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The structure of the tame kernels
of quadratic number fields (I)

by

H. R. QIN (Nanjing)

1. Introduction. We study the structure of the 2-Sylow subgroup of the
tame kernel of a number field. Although many results exist in this direction,
this subgroup is not yet well understood, even for quadratic number fields.
Let F' be a number field with the ring of integers Op. Let K,,Op denote the
nth Quillen K-group of Op. In particular, KoOp, the Milnor group of Op, is
isomorphic to the tame kernel of F'. Recently, J. Rognes and C. Weibel [21]
gave the explicit structure of K,,Op for some number fields. But it remains
a big challenge, even for n = 2 and F' a quadratic number field.

For a positive integer n, let ron = 79n (K2Op) = 2"-rank of K2Op, i.e.,
the number of cyclic components of KosOp whose order is divisible by 2".
To understand the 2-Sylow subgroup of K5Op, one needs to know ra» for
all n. We shall develop a method to treat 4 when F' is a quadratic number
field.

We shall now give a brief indication of the contents.

In Section 2, we recall some known results which will be used repeatedly
in this paper, state some definitions, and derive some new results which give
a method of determining r4 for a quadratic field F.

In Sections 3 and 4, we use the results of the preceding section to study
the 2-Sylow subgroups of the tame kernel of real and imaginary quadratic
fields, respectively.

Let F = Q(Vd),d € Z square-free, be a quadratic field. When d has at
most three odd prime divisors, we know 74 in every case (see [18, 19]).

Let F = Q(v/d) be a real quadratic field. We use N F for the set of norms
from F over Q. Let d € N have prime factorization d = 2%l - - - l,,, where
oc=0orl.
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For j = 1,3,5,7 we let m; denote the number of /;’s which are = j
(mod8), and we call 27(my,m3, ms,my) the type of d. It is proved by
B. Brauckmann [1] that if d has a positive divisor = 7 (mod 8), then r4 > 1.

In Section 3, we give all real quadratic fields for which r, > 1. More
precisely, we have the following theorem:

THEOREM AOQ. Let F = Q(\/d) be a real quadratic field. Then ry(K20F)
> 1 in the following cases:

(1) d has a positive divisor = 7 (mod 8);
(2) d is odd and of type (m1,0,ms5,0) with ms > 2 even;
(3) d =2d" is even and d' is of type (m1,ms,0,0) with mg > 2 even.

Note that (2) and (3) are equivalent to the following (2") and (3’) re-
spectively:

(2') d=1 (mod8) with —1 € NF and —2 ¢ NF}
(3)d=2d",d =1 (mod8) with —1 ¢ NF and —2 € NF.

Let p = 1 (mod 8) be a prime. It is known (Conner—Hurrelbrink [5]) that
for F' = Q(,/p) and also for F' = Q(1/2p) both sets of primes

{p=1 (mod8) and r4(K20F) = 0},
{p=1 (mod8) and r4(K20p) =1}

have density 1/2 in the set of all primes p =1 (mod 8).
The following theorem generalizes this phenomenon to more than one
prime factor:

THEOREM Al. Let n > 2. Except for cases (1)—(3) listed above, there
is a set of positive density consisting of square-free integers d > 0 of given
parity and given type 2°(my,ms, ms, mz) such that for F = Q(v/d) the 4-
rank of KoOp is 0, and there is a set of positive density of such d’s with
T4(K20F) Z 1.

Therefore, in view of Wiles’s result on the Birch-Tate conjecture, which
predicts that [K2Op| = |wa(F)(p(—1)] for all totally real number fields, we
have some information on the even part of wq(F)(p(—1). Here wo(F') is the
order of the group of roots of unity in the algebraic closure of F' fixed by the
square of the usual Galois action, and (p(-) is the Dedekind zeta function
of F.

Theorems A0 and Al follow from Theorem 3.1.

As a consequence of our results, we obtain necessary and sufficient con-
ditions, involving only some Legendre symbols, for the 2-Sylow subgroup of
K>0p to be elementary abelian, i.e., r4 = 0. This turns out to be the same
as to give necessary and sufficient conditions for r4 > 0.
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The same has also been done for imaginary quadratic fields in Section 4.
In fact, we have:

THEOREM BO0. Let F = Q(v/—d), d € N square-free, be an imaginary
quadratic field. If d =1 (mod 8) with d # 1, then rq4 > 1.

Unfortunately, for F' imaginary the analogue of Theorem A1l is not valid
in general. But we have

THEOREM B1. Let F = Q(v/—d), d € N square-free, be an imaginary
quadratic field. If d # 1 (mod8) has at least four odd prime divisors, then
there is a set of positive density consisting of square-free integers d’ > 0
with the same parity and the same type as d, such that for F = Q(v/—d')
the 4-rank of K2Op is 0; and there exist infinitely many such d'’s with
r4(K20F) > 0. With some exceptional cases, the same is true for d having
at most three odd prime divisors.

Theorems B0 and B1 are consequences of Theorem 4.1, Corollary 4.1
and Remarks 1-3.

Again, as in real quadratic cases, we give necessary and sufficient condi-
tions for the 2-Sylow subgroup of KoOp to be elementary abelian.

Let us recall that in the imaginary quadratic case, a version of Lichten-
baum’s conjecture reads as follows:

3| D‘S /2

772 R2 (F)
Here D is the discriminant of F' = Q(v/—d) and Ry (F) a twisted version of
the mth Borel regulator.

Cr(2) = |K20p|.

2. Preliminaries. Let d # 0 be an integer. We will use the following

notation:
{£1,+2} ifd>0,

S(d)_{{1,2} if d < 0.

For an abelian group A, As will denote the 2-Sylow subgroup of A, and
2A={x € A|x? =1}. Let F be a number field. Denote by (2 the set of all
places of F.

For a finite place p € {2, we use 7, for the tame symbol at @. For any
integer n, put V" = {a € K20p | a = " for some € K2Op}.

LEMMA 2.1 (Browkin and Schinzel [3]). Let F = Q(Vd), d € Z square-
free. Then s KoOp is generated by
{-1,m}, m]|d,
together with

{—1,u; + \/g}
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if {=1,£2} N NF # 0, where u; € Z is such that u? —d = c;w? for some
w; € Z and ¢; € {—1,£2} N NF.

LeMMA 2.2 ([18, 19]). Let F = Q(Vd), d € Z square-free. Suppose that
m|d (m >0 ifd >0, but m also takes on negative values if d < 0) and write
d=u?—2w? withu,w € Z (u> 0 ifd > 0) if2 € NF. Then {—1,m} € *
if and only if one can find an € € S(d) such that

(i) (d/Tm) = (%) for every odd prime p|m

m

(ii) (?) = (%) for every odd prime p| <L;
and {—1 m(u++d)} € 7 if and only if one can find a § € S(d) such that
(d/m) (M) for every odd prime p|m;

(iv) (%) = (6(“+w)) for every odd prime p| <

LEMMA 2.3. Let F = Q(v/d) be a quadratic field.

(i) Suppose m|d. Assume that m > 0 if d > 0, and m = 1 (mod4) if
d =1 (mod8). Then there is a prime p =1 (mod4) such that

npmZ? = X? 4+ dY?

1s solvable for n =1 or 2. Moreover:

If d=1 (mod?2), then (%) = 1; furthermore, n =2 if d =5 (mod 8) and
m =3 (mod4), and n = 1, otherwise.

For d =2d', we have n =1, and

e ifm =1 (mod8), then ( ):1;

)
e ifm =5 (mod8), then ( ) = -1
o ifm =3 (mod8) and d' =1 (mod4) then (%) =1;
e ifm =3 (mod8) and d’ =3 (mod4) then (%) =—1;
o ifm=7 (mod8) and d =1 (mod4) then (%) = -1
o ifm=7 (mod8) and d =3 (mod4) then (%) = 1.

(ii) Suppose 2 € NF, d = u? — 2w?, where u,w € Z and m |d. Assume
that mu > 0 if d > 0 and m(u+ w) = 1 (mod4) if d = 1 (mod8). Then
there is a prime p = 1 (mod4) such that

pm(u+w)Z? = X? +dY*?

is solvable (the solvability of pm(u+w)Z? = X? +dY? is equivalent to that
of 2pm(u +w)Z? = X? + dY?). Moreover,

e ifd=1 (mod2), then (%) =1.



Tame kernels of quadratic number fields 207

The proof of this lemma can be found in [20]. We note that the statement
of Lemma 2.3 is a more explicit version of Lemma 3.4 in [20].

LEMMA 2.4. Let F = Q(v/d), d € Z square-free. Suppose that m |d.

(i) {=1,m} € v* if and only if epZ? = X2 — dY? is solvable for some
e € S(d), where p=1 (mod4) is a prime such that npmZ? = X? +dY? is
solvable forn =1 or 2.

(ii) If 2 € NF, then {—1,m(u + Vd)} € * if and only if 6pZ? =
X2 — dY? is solvable for some 6 € S(d), where p = 1 (mod4) is a prime
such that pm(u + w)Z? = X% +dY? is solvable.

PTOOf' (1) Let X07§/0720 € Z with (XOa}/O) = (XOaZO) = (}/0720) =1
be a solution of npmZ? = X? + dY?. 1t follows from p = 1 (mod4) that
p = a? + b? for some a,b € Z. Let pOp = g1 p2 and put

_f Xo XgHaAY@\fb p
Wi xp Jlae S

Then v? = {—1,m}. Computing the tame symbols at every finite (prime)
place, we see that

-1 if 0O = 1,
Y71 otherwise (including p = p2).

