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1. Introduction. Let as usual

(1.1) r(n) := #{(u, v) ∈ Z2 : u2 + v2 = n}
denote the number of ways to write the integer n as a sum of two squares.
Then the classic circle problem, which goes back to C. F. Gauß, is concerned
with the asymptotic behaviour of the quantity

(1.2) P (x) :=
∑

0≤n≤x
r(n)− πx.

In other words, this is the lattice point discrepancy of a compact, origin-
centered circular disc with radius

√
x. For detailed and enlightening ex-

positions of the rich history of this topic, the reader should consult the
monographs of E. Krätzel [10], [11].

The sharpest upper bound has been established quite recently by
M. