T = 2(m1,m3,m5, 0): Let

M0(T )=




−1 1
−1 1

. . .
...

−1 1
−1 (−1)n

−1 −1 (−1)n+1

...
. . .

...
−1 . . . −1 (−1)2n−1

−1 −1
. . .

...
−1 −1




(δi,i = −1, 1 ≤ i ≤ s;
δi,j = −1, δi,s+n+m = (−1)i−s+n−1, s+ 1 ≤ j ≤ i ≤ s+ n;

δi,i = δi,s+n+m = −1, s+ n+ 1 ≤ i ≤ s+ n+m− 1).

Then r4 = 0.
To obtain r4 > 0, we first assume that n (> 0) is even. If s is also even,

we can take the first three rows to be (1, . . . , 1,−1); if s is odd, take the first
two rows to be (−1...s+n, 1...m). Assume now n is odd. If s ≥ 2, we can take
the first two rows to be (1...s,−1...n, 1...m); if s = 1, take the first row to be
(1,−1...n, 1...m) and the second (−1...1+n, 1...m).

(G) T = 2(m1,m3,m5,m7): Let M0(T ) be



−1 (−1)t+n−1

...
. . .

...
−1 . . . −1 (−1)n

−1 1
. . .

...
−1 1

−1 . . . −1 −1 (−1)n
...

...
...

. . .
...

−1 . . . −1 −1 . . . −1 −1
−1 −1

. . .
...

−1 −1
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(δi,j = −1, δi,t+s+n+m = (−1)t+n−i, 1 ≤ j ≤ i ≤ t;
δi,i = −1, t+ 1 ≤ i ≤ t+ s;

δi,j = −1, δi,t+s+n+m = (−1)t+s+n+1−i, t+ s+ 1 ≤ i ≤ t+ s+ n, 1 ≤ j ≤ t
or s+ t+ 1 ≤ j ≤ i;

δi,i = δi,t+s+n+m = −1, t+ s+ n+ 1 ≤ i ≤ t+ s+ n+m− 1).

To obtain r4 > 0, we need to consider two cases.

G1. t + n is even: if t ≥ 2, take the first row totally positive and the
second (−1...t, 1...s,−1...n, 1...m); if t = 1 and s ≥ 2, take the first row totally
positive and the second and third to be (1, . . . , 1,−1); if t = s = 1, n ≥ 3, we
can take the first three rows to be (−1, 1,−1...n, 1...m), (1,−1, 1, . . . , 1) and
(1, 1,−1...n, 1...m); if t = s = n = 1, then m ≥ 1, take the first row totally
positive and the second and third to be (1,−1, 1, . . . , 1) and (−1, 1, . . . , 1).

G2. t+ n is odd: if n+m ≥ 2, take the first row to be

(−1...t, 1...s,−1...n, 1...m)

and the (t+ s+ 1)th row totally positive; if n = 1,m = 0, take the first row
to be (−1...t, 1...s,−1) and the second and (t+ 1)th to be (1...t+s,−1).

(H) T = 2(m1, 0, 0, 0):
Let

M(T ) =




−1 −1
. . .

...
−1 −1

∗ . . . ∗ ∗




(δi,i = δi,m = −1, 1 ≤ i ≤ m− 1).

Here the last row corresponds to u +
√
−d. Then r4 = 0 if and only if

the product of the entries in the last row is −1. Again, as in the case of
2(m1, 0, 0,m7) with t = m7 even, we see that this product is 1 if and only
if
(

2
|u+w|

)
= 1 if and only if d1 ≡ 1 (mod 16).

So letting the sign matrix as above and letting d/2 ≡ 9 (mod 16), we
have M0(T ).

And if we take the first m − 1 rows totally positive, then we see that
r4 ≥ 1.

This completes the proof.

Corollary 4.1. In cases (A)–(H) and in subcases 2 of (A)–(G), if we
choose a system of 5-representatives as in the proof , then (K2OF )2 is ele-
mentary abelian if and only if M(d) ∼= M0(T ).
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Corollary 4.2. Let F = Q(
√
−2d) with d ≡ 1 (mod 16) of type

(m1, 0, 0, 0). Then r4(K2OF ) ≥ 1.

Suppose that d ∈ N is square-free and has n prime divisors. We shall
give some examples to show why in the imaginary case we have no analogue
of the statement of Theorem 3.1 for r4(K2OF ) > 0.

Example 4.1. Let d = l1 · · · lm · p, where li ≡ 1 (mod 8) and p ≡ 3 or 5
(mod 8) are primes. We choose {l1, . . . , lm} as a system of 5-representatives
and let the sign matrix M(d) be

M(d) =




∗ −1 1 . . . 1 ∗
1 ∗ −1 . . . 1 ∗
1 1 ∗ . . . 1 ∗
...

...
...

. . .
...

...
1 1 1 . . . −1 ∗
−1 1 1 . . . ∗ ∗




(δi,i+1 = −1, δm,1 = −1, 1 ≤ i ≤ m).

Here all ∗ depend on the choice of p and we have arranged the firstm columns
according to l1, . . . , lm. One sees that for any choice of prime p, r4(K2OF )
= 0, where F = Q(

√
d). One can also see that with the same sign matrix,

for p ≡ 7 (mod 8), r4(K2OF ) = 0 also holds. Moreover, the same is true for
d = 2l1 · · · lm · p if p 6≡ 1 (mod 8).

Remarks. 1. One sees that our proof (hence the assertion) is also valid
for the case in which d has three odd prime divisors except the case of
d = 2lqp, where l, q, p ≡ 7, 5, 3 (mod 8) are primes, in which we always have
r4 = 0. See [18].

2. By the results in [18], we have the statements of Theorem 4.1 when
d has two odd prime divisors if and only if d = 2d1, or d1d3, or 2d1d3, or
2d1d5, or d1d5, or d1d7, or 2d1d7, or 2d7. Here d1 6= 1.

3. By Theorem 4.1 and by [18] again, we see that if d ≡ 1 (mod 8), then
r4 > 0 for all d 6= 1.
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