Now the result follows from Lemma 3.1 of [17] and Lemma 3.1 of [18].
For the proof of (ii), see [18].

Consider the equation epZ? = X2 — dY?, where p = 1 (mod4) is a
prime such that npmZ? = X? + dY? (resp., pm(u + w)Z? = X? + dY?)
is solvable for n = 1 or 2. Let d = 291y ---1,, be the prime factorization,
where 0 = 0 or 1. Let §; = (El—p) for 1 < i < n, where ¢ € S(d). We obtain
a vector v(p,e) = (61,...,0y). The Legendre Theorem on the solvability of
the quadratic homogeneous Diophantine equation aX? +bY? +cZ2 = 0 (see
[9] or [13]) tells us that the above equation has a non-trivial solution if and
only if all components of the vector v(p, ) are 1. This implies the following:

LEMMA 2.5. With the above notation, we have {—1,m} € 72 or {-1,
m(u+Vd)} € 72 if and only if v(p,e) = (1,...,1) for some e € S(d).

DEFINITION 2.1. Let F = Q(\/d), d € Z, be a quadratic field. We know
that o KoOp N (K3 F)? is finitely generated. A set S = {my,...,my} is
called a system of <7-representatives of F if {—1,m1},...,{—=1,my} gen-
erate o KoOp N (K2F)? and my, ..., my are multiplicatively independent
mod(F*? U 2F*?).

REMARK 2.1. 1. Let F = Q(v/d) be a real quadratic field. Suppose that
m|d. Recall from [17, 19] that {—1,m} € 2K20r N (K> F)? if and only if
m > 0 whenever d #Z 1 (mod 8), and if and only if m > 0 and m = 1 (mod 4)
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whenever d = 1 (mod 8). Moreover, {—1,m(u +Vd)} € 2K20p N (Ko F)? if
and only if m > 0 whenever d #Z 1 (mod8), and if and only if m > 0 and
m(u+ w) =1 (mod4) whenever d =1 (mod8).

2. Let F = Q(+/d) be an imaginary quadratic field. Suppose that m | d.
Recall from [18] that if d # 1 (mod8), then {—1,m} € s K20 N (K2 F)?;
if d =1 (mod8) then {—1,m} € 3K>0p N (KoF)? if and only if m = 1
(mod 4). Moreover, {—1,m(u + Vd)} € 2K20p N (KyF)? if and only if
m > 0 whenever d # 1 (mod8), and if and only if m(u+ w) = 1 (mod4)
whenever d =1 (mod8).

Let n; | d with 1 <4 <t. Assume 7;p;n; Z% = X2 +dY? (or n;p;ni(u + w) 2>
= X2 4 dY?) are solvable for primes p; = 1 (mod4) and 7; = 1 or 2
(1 < i <t). Note that for any integers X1, Y7, X2, Yo, we have the identity

(X2 +dYP) (X2 +dYE) = (X1 X —dY1Y2)? +d(X Y] + XoY0)2
Therefore, the assumption implies that szl pininiZ%2 = X% 4+ dY? (or
[T_, pinini(u+w)*Z? = X2 + dY?) is solvable.

Similarly, suppose that n; |d with 1 < ¢ < ¢. Assume nipini 2% = X? +
dY? (1 <i < t1) and gipini(u + w)Z% = X2 +dY? (t1 +1 < i < t) are
solvable for primes p; = 1 (mod4) and 7; = 1 or 2 (1 < ¢ < t). Then
[T_, pimini(u + w)* 1 Z2 = X2 + dY? is solvable.

Let p = H§:1 p; (mod 4d) be any prime. Then p]_[f:1 niniZ% = X2+dYy?
(or pTTiey mini(u 4+ w)' 2% = X2 4 dY?2, or p[[i_y mni(u + w)* "1 2% =
X2 +dY?) is solvable. Set

t
(53' _ <H11 i 'p)
L

and for 1 <i<tand1<j<mn,let

NP
51‘7]‘:< L. >
J

We observe that (01,...,6,) = (HL1 dily.-- aH§:1 din). When 2 € NF, all
1; can be chosen to be 1.
Keeping the same notation, we have

LEMMA 2.6. {—1,n;---n;} € 2 if and only if

u(p,e) = <<%> iﬁléi’l’m’ (i) ﬁlan> = (1,...,1)

for some € € S(d).
The above discussion leads to

DEFINITION 2.2. Let |d| = 271y ---1,,. Let S = {m1,...,my} be a sys-
tem of sy/-representatives of F' = Q(\/E), and suppose that the equations
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nipimi Z% = X2 +dY? (or nipimi(u +w)Z? = X2 4+ dY?) are solvable for
primes p; = 1 (mod4) and n; € {1,2}. Let E = (e1,...,ex) € S(d)*. The
sign matriz of d with respect to S = {mq,...,my} and E = (e1,...,ex) is
the k& x n matrix (with entries in {—1,1})

As a particular case, taking F = (1,...,1), we obtain the sign matrix

s =[]

- [ (22) e
I e (5322 i

which we call the sign matrix with respect to the set S of /-representatives.

Sometimes we simply write M (d) for M(d, S, E) or M(d, S) if we do not
need to emphasize S and E. For any given type T, let d(T") denote the set of
all positive integers of type T'. In symbols, d(T) = {d | d € N of type T}. If
d € d(T) is not fixed, we also use M (T') to denote M (d), which is convenient
since in most cases below we have to find a d of a given type with a sign
matrix as described.

M(d, S, E) = [(5“17”%
J

where

For the exact size of a sign matrix, we have

LEMMA 2.7. Let d be a square-free integer with n odd prime divisors and
let M(d) be a sign matriz of size k x n. Then:

e For real quadratic fields,

n if either (a) p=1 (mod8) for every odd prime p|d and
u+w=1 (mod4), or (b) d# 1 (mod8) and 2 € NF}

n—1 if either (a) d=1 (mod8), 2¢ NF and p=1 (mod4) for
every prime p|d, or (b) d =1 (mod8), 2 € NF but either
u+w =3 (mod4) ord has a positive divisor =3 (mod 4),
or (c) d# 1 (mod8) and 2 & NF;

n—2 ifd=1 (mod8), 2¢ NF and d has a positive divisor
= 3 (mod4).
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e For imaginary quadratic fields,

n if d=1 (mod8) and 2 € NF}
_Jn—1 ifd=1(mod8) and 2 ¢ NI}
Y n+1 if d#1 (mod8) and 2 € NF;

(

n if d#1 (mod8) and 2 ¢ NF.

Proof. Let F = Q(v/d) be a real quadratic field. Let d = 271, - - - 1,, be the
prime factorization, where 0 = 0 or 1. Assume that d # 1 (mod 8). Then by
Remarks 2.1, we may choose {l1,...,l,—1}if2¢ NF,and {ly,...,l,—1,u+
Vd} if 2 € NF, as a system of /-representatives of F. If d = 1 (mod 8), we
write d =11 -+l - lypg1 -+ - Iy, where [; =3 (mod4) (1 <i<m),and [; =1
(mod4) (m+1 < j <n). By Remarks 2.1 again, we can choose a system of
v-representatives of F' to be {l1la,l1ls, ..., lilm,lmy1, .oy lno1} if 2 & NF;
{Lila, s,y .l b1y - -y ln1, u4Vd} if 2 € NF and u4w = 1 (mod 4);
and {l1lo, lils, ..., Il b1y - o s b1, i (u+Vd)} if 2 € NF and u+w = 3
(mod 4).

Note that for an imaginary quadratic field F' = Q(+/d), —1 can be chosen
as an element in a system of \/-representatives if d # 1 (mod38). If d = 1
(mod 8) has a prime divisor p = 3 (mod4), then —p = 1 (mod 4). Similarly,
we can assume that u+w =1 (mod4) if d = 1 (mod 8). So the result follows
and the lemma is proved.

REMARK 2.2. In [8], J. Hurrelbrink and M. Kolster introduced a kind of
sign matrix to compute r4(K>OFp) via local Hilbert symbols.

Let M(T) = [d; ;] be a sign matrix of d. The following operations are
called elementary operations:

(I) Multiplying the ith row of M (T) by the jth row. (This corresponds
to replacing m; by m;m; in the set of 7-representatives of F'—see the
discussion after Remarks 2.1.)

(IT) Interchanging the ith and jth rows. (This corresponds to inter-
changing m; and m;.)

(IT) Interchanging the ith and jth columns. (This corresponds to inter-
changing I; and [;.)

(IIT) Multiplying the ith row by a vector (d1,...,d,) where §; = (%)
for some € € S(d). (This corresponds to changing the ith entry in the set
E= (617"'a5k)')

However, one should be careful when applying elementary operations

(Il') if I; # I; (mod8) since in elementary operations (III) one may have

(li) # (f) So, one has to remember the congruences of [; and /; (mod 8).

Usually, we fix a suitable order of {I;}.
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Assume that A and B are sign matrices. We say that A is equivalent
to B and write A &£ B if A can be transformed into B by a sequence of
elementary operations. We call a row in a sign matrix totally positive if its
entries are all 1.

For a quadratic field F = Q(+/d), if d has exactly n odd prime divi-
sors lq,...,l,, then for a system of </-representatives of F', we have only
finitely many different sign matrices, and at most 4™ if we fix the order
of l,...,l,. Any two of them are equivalent. Clearly, if {—1,m} € W2,
then m (mod F*? U 2F*?) is the product of some elements in a system of
/-representatives of F'. Multiplying the rows corresponding to these gener-
ators and by a suitable choice of ¢, i.e., multiplying by ((ﬁ), e (i)), we
get a totally positive row. Conversely, if some elementary operations yield a
totally positive row, then we have an element {—1,m} € 2 KoOp N (K F)?
such that {—1,m} € >

REMARK 2.3. We can see easily that a totally positive row can be ob-
tained (if at all) by the application of elementary operations (I) and (II)
and at most one elementary operation (III), carried out as the last step of
the process. See Lemma 2.6.

LEMMA 2.8. Let F = Q(v/d) be a quadratic field, where d is square-free
and has n odd prime divisors. Consider sign matrices of size k xn, viewed as
matrices over Z/2Z. Then r4(K2OF) coincides with the maximum of k —r
if Fis real, and k—r—1 if F' is imaginary, where r runs through the values
of ranks of all sign matrices of F.

The following is another property of a sign matrix.

LEMMA 2.9. Let d € Z be square-free, and let M(d, S, E) be the sign
matriz of d with respect to S = {my,...,mi} and E = (e1,...,€x).

Suppose d is odd. Then the product of all entries in the ith row of
M(d,S,E) is:

o (\%I) if d # 5 (mod8) or m; # 3 (mod4);

o —(‘%‘) if d =5 (mod8) and m; =3 (mod4).

Suppose d = 2d’ is even and m; | d. Then the product of all entries in the
ith row of M(d, S, E) is (lfl}l)(d—/), where (%) has been given explicitly in

P
Lemma 2.3 (by taking m = m;).

Proof. Let d = 291 -- -1, be the prime factorization, where ¢ = 0 or 1.

Then
M(d, S, E) =[5 ;] = [(E”Z;pzﬂ '
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So,

<€””p ) if d is odd,

5 — ﬁ (61‘771'1%) _ |d|
A L B .
j=1 J <€’|ij|%) if d = 2d’ is even.

n
J=

1

If d is odd, then (\%I) = (p%) since p; = 1 (mod4). By Lemma 2.3, we
know that (%) = 1, moreover, if d # 5 (mod8) or m; # 3 (mod4) then

7; =1, so
(51‘7715]37;) B <3)
|d| d| )’

and if d =5 (mod 8) and m; = 3 (mod4), then n; = 2, so

() =)

Similarly, if d = 2d’ is even, then 7; = 1 by Lemma 2.3, so

(Ei\zi]\%> - <r§ir> (i‘)

and the lemma is proved.

LEMMA 2.10. Let n > 2 be an integer. Assume that for 1 <i<j<n
and 1 < k < n we are given €;; € {£1} and odd integers tj,. Then there are
nfinitely many integers d such that d has exactly n odd prime divisors, say,
l1,.. .1y, with (ll—;) =¢g;5 and Iy =t (mod8) forall 1<i< j<n, 1<k<n.
Moreover, for any fired n — 1 primes, say, l1,...,l,_1, and any given odd
integer t, the set {l ‘ (%) =¢cin, 1 <i<n— 1} has a positive density as a
subset of the set of all primes =t (mod8).

Proof. We argue by induction on n. Since there are infinitely many
primes in an arithmetical progression, which is needed throughout the proof,
we may choose [; = t; (mod 8) to be a prime. Let c2 be an integer such that
¢a =ty (mod8) and (?—f) = ¢e19 if t1 or t2 = 1 (mod4), while (f—f) = —£19
if t; =ty = 3 (mod8). Then we can find a prime [y from the arithmetical
progression 811k + cs.

Suppose that we have primes [q,...,l,_1 with (f—J) =¢gjand [; = 1;
(mod38) for 1 <i < j <n—1. Then [, can be chosen from the arithmetical
progression 81y - - - l,_1k + ¢, where ¢, = t,, (mod8) and (i—;) =¢cjp, (1<
j < n —1). The Dirichlet density theorem implies that {l | ZT) = Ein, 1 <
1<n— 1} has a positive density. The lemma is proved.
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3. Real quadratic fields

DEFINITION 3.1. For any given type 27(mqy,mg,ms,m7) and any
given odd primes pi,...,p;, we say that the set {p1,...,p:} satisfies
(mq, mg, ms,m7) if the product p;---p; is of type (ni,ns,ns,nry) with
n; < m; for i = 1,3,5,7. In this paper, except for the case where we say
that a prime p has type T, we always assume that > (m; —n;) = 1.

THEOREM 3.1. Let F = Q(Vd), d € N square-free, be a real quadratic
field. Then r4(K2Op) > 1 in the following cases:

(i) d has a positive divisor d' =7 (mod 8);
(ii) d is odd and of type (mq,0,ms5,0) with ms > 2 even;
(iii) d is even and of type 2(mi,ms,0,0) with ms > 2 even.
For each of the types
(iv) (m1,0,ms5,0) with ms odd and my + ms > 2;
(v) 2(mq,0,ms5,0) with ms > 0 and my +ms > 3;
(vi) (m1,ms,0,0) with mg >0 and m; +mg > 3;
(vii) 2(mq, ms3,0,0) with ms odd and my + msg > 2;
(viii) (m1,0,0,0);
(IX) 2(m17 07 07 0)7
the following is true:
If T = 2%(my, ms3, ms,mz) is one of these types and if A = {p1,...,p:}
is any set of odd primes satisfying (my, ms, ms, mz), let
P(T, A) = {p prime | d = 2°ppy - - - p; is of type T}.
Then the sets of primes
Po(T,A) ={p € P(T, A) | ra(K20q/g)) = 0}

and
Pl(T, /1) = {p S P(T, A) ‘ 7’4(K20Q(\/3)) > 1}

have positive density.

REMARK 3.1. Some cases for which we know everything about ry and 74
are not included in the theorem. Let F = Q(v/d) be a real quadratic field.
If d = p or 2p with p a prime, then for p = £3 (mod 8), it is easy to see
that 74(K20F) = 0. For p =7 (mod 8), we always have r4(K20r) =1 (see,
e.g., [1]). For p =1 (mod8), see [5]. If d has 2 or 3 odd prime divisors, then
r4(K20p) is listed completely in [19]. See also [16] for densities of 4-ranks
of KQOF.

Proof. (i) See [1], also [8] and [20]. We will give another proof after
showing (ii).



214 H. R. Qin

(ii) We see from Lemma 2.9 that in this case for any sign matrix
M(d, S, E) of d with respect to S = {my,...,mi} and E = (e1,...,¢ex),
the product of all entries in any row of M (d, S, E) is 1 since d = 1 (mod 8),
which follows from the assumption that ms is even.

First we assume that m; = 0, i.e., d has no prime divisor p = 1 (mod 8).
Keeping the notation as before, we suppose that M(d) = [J; ;] is the sign
matrix with respect to {pi,...,pms—1}. If §;; = 1 for all 7,7, then ry =
ms — 1 > 1, so we are done. Assume now that 6, ; = —1 for some ¢, .
Performing some elementary operations if necessary, we may assume that
01,1 = —1. If §;; = —1 for some ¢ > 1, then multiplying the ith row by the

first row, we see that
-1 (5172 e (51,m5

1
M) = | . N ,

1
where N is an (ms — 2) X (ms — 1) sign matrix. If every entry of N is 1,
then we have r4, > 1 again; if not, then as before we may assume that N has
(1,1) entry —1. We may assume that d; 2 = 1 (otherwise multiply the first
row of M (d) by the second).
For N, we perform elementary operations just as for M(d) to get

-1 1

1 1
Here in the first and second columns, M (d) has —1 in the (1,1) and (2, 2) po-

sitions and 1 elsewhere. We repeat this process. If some row of an equivalent
form of M(d) is all 1’s, then r4 > 1. Otherwise, we end up with

-1 L. %

-1 ... x
M@= . . :

*

where the (i,7) entries are —1, and all other entries are 1, except in the last
column: every * must be —1, since the product of all entries in any row is 1.
Multiplying the first row by the remaining ms — 2 rows, we see that

-1 -1 ... -1
M(d) = R
-1 -1
where the first row has —1’s everywhere, and the fact that the last entry is
—1 follows from the assumption that ms = 0 (mod 2).



Tame kernels of quadratic number fields 215

The above argument works also for m; > 1. One sees that the only case
in which we might have r4 =0 is
-1 -1
M(d) = :
-1 -1
Here is another way to see this. Let M be a sign matrix and let M’ be the
(ms+mq —1) X ms matrix consisting of the first ms columns of M. Suppose

that M’ has at least my totally positive rows; without loss of generality, the
last m rows of M’ are totally positive. Then

+1 ... . 1
+1 ... |
M=1- 1 ’
: N
1 ... 1

where N is an my X m; matrix. (Remember, however, that we do not want
to interchange columns corresponding to the primes p; and columns corre-
sponding to the primes [;.) Then the point here is that the column-rank of
N is at most m1 — 1, because of the condition that the product of the entries
in any row is 1, and hence the row-rank of the square matrix over Z/27 is
also at most my — 1. So a suitable sequence of row operations on the last
mq rows of M will give a totally positive row.

Thus, if at any stage we obtain a sign matrix M for which M’ has at
least m; totally positive rows, we are done. If not, we end up with a sign
matrix as above which is equivalent to M.

As usual, we may assume that the first ms columns correspond to
Dl,-- - DPms- Multiplying the first row by rows 2 to ms, we see that M(d) is
equivalent to a sign matrix whose first row is

ms mq

——
C1 =0T, D) = (=1 1),

In both cases (m; = 0 or not), applying an elementary operation (III) by
taking € = 2, we obtain a new equivalent form of M (d), whose first row is
all 1’s. Thus we have shown that rs > 1.

We use the above approach to prove (i):

CASE 1: mg+ms5 # 0. Note that for any two primes p, g, if both p,q # 1
(mod8) and p # ¢ (mod8), then for any 01,92 € {£1}, there exists ¢ €

{#£1,+2} such that
G- (o
p q
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CASE 2: m3 =ms = 0,my; # 0. If d =1 (mod 8) is of type (m1,0,0, m7),
then the product of all entries in a row of any A = M(d) is always 1. In
this case, M (d) is of size (m1 +m7 — 1) X (m1 +mz). If d # 1 (mod 8) is
of type (m1,0,0,m7) or d is even of type 2(my,0,0,my7), then M(d) is of
size (m1 + m7) X (my + mz). Applying an elementary operation (III), we
can assume that one column in M (d), corresponding to a fixed prime p =7
(mod 8), is totally positive.

In both cases, by elementary operations (I) and (II), we can transform
M(d) into a sign matrix which has at least one totally positive row.

(iii) is the same as (ii).

Now we prove that when the type T' = 27 (mq, ms, ms,0) belongs to one
of cases (iv)—(ix) of the theorem, then for any A satisfying (mi,ms, ms,0)
the sets Py(T, A) and Py (T, A) have positive density.

For each of the given types T' = 29 (my, ms, ms,0), we describe a matrix
My(T) with £1 entries for which no combination of elementary operations
will produce a totally positive row (see Step 1 of case (iv) below).

Now, given a set A = {p1,...,pn—1} of odd primes satisfying (m,ms,
ms,0) and a choice, S, of s/-representatives for type T', one gets a sign
matrix with respect to S (described below in case (iv)). One can show that
for a suitable choice of S, it is possible to find p € P(T, A) for which the sign
matrix can be transformed by elementary operations to My(T") (see Step 2
of case (iv)).

Lemma 2.10 guarantees that the set of such p’s has positive density.
Lemma 2.8, together with the stated property of My(T'), guarantees that
the set of such p’s is contained in Py(T, A) (see Step 3 of case (iv)).

We will explain the structure of the argument by treating the case (iv)
in detail. For each of the remaining cases, we will give My(T'), but we will
omit the verification (apart from some illustrations in cases (v) and (vii))
since it is a routine matter and similar to case (iv).

So let us consider case (iv): T' = (m1,0,ms5,0), ms = 1 (mod2) and
ms +myp > 2.

STEP 1. Put
-1 —1
Mo(T) = :
-1 -1
Here My(T) is an (ms +mq — 1) X (ms + my) sign matrix, whose (i,7) and
(i,m5 + m1) entries are —1 and all other entries are 1.
For a given type T and d € d(T), if M(d) is a sign matrix of d, we recall

that a necessary and sufficient condition for r4(K20gq/z)) = 1 is that M (d)
is equivalent to a matrix having all entries 1 on some rows. It is easy to see



Tame kernels of quadratic number fields 217

that we have to make all signs below p1,...,p,, equal if we want to get a
totally positive row.

Following Remark 2.3, we apply elementary operations (I) and (II) to
My(T). Multiplying the first row by rows 2 to ms, which is the only way to
make all signs below pi,...,pm. equal, we see that the first row will be

(_1...m5’ 1...m171’ _1)

where the last component is —1 because ms; = 1 (mod2). Since for any
choice of ¢, there is no way to change the last component —1 into 1, we
obtain r4 = 0.

STEP 2. Given a set A = {p1,...,pp—1} of odd primes satisfying T" =
(mq,0,ms5,0) (remember that n = mj + ms) with ms odd, we are going to
show that one can find p € P(T, A) for which the sign matrix of py - - - pp,—1p
can be transformed by elementary operations to Mo (T').

We choose S = A = {p1,...,pn-1} as a system of s/-representatives of
F =Q(\/p1-Pn—1-p)- Let 2 <4 < n be any integer. We let the ith column
correspond to p, and the jth column correspond to p; if j < 7, and to p;;1
if 5 > 4. Then the sign matrix M(T') of p1 -+ pp—1-p is

T1,1 a1,2 ce a1,i—1 Yi,i 1,41 a1,n
a2,1 x2.2 e ag i—1 Y2.i a2.i4+1 a2.n
ai—11  Ai—-1,2 ... Ti—14-1 Yi-14 Qi—14+1 -+ Ai—1n )
a; 1 Qi 2 e Qi i—1 Yii Li i1 Ain
p—-11 An-12 .. GOGpn-14i-1 Yn—-1,45 Oan-14+1 .- Tp—1n
where
d/p;
Dk . . = J 1 P
(— for j <i-—1, Ljj = D; for j <i-—1,
ap i = pj !
o=
Dk . . d/p;
( : for j > i+ 1, T = /Pj for j > i,
p]—l p]
Pk
Yk, = (? for any k.

Note that z; ; (j <i—1) and x; 41 (j > ¢) may take any value £1.
Apply elementary operations (I) and (II) to M (T") to convert it to Moy (T):
We begin by setting x;; = —1. Apply elementary row operations to
obtain 1 below z1,;. Then set 29 = —ai12 (a1,2 = as,1). The (2,2) entry is
now —1 by some elementary row operations, and we obtain 1 below x3 o.
The method can be extended to x;_1 ;—1, and so the (i —1,i—1) entry is —1
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and all elements below z;_1 ;1 are 1 after giving x;_; ;1 a suitable value
and applying some elementary row operations.

We continue our process by assigning z; ;41 a suitable value (1) such
that the (i + 1,7 + 1) entry is now —1. Then the elements below the
(i + 1,7 + 1) entry can be made 1. Repetition of the process leads to a
sign matrix (equivalent to M (T)) with 1 below any x; 1.

Now, apply elementary row operations to eliminate all —1 above z; ; and
Ljj+1-

Note that when the value of x; ; (x;;4+1) is given, the value of y;; is
obtained by the rule that the product of all entries in any row is 1.

Thus, with a suitable choice of the values of x;; or z; ;11 and by ele-
mentary operations (I) and (II), we obtain a sign matrix

-1 1 ... 1 -1 1 .. 1
1 -1 ... 1 -1 1 .. 1
MT)=2|1 1 ... -1 -1 1 ... 1],
1 1 ... 1 -1 -1 ... 1
1 1 ... 1 -1 1 .. -1

where again all elements in the ¢th column are —1 because the product of
all entries in any row is 1.

Multiplying rows 1 to n — 2 by the last row, we obtain a new equivalent
form of M(T):

-1 1 ... 1 1 1 .. -1
1 -1 ... 1 1 1 ... -1
MT)=|1 1 ... -1 1 1 .. -1
1 1 ... 1 1 -1 .. -1
1 1 ... 1 -1 1 .. -1

Let N be the submatrix of the above matrix consisting of rows i to n—2. By
interchanging the nth and (n — 1)th rows, which can be realized by a series
of elementary row operations, we see that the above matrix is & My(T).

STEP 3. Finally we show that the density of Py(T, A) is positive.
In fact, taking

‘ ms if p=>5 (mod8),
1=
ms+1 if p=1 (mod8y),
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one sees from the discussion above that p € Py(T, A) if and only if for each
1<5<n—-1, ( ) takes a suitable value from {#1}. So the result follows
from Lemma 2. 10

The claim that P; (7, A) has a positive density will be proved after we
present My(T') for cases (v)—(ix).

One can check that each My(T") given below is really a sign matrix for
some d € d(T), and that r4 = 0.

In case (iv), it is an immediate consequence of Lemma 2.10 that there are
(infinitely many) d € d(T') such that M(d) = My(T). In each of the cases
below, we can easily see that My(7T') is equivalent to a sign matrix with
entries 1 everywhere except for the principal diagonal and the last column.
The reason that we first present My(T") rather than its equivalent form is
that we want to convince the reader that M(T) is a sign matrix for some
d € d(T) according to Lemma 2.10, although it is more convenient for us
to use that equivalent form to verify that r, = 0 and that the density of
Py(T, A) is positive.

So for each My(T'), by Lemma 2.10, we can choose d € d(T') with prime
factorization d = 29py -+ pp, b1 -+l , Wwhere t = 3 or 5, i.e., p; = 5 or 3
(mod38), I; =1 (mod8) (1 <i < my,1 <j<mg)and o =0 or 1 such
that M (d) = My(T). Except for case (vi) with ms = 0 (mod 2), we always
choose S = {p1,...,Pm,,l1,---,lm,—1} as a system of s/-representatives.
In fact, one may begin by letting p; = t (mod8) (or [; = 1 (mod8)) be
any prime and then pick up the remaining primes such that the Legendre
symbols concerning them are as described in My(T).

We make the following assumption:
In a sign matrix, we arrange the columns so that the first m; columns

correspond to all primes = ¢ (mod 8) and the last m; columns correspond
to primes = 1 (mod 8), where t = 3 or 5.

Now Lemma 2.10 implies that there are infinitely many d € d(T") such
that M(d) = My(T). Of course, this does not mean that Py(T,A) has a
positive density, which requires a proof as in case (iv).

(v) T =2(m1,0,ms5,0):
-1
( |
-1 1
1, 0;

Ifm1 Sl, let
(51m5+m1: = —1, 2<z<m5—|—m1—1)
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if my > 2, let
1 -1
-1 1
Mo(T) = 1 1
-1 -1
-1 -1
(51,m5+m1 = _17 5i,’i = O0jms+mi — _]-7

2<i<ms+mi—1,ms+1<j<ms+m—1).
In both cases, multiplying rows 2 to ms, we get

1 -1
-1 -1

M(T) = :
-1 -1

Given a set of A = {p1,...,pn—1} odd primes satisfying T' = 2(m1, 0, ms, 0)
(n = m1 + mg), we suppose that p; = -+ = pp = 5 (mod8) and pii1 =
<+ =pp_1 =1 (mod8). Choose S = {p1,p1p2, - P1Dk, Pkt1s---sPn—1} 88

a system of \/-representatives of F' = Q(\/p1-- Pn-1-p). Let 2 < i < n
be any integer. We let the ith column correspond to p, and the jth column

correspond to p; if 7 < 4, and to p;11 if j > ¢. Then we obtain the sign
matrix M (T). Setting z1; = 1 and applying an elementary operation (III)
by taking E = (e1,...,6n—1), wheree; =1if j=1ora;; =1, and ; =2
if aj1 = —1, we see that all elements in the first column are 1. Then the
same discussion as in (iv) gives the desired result.

(VI) T= (mlvm?)a 07 O)
(a) If mz =1 (mod 2), let

—1 —1

—1 -1 —1

MO(T) - -1 -1
-1 -1

(6’i,j = _17 5i,m3+m1 = (_1)i7 1 S .] S { S ms;
0ii = Oiymgtm, = —1, mg+1<i<mg+mg —1).

)



Tame kernels of quadratic number fields 221

We have
-1 -1

-1 -1
(6ii = =1, dimgtm, = —1, 1 <j <i<mg+my).

(b) If ms =0 (mod2), let

1 -1 1 ... -1
1 -1 -1 ... 1
1 -1 -1 ... -1
MM=11 1 1 ... 4 (—1)ms—2
-1 -1
-1 1 -1
(6ij = =1, Simgim, = (1), 1<i<mz—1,2<j<i+1;
8ii = Oiyms4m, = —1, m3 <i <mz +mq —2).
Then
1 -1 1 1 1 -1
1 1 -1 1 1 1
MyT)= |1 1 1 1 1 -1
1 1 1 ... 1 -1 -1

(0iit1 = =1, dimatm, = —1, 1 <i <mg +my — 2),
and r4 = 0.

We have a little difference here. Note that for any x € Z with z = 3
(mod 4), z is not the sum of two squares in F' = Q(v/d), since d = 1 (mod 8).

We choose d € d(T') with prime factorization d = p1 - pmsli -y,
where p; = 3 (mod8) (1 <i<mg)and [; =1 (mod8) (1 <j < mq). We
choose {p1p2,p1ps,---,P1Pms, l15---,lm,—1} as a system of \/-representa-
tives. Suppose that ¢; = 1 (mod 4) (1 < i < mg+m;—2) are primes such that
either qiplpi+1Z2 = X?4dY?if1 <i<ms—2,or qm3_2+iliZ2 = X244Y?
if 1 < i < my, have non-trivial solutions in Z. Letting p; = 3 (mod8) be
any prime, we choose p; with (i—i) = 1 for all 2 < j < mg such that
(%) (i # j, i # 1) are as described in My(T).

(vii) 2(mq,ms,0,0) with ms odd and m; + ms3 > 2:
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If m; <1, let
1 1 1 ... —1
-1 1 1 1
My(T) = -1 -1 1 ... -1
11 -1 (—1)m$+ml*1

(615 = =1, Okmgtms = (—1)%, 1<5 < i <mg+my—1, 1<k <mz+my —1);

if mq > 2, let

1 1 1 ~1
-1 1 1 1
1 -1 1 ~1

Moy =12 4 54 1 —1((=1)™2)
-1 ~1
1 1

(0ij = =1, Spmgtm, = (1", 1 <j <i<mg, 1 <k < ms;
0ii = Oimatm, = —1, ma+1<i<mz+m;—1).

By elementary row operations (including interchanging the first and
(n — 1)th rows), we see that in both cases

-1 1 1 ... 1 -1
1 -1 1 ... 1 -1
My(T)=| Co : :
1 1 1 ... =1 -1
1 1 1 ... 1 -1
(01,mg4+m: = =1, 0i415 = —1,1 <i <mg+mq — 1).

Given a set A = {p1,...,pn—1} of odd primes satisfying T = 2(mq, ms,0,0)
(n = my + mg), we suppose that p; = --- = pp = 3 (mod8) and pr41 =
<+ =pp—1 =1 (mod8). Choose S = {p1p2, ..., P1Pks Pk+t1s---sPn—-1,P1} aS

a system of s/-representatives of F' = Q(/p1 - Pn_1 - p). Then repeat the
same discussion as in (iv).

Observe that for m; = 0 and m; > 0, the My(T') are essentially the
same.

We now use Lemmas 2.2 and 2.10 to show that for cases (iv)—(vii) the
density of Py (T, A) is positive.

It is sufficient to show that for any given type T = 2°(my, ms, ms,0),
where 6 = 0 or 1, and any given set A = {p1,...,pn_1} of primes (n =



Tame kernels of quadratic number fields 223

my + ms + ms) satisfying (mq,ms, ms,0), there exist primes p € P(T, A)
such that {—1,m} € Vz for some divisor m of p1 - - - p,_1 - p. Moreover, the
condition for {—1,m} € * will be (%) =g fore; =21 (1<i<n-1),
so Lemma 2.10 implies that the density of Py (T, A) is positive.

First of all, for any given type T' = 2°(my, ms3, ms,0), where § =0 or 1,
and any given primes p1, ..., pn—1,1fp1 -+ - pr—1 is of type (m1—1,ms, ms5,0),
then the density of Py (T, A) is obviously positive. In fact, we can take primes
p =1 (mod 8) such that (%) =1 for 1 <i<n— 1. Clearly, {—1,p} € V°.

We now suppose that p; - - p,—_1 is of type (mq,m3 — 1,0,0) or (my,0,
ms — 1,0):

o T = (my,0,ms5,0): We choose p = 5 (mod8) such that (%1) =1 for
1<i<n-—1and we have {—1,p} € VQ.

e T =2(my,0,m5,0),ms = 1 (mod2): We choose p =5 (mod8) such
that (%) = —1 for all p; =5 (mod8) and (%) =1 for all p;, =1 (mod8)
and taking € = 2 we have {—1,p} € V>

e 7' =2(mq,0,ms5,0),m5 = 0 (mod 2): Suppose that p; =5 (mod38). If
(p2 Pu-1) — 1, we choose p = 5 (mod 8) such that (%) = (5—;’) for all p; =1
(m od 8) and ( ) = —(ﬂ) for all p; =5 (mod8) and taking ¢ = 2 we have
{~1,pp} € V2. If (M) = —1, we choose p = 5 (mod8) such that
(%) :( )for1<z<n—1andtakmg@—lwehave{ 1,pp1} € V2.

o = (ml,mg,O 0), m3 =1 (mod2): Suppose that p; =5 (mod 8). We
choose p = 3 (mod 8) such that (ﬁ) =1for1<i<mn-—1andtakinge =1
we have {—1,p} € V2.

e T = (my,ms,0,0),m3 = 0 (mod2): Suppose that p; = 3 (mod8).
If (%) = 1, we choose p = 3 (mod8) such that (£) = (%) for
2 <i<n—1and taking ¢ = 1 we have {—1,pp,} € . If (M) = -1,

we choose p = 3 (mod 8) such that (pﬁ)(i—l) = (pl) for2<i<n-1and

:d|~sH

taking ¢ = 2 we have {—1,pp;} € V>
o T = 2(my,ms,0,0),mg = 1 (mod2): We choose p = 3 (mod 8) such
that (p%) = (p%) for 1 <i<n—1 and taking ¢ = 2 we have {—1,p} € >

For the cases T' = (m1,0,0,0) and T = 2(m1,0,0,0), we shall use some
results from [5] to show that both Py(T, A) and P; (T, A) have positive den-
sity. In [16], R. Osburn used a similar technique to study the densities of
4-ranks of KoOpF.

(viii) T' = (m1,0,0,0): For any prime p =1 (mod 8), we have an expres-
sion p = u? — 2w? with u,w € N, and (HT“J) =1lifand only if u +w =1
(mod 4) if and only if p = 2% + 32y for some z,y € Z (see [5}) Note
that if p = ¢ = 1 (mod8) with p = u? — 2w? and ¢ = u3 — 2w3, where
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w1, Uz, w1, ws € N, then there are u,w € N such that pg = u? — 2w?; more-
over, u +w = (u1 + w1 )(ug + w2) (mod4).

Let N denote the normal closure of Q(1/1 + v/2). Then the Galois group
Gal(NN/Q) is the dihedral group of order 8. For a prime p = 1 (mod8), we
have p = 22 + 3212 for some x,y € N if and only if p splits completely in
N if and only if for any prime ideal P C Op with P |p, the Artin symbol
(NT@) is trivial.

For any given primes p; = 1 (mod8),1 < i < my — 1 (with prescribed
values (5—;)), by suitable choice of a prime p =1 (mod 8), we may make the

modified sign matrix M’(d) for d = py -+ pm,—1 - p equivalent to
-1 -1

-1 -1
where —1 appears exactly in all (i,7) entries and the last column. Here
we have removed u + v/d from a system of /-representatives, so M’(d) is
not a sign matrix if u + w = 1 (mod4) (d = u? — 2w?). We know that if
d=p1- Pm,—1-p is chosen to correspond to M’(d), then for any positive
divisor m of d, {—1,m} ¢ 72. On the other hand, a necessary and suffi-
cient condition for {—1,m(u++v/d)} € * is that the Diophantine equation
m(u+w)Z% = X? —dY? has a non-trivial solution in Z. It follows immedi-
ately that if (“£%) = —1, then {—1,m(u + Vd)} & v>. So if (“42) = -1
together with M’(d) being as above, then 4 = 0.

Now applying the Chebotarev Density Theorem to the number field E
which is the compositum of N and Q(/p; ),1 < i < my — 1, we see that for
any given primes p; = 1 (mod8),1 < i < my — 1, Py(T, A) has a positive
density.

(ix) 2(m1,0,0,0) is similar. In fact, we take the same sign matrix as in
the case (m1,0,0,0). Analogously, we see that if (“d%”) = —1(d = u?>—-2w?),
then for any divisor m of d, {—1, m(u++/d)} € 7*. Note that (“d%“) =—1if
and only if (ujr—2w) — —1. On the other hand, if d/2 = v/ —2w'* = 1 (nod 8),
then w’ is even and d = (2u’+2w’)? —2(u'+2w’)?. Hence (ujr—%u) = —1lifand
only if (;—,2) = —1. Observe that if p = ¢ = 1 (mod 8) with p = u? —2w? and
q = u3 — 2w3, where uy, uz, wr,ws € N, then there are U, W € N such that
pq = U? — 2W?2; moreover, U = u; - up (mod8). For a prime p = 1 (mod 8)
with p = u? — 2w? for some u,w € N, it follows from [5] that (772) = -1
if and only if either p # 22 + 32y for all z, € N and p = 1 (mod 16), or
p = 2% + 32y? for some z,y € N and p = 9 (mod 16). Let E = Q((16). It
is easy to see that p = 1 (mod 16) if and only if p splits completely in E if
E_/@)

P

and only if for any prime ideal P C Og with P |p, the Artin symbol (
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is trivial. As in the case T'= (m1,0,0,0), applying the Chebotarev Density
Theorem, we deduce again that Py(T, A) has a positive density.
This concludes the proof.

COROLLARY 3.1. Let F = Q(v/d) with d € d(T). Then in cases (iv)-
(ix), (K20F)2 is elementary abelian if and only if M(d) = My(T).

By [26], we have

COROLLARY 3.2. Let ro be the 2-rank of KoOp. In cases (i)—(iii), we
have 2721 | wo(F)(p(—1). And in cases (iv)—(ix), 272 || wo(F)Cr(—1) if and
only if M(d) = My(T).

REMARK 3.1. Let T'=(2,1,0,0). Suppose that

p,g=3,1 (mod8), (g) = 1}.

Then P(T, Ay) = {l prime | p-q-lis of type T} = {l prime |l =1 (mod8)},
the set Po(T, A1) = {l € P(T, A1) | ra(K20q(pqr)) = 0} has density 3/4,
and Py(T, A1) = {l € P(T, A1) | r4(K2O0q(/pqr)) = 1} has density 1/4.

On the other hand, if we put

p,q=3,1 (mod8), <B> - —1},

q
then P(T, Ay) = {l prime | p-q -1 is of type T} = {l prime | [ = 1 (mod 8)},
the set Po(T, A1) = {l € P(T, A1) | ra(K20q(pq)) = 0} has density 1/4,
and Py(T, A1) = {l € P(T, A1) | r4(K20q(/pqr)) = 1} has density 3/4.

This example shows that Py(T, A) and P;(T, A) depend on the Legendre
symbol (g).

So in general, given a type T and a set A of odd primes, the densities of
Py(T,A) and Py(T, A) as subsets of P(T, A) depend not only on 7" and A,
but also on the Legendre symbols concerning the primes in A.

A = {p,q primes

Ay = {p, q primes

So we may ask:

QUESTION. What are the exact values of the densities of Py(7, A) and
Py (T, A)?

4. Imaginary quadratic fields. For convenience, we introduce the
following

NOTATION. Let d € N be square-free of type 27 (my, ms, ms, my). Write
m for my, n for mg, s for mz and t for my. With this notation, d or d/2
equals dy - d3g - d5 - d7, where dy =11 -+ - l,,,d3 = p1-* pn,ds = q1 -+ qs and
d7 =711y with[; =1 (mod8), p; = 3 (mod8), gy =5 (mod8) andr, =7
(mod8) are primes (1 <i<m,1<j<n,1<k<sand1l<h<t).
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For a given type T' = 27(my, m3, ms, m7), where 0 = 0 or 1, we say

T =1 (mod8) if 0 = 0 and mg = m5 = my (mod 2); otherwise, T" # 1
(mod ).
We introduce the following two kinds of sign matrices:
-1 -1
D(k) = . )
-1 -1
where D(k) is of size (kK — 1) x k with —1 in the indicated places only, and
-1 1 1 .. -1
-1 -1 1 .. 1
-1 -1 -1 -1
ERD=| 4 0 54 o1 (—1)*
—1 . —1

(6%] = _17 5i,k+l - (_1)i, 1 S] <1< ]{;’
0ii =0ign =L k+1<i<k+1-1),

where E(k,l) is of size (k+1—1) x (k+1).
We will keep this notation throughout this section.

Let FF = Q(v/—d), d € N square-free, be an imaginary quadratic field.
Since we know 74(K20p) when d has at most three odd prime divisors (see
[18]), we will focus on the cases in which d has at least four odd prime
divisors.

First we note that for the symbols generating o KoOp, there are some
differences between real and imaginary quadratic fields F': there is a non-
trivial element (i.e., # 1,2) in F* which is in the Tate kernel of an imaginary
quadratic field; and we may have {—1,—m} € * or {—1, —m(u + vV—d)}
€ 2, where m is a positive divisor of d. In particular, it is possible that
{~1,—1} € 2. In fact, we have

LEMMA 4.1. Let F = Q(v/—d), d € N square-free, be an imaginary
quadratic field. Then {—1, -1} € /% if and only if d or d/2 is of one of the
following types: (mq,0,0,0); (mqy,ms,0,0) (mq >0); (mq,0,ms,0) (mq > 0).

The proof can be found in [18]. The result will be used repeatedly.

It is not difficult to see that if we take —1 as an element in a system of
V-representatives, then the remaining elements in the system can be chosen
positive, and when 2 € NF, the u in the expression u + v/—d can be chosen
positive.
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As in the real case, we want to find all totally positive rows in any sign
matrix (with all possible choices of eq,...,e;, where k is the number of
rows of the matrix). Since we know necessary and sufficient conditions for
{—1,-1} € /2, for simplicity, we shall not consider —1 in any system of
V-representatives of F'; instead, we let € € {£1,£2}. So except for the case
d =7 (mod 8), the sign matrices in this section are modified, i.e., we remove
—1 from a system of sy-representatives of F'.

THEOREM 4.1. Let F = Q(v/—d), d € N square-free having at least 4
prime divisors, be an imaginary quadratic field.

If d=1 (mod8), then r4(K20r) > 1.

If d 21 (mod38) is of type T = 27 (my, mg, ms, my), where 0 =0 or 1,
then for any given set A = {p1,...,pn-1} of odd primes which satisfies
(m1,ms3, ms,mz7), and for

P(T,A)={p prime |d =2ppy -+ - pn_1 1is of type T =2 (mq, mg, ms, mr)},
the set
Po(T, /1) = {p € P(T, A) : T4(K20@(H)) = 0}

has a positive density. And there exist infinitely many square-free integers
d' >0 of type T such that r4(K2OFp) > 0, where F = Q(v/—d').

With some exceptional cases, the same is true for d having at most three
odd prime divisors.

Proof. In any case, there is always an element 7 in a system of t/-
representatives such that 7 € VQ. If we want to show that r4, > 1, we
need to find two such elements. On the other hand, if we show that there is
only one such element, then r4 = 0.

The structure of argument here is the same as in the real case. In par-
ticular, the treatment of case (iv) there provides a “standard” approach
applicable to all cases.

When T # 1 (mod8), we will give My(T) and M;(T) in each case. The
same approach as in the real case shows that the density of Py(T,A) is
positive. We suggest the following steps to conclude the verification for each
case:

STEP 1. Check that r4 = 0 for My(T)

STEP 2. Introduce M (T') as in case (iv) of the real case. Choose the values
of x; ;,2; 41 such that M(T) = My(T'). If the product of all entries in any
row of My(T) is 1, the same method as in case (iv) works; if there are some
rows in My(T) for which the product of all entries is —1, apply elementary
row operations to get an equivalent form of My(T) with the product of all
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entries in the first row equal to —1, and equal to 1 for the remaining rows.
See the illustration of case (vii); if there is a column, e.g., the first one, with
all entries 1 in My(T'), apply an elementary operation (III) to M (T') to get
all entries 1 in the first column. See the illustration of case (v).

STEP 3. Using Lemma 2.10, show that the density of Py(T, A) is positive.

On the other hand, Lemma 2.10 implies that there exist infinitely many
square-free integers d € d(T') such that the sign matrices M(d) are the
same as M;(T) (in fact, one may choose any prime p satisfying 7', then
choose the remaining primes with described Legendre symbols; clearly, there
are infinitely many such p), which turns out to be that for F = Q(V/d),
T‘4(K20F) > 0.

In the following cases (A)—(H) and (A)—(H), for any given type T, when
we write down d, we mean that d is of type T. For ¢ = 3,5,7, we assume
that m; > 1(n,s,t > 1), and only m; (= m) may be 0. In a sign matrix,
we arrange the columns so that the first ¢ columns correspond to ri,..., 74,
columns t+ 1 to t + s correspond to q1,...,¢qs, columns t+s+1tot+s+n
correspond to p1, ..., Pn, and columns t+s+n+1 to t+s+n-+m correspond
to ll,...,lm.

(A) T = (m1,0,0,mzy):

Al.t > 0 even. We have (“JFT“’) =1if dis of type T.

Suppose that M (T) is a sign matrix with respect to a given system of
V-representatives. Applying elementary rows operations to M (T'), we find
a totally positive row in M(T) since M(T) is of size (m +t) x (m +t). We
assume this row is the last one.

By Lemma 2.9, we know that the product of all entries in any row of
M (T) is 1, hence, if there are two totally positive rows in M (T"), then ry > 1;
if this is not the case, then we see that

—1 -1
M(T) = :
-1 -1
1 ... 1 1
(61"@' = —1, 5i,m+t = —1, but 5m+t,m+t = 1)
Multiplying the first ¢ rows together, we get a new row: (—1-* 1-™). Note

that the first ¢ columns correspond to r1,...,r;. Taking € = —1 shows that
all —1 entries in the row are transformed into 1. Hence r4 > 1.
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A2. t is odd. Let
E(t,m
= (, , )

where the last row is arranged to correspond to u + v/—d, on which we do
not put any restriction. For My(T), one can check that r4 = 0.

To find d € d(T) with M(d) = My(T), we choose primes r1,...,7,

liy...yly and let {—ry, ..., =1yl ooy lp—1,u + V/—=d} if m > 0, and
{=r1,...,—ri—1,u+ v/—d} if m =0, be a system of s/-representatives.
If t > 3, we put
1 1 1 ... 1
-1 -1 1 ... 1
MT)=1{_-1 -1 1 ... 1
If m > 2, we put
1 1
* * * *
My(T) = o ;
1 1 1 ... 1

where the first and last rows are totally positive. Then we have r4 > 1. Note
that if m = 1, then ¢t > 3.

As in the real quadratic case, without loss of generality, we will assume
m > 0 when we give a system of /-representatives and sign matrices in the
following.

(B) T = (m1,0,ms5,0): We have {—1, -1} € /%

Bl. s > 0 even. Hence T'=1 (mod8). For M(T') = D(s + m), we have
the minimum r4. Multiplying together the first s — 1 rows if m = 0, or the
first s rows if m > 1, we get a row vector which has —1 in the first s entries
and 1 elsewhere. Since (%) = —1 for any prime p =5 (mod 8), taking ¢ = 2,

we obtain another element in VQ. Therefore r4 > 1.

B2. sis odd. Let My(T) = D(s 4+ m). Then r4 = 0.

To find d € d(T) with M(d) = My(T), we choose primes ¢i,...,(s,
li,..., by and let {q1,...,¢s,01,...,lm—_1} be a system of \/-representatives.

On the other hand, taking the first row of M;(T) totally positive, we see
that r4 > 1.
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(C) T = (m1,ms3,0,0): We have {1, -1} € /°.

Cl. n > 0 is even. Since (%) = —1 for any prime p = 3 (mod38), the

situation here is the same as the case of (mq1,0,m5,0) with s = ms > 0
even.

C2. nis odd. Let My(T) = E(n,m). Then r4 = 0.

To find d € d(T) with M(d) = My(T), we choose primes p1,...,pn,
li,... Ly and let {—p1,..., —Pn,l1,...,lm—1} be a system of s7-represent-
atives. For this system, Lemma 2.3 shows that we can choose n = 1 always.

If we take the first row of M;(T") totally positive, then r4 > 0.

(D) T = (m1,0,ms5, my):

D1. T =1 (mod8), i.e., both ¢ and s are even (positive). For M(T) =
D(t+ s+m), we have the minimum r4. Multiplying the first ¢t rows together
and taking ¢ = —1 and multiplying rows ¢ + 1 to t + s together and taking
€ = 2, respectively, we get two distinct elements in v2. Hence, r4 > 1.

D2. T # 1 (mod38). Let My(T) = E(t,s+m). Then ry = 0. In fact, one
can get the unique element in vz by

e taking ¢ = —1 to the tth row, if ¢ is even and s is odd;

e multiplying rows ¢t + 1 to t + s together and taking € = 2, if s is even and
t is odd;

e multiplying rows ¢ to t + s and taking e = —2, if both s and ¢ are odd.

Note that if both ¢ and s are even, then T'= 1 (mod 8), which is the case
of D1.

To find d € d(T) with M(d) = My(T), we choose primes r1,...,7,

1y sQsy 1y oyl and let {—r1, ..., =7, q1, .-, sy L1y -« oy lm—1} be a sys-
tem of \/-representatives.

We can take the first row of M;(T') totally positive in any case and take
the (t+1)th row totally positive if s+m > 2, or the second as (—1,...,—1,1)
if s=1,m =0 and t is even, or the second totally negative if s =1,m =0
and ¢t is odd. Then r4 > 0.

(E) T = (m1>m37 07 m7):

El. T =1 (mod8) is the same as D1.
E2. T # 1 (mod8). Let My(T) = E(t + n,m). Then 4, = 0 and the
unique element in 572 can be obtained by

e taking ¢ = —1 to the (¢t + n)th row, if ¢ + n is even (hence both ¢t and n
are odd);

e taking ¢ = —2 to the tth row, if ¢ is even and n is odd;
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e multiplying the tth and the (¢ + n)th rows together and taking € = 2, if
t is odd and n is even.

To find d € d(T) with M(d) = My(T), we choose primes ry,...,r,
Ply-esPnsliy..oy by and let {—rq, ..., —ry,—p1, .oy —Dnyliy .oy ln—1} be a
system of S/-representatives.

To obtain r4 > 0, we may take the first row of M;(T) totally positive
and both the second and third to be (—=1,—1,1,...,1).

(F) T = (my1,ms3,ms,0):

F1.T =1 (mod8) is the same as D1.
F2.T #1 (mod8). Let

-1 -1

(5i,i = 5i,s+n+m =—-1,1<1< s
5i7i:5i,8+n+m:_1, s+n+1 §i§3+N+m—1),

Then one can check as above that r4 = 0.

To find d € d(T) with M(d) = My(T), we choose primes qi,...,qs,

DPly-esDny b1,y lmandlet {q1,...,qs,—P1,-- -, —Pn,l1,- ., lm—1} be asys-
tem of /-representatives.

If we take the first two rows of M (T') totally positive, then we get r4 > 0.

(G) T = (m1,m3, ms, mr):

G1l. T =1 (mod8). We must have t = s =n (mod 2).

For M(T) = D(t + s + n), we have the minimum r4. Multiplying the
first t 4+ s rows together and taking ¢ = —2, and multiplying rows from ¢ + 1
tot+s+nifm >0, and tot+s+n—11if m = 0, and taking € = 2,
respectively, we will obtain two elements in Vz.
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G2. T #1 (mod8). Let

I (-1
B ! (-1)!
-1 —1 -1 1 (_1)n

-1 1

-1 -1

(5i7j = -1, 6i7t+s+n+m = (_1)i, 1< <9<t
Gii = Oitpstnim=—1, t+1<i<s+t

Sij =1, Sigpspnem = (1)) st 41 <i<s+t+nl<j<t

ors+t+1<75 <7
0ii = Oiggsintm =—1, s+t+n+1<i<s+t+n+m-—1).

Then we have r4 = 0.
To find d € d(T) with M(d) = My(T), we choose primes 71,...,7,

q1y---349sy, P1s---3yDPn, l17"'7lm and let {_rlv"'v_rta q1y---549sy —P1y- -
ceoy=Pnyl1, ..., lm—1} be a system of s/-representatives.

To obtain 74 > 0, we can take the first row and the (¢ 4+ 1)th of M;(T)
totally positive.

(H) T = (m1,0,0,0): In this case, {—1,—1} € 2.

We have (“*Tw) = 1. Since any sign matrix is of size m x m, there exists

another element € VQ. Hence ry > 1.

We now turn to the case in which d € d(T") is even. We will give My(T")
and My (T).

To find d € d(T) with M(d) = My(T), we choose primes 71,...,7,
Qis--->qsy Ply---yPnsl1y-- s lmsuchthatd=2-r1---74-q1---qs"p1-- Dn -
ly+-- Uy is of type T. Here t,s,n and m are allowed to be 0. We choose
rey e res iy ooy by, u + v/—d} and {ly,...,lh_1,u + v/—d} as a sys-
tem of v/-representatives for cases (A) and (H) respectively, and we choose
{ri, sty @1y yQsy D1y« Pnsliy ..oy lm—1} for the other cases. Without
loss of generality, we assume that m > 0 in the following.
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(A) T= 2(m1,0,0,m7):

Al.t > 0even. We choose {ry,...,7,l1,...,lm—1,u++—d} as a system
of s/-representatives. Let

wm=(, , )

where the last row is arranged to correspond to u + /—d. We observe that
a necessary condition for (u + w)mZ? = X? — dY? to have a non-trivial
solution is (“d‘;;” ) = 1, where m is a divisor of d. It follows that if the
product of all elements in the last row is —1, then r4 = 0. We see that the
product is 1 if and only if (ﬁ) =1 if and only if d/2 = 1 (mod 16). So
letting the sign matrix be as above and letting d; = 9 (mod 16), we have
Mo(T).

To obtain r4 > 0, we can take the first two rows of M (T') to be (1,...,1)
and (=1t 1-™),

A2. t odd. Let
1 1 -1
-1 1 1
-1 -1 1 —1
My(T)=1]1-1 -1 -1 1 -1
-1 -1
-1 -1

(0ij =1, Oppam = (D" 1<j<i<t, 1<k <t
0ii =0itym=—1,t+1<i<t+m-—1),

where the last row is arranged to correspond to u + v/—d. Then we have
rqg = 0.
To obtain r4 > 0, we can take the first two rows of M(T") to be

(_1t71m) and (17,1)

(B) T = 2(m1,0,ms5,0): We have {—1, -1} € ¥°.

For the sign matrix
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My(T) = L :

-1 -1
(51‘,1 = _]-7 2 Si§57 61,s+m = _1,
0ii =0isym =—1, s+1<i<s+m—1),

)

we have ry = 0, while for

(6i,s+m =-1,1<:< S)a

we have rqg > 1.

(C) T = 2(my,ms3,0,0): We have {—1, -1} € >

Let
-1 1 1 (=)™
-1 -1 1 (—1)ntt
My(T)=1] -1 -1 -1 oo =1 1 . (—1)2n+L
-1 -1
-1 -1

(0ij = =1, Simim = ()" 1<j<i<nm
0isi = Oimpm =1, n+1<i<n4+m—1).

Then we have r4 = 0.

On the other hand, if we let the first two rows of M (T') be (—1,1,...,1)
if n is even, and let the first row be totally positive if n is odd, then r4 > 1.



) T=

Mo(T)

Then r4 = 0.

Tame kernels of quadratic number fields

2(mq,0,ms5,m7): Let

-1
-1 -1

-1 ... -1
1 ... 1 1

(0ij = —1L Qigrsrm = (1) 1< j<i <t
6t+1,t+s+m =—1, 5i,i =—-1,t4+2<i1<t+s;

0ii =0it4sm=—1,t+s+1<i<t+s+m—1).
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To obtain r4 > 0, if ¢ (> 0) is even, we can take the first two rows to be

(1,
be (-
be

([E) T

) and (=1t 1--5T™): if both s and ¢ are odd, we can take them to

to1stmy and (1F, =15, 1-™); if s is even, take the first row to

Mo(T) =

Oij =

Then r4 = 0.

1
(—1- t, ,1--57™) and the (¢t + 1)th and (¢ + 2)th to be (1,
)

2(mq,ms,0,mz7): Let

L 1,-1).

-1
1 -1
—1 -1 -1
-1 -1
-1 -1
—1
5i’:*1)6it ntm = (—1 i—‘,—t—‘,—n’ 1§j§2§t’
,J ,t+n+

—1, Sipngm = (D) 41 <G <i <ty

0ii =0itan+m=—1t+n+1<i<t+n+m-—1).
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To obtain r4 > 0, when ¢ 4+ n is even, if t > 2, we can take the first row
totally positive and the second (—1-t*" 1--™): if t = 1, take the first row
totally positive and the second (—1,1,...,1); when ¢ +n is odd, we can take
the first row to be (=1t 1) and the (¢ + 1)th totally positive.

(F) T = 2(m1, m3, ms,0): Let

—1 1
-1 1
—1 1
—1 (=1)™
_ _ _1\n+1
o) - = -
-1 -1 (—1)2n—1
-1 -1
—1 —1

(0i; =—1, 1 <i<s;
8ij = =1, Sisinam = (1)L s+ 1< <i<s
0ii =0istntm=—1, s+n+1<i<s+n+m-—1).
Then r4, = 0.
To obtain r4 > 0, we first assume that n (> 0) is even. If s is also even,
we can take the first three rows to be (1,...,1,—1); if s is odd, take the first
two rows to be (—1--5T" 1), Assume now n is odd. If s > 2, we can take

the first two rows to be (1%, —1-" 1-"); if s = 1, take the first row to be
(1,—1-",1-™) and the second (—1-1%7 1),

(G) T = 2(mq,ms3, ms5,mz7): Let My(T) be

_ (_1)t+n—1
1 _1 (—1)"
1 1
1 1
1 ~1 1 (—1)"
21 1 1 1 1
1 1
1 -1



Tame kernels of quadratic number fields 237

(0ij = =1, Sitrstnim = (1)1 <G <i <t
bii=—-1Lt+1<i<t+s;
Sij = =1, Gipasanim = (1) T b s 1 <i<t+s+n, 1<j<t
ors+t+1<j5<q;
0ii =Oittstntm =—1t+s+n+1<i<t+s+n+m-—1).

To obtain r4 > 0, we need to consider two cases.

G1. t +n is even: if t > 2, take the first row totally positive and the
second (=1t 15 =17 1-™);if t = 1 and s > 2, take the first row totally
positive and the second and third to be (1,...,1,—-1);ift =s=1,n > 3, we
can take the first three rows to be (—1,1,—1-",1-™) (1,—1,1,...,1) and
(1,1,=1-"1-™); if t = s = n = 1, then m > 1, take the first row totally
positive and the second and third to be (1,—1,1,...,1) and (=1,1,...,1).

G2. t +n is odd: if n +m > 2, take the first row to be
(_]‘...t7 1...37 _l’n7 lm)

and the (¢ + s+ 1)th row totally positive; if n = 1, m = 0, take the first row
to be (=1, 1% —1) and the second and (¢ + 1)th to be (15 —1).

(H) T'= 2(m4,0,0,0):
Let
-1 -1

-1 -1

(5i,i :5i,m = —1, 1 §z§m—1)

Here the last row corresponds to u + v/—d. Then 74 = 0 if and only if
the product of the entries in the last row is —1. Again, as in the case of
2(mq,0,0,m7) with ¢ = my even, we see that this product is 1 if and only
if (i) = 1if and only if di =1 (mod 16).

So letting the sign matrix as above and letting d/2 = 9 (mod 16), we
have My(T).

And if we take the first m — 1 rows totally positive, then we see that
T4 Z 1.

This completes the proof.

COROLLARY 4.1. In cases (A)—(H) and in subcases 2 of (A)—(G), if we
choose a system of <7-representatives as in the proof, then (K2Op)s is ele-
mentary abelian if and only if M(d) = My(T).
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COROLLARY 4.2. Let F = Q(vV/—2d) with d = 1 (mod16) of type
(m1,0,0,0). Then r4(K20p) > 1.

Suppose that d € N is square-free and has n prime divisors. We shall
give some examples to show why in the imaginary case we have no analogue
of the statement of Theorem 3.1 for r4(K20p) > 0.

EXAMPLE 4.1. Let d =1y -1, - p, where [; =1 (mod8) and p=3 or 5
(mod 8) are primes. We choose {l1,...,L,} as a system of 5/-representatives
and let the sign matrix M (d) be

* -1 1 1 =
1 *  —1 1
1 1 * 1 =x
M(d) = : : : Do
1 1 1 -1 =
-1 1 1 * %

(6iit1=—1, 01 =—1,1<i<m).

Here all x depend on the choice of p and we have arranged the first m columns
according to li,...,l,. One sees that for any choice of prime p,r4(K20p)
= 0, where F' = Q(v/d). One can also see that with the same sign matrix,
for p = 7 (mod 8),r4(K20F) = 0 also holds. Moreover, the same is true for
d=2l;-- 1y -pif p# 1 (mod8).

REMARKS. 1. One sees that our proof (hence the assertion) is also valid
for the case in which d has three odd prime divisors except the case of
d = 2lgp, where l,q,p = 7,5,3 (mod 8) are primes, in which we always have
rqy = 0. See [18].

2. By the results in [18], we have the statements of Theorem 4.1 when
d has two odd prime divisors if and only if d = 2d1, or dids, or 2d;ds, or
2dyds, or dyds, or did7, or 2dyd7, or 2d7. Here dy # 1.

3. By Theorem 4.1 and by [18] again, we see that if d =1 (mod8), then
rq > 0 for all d # 1.
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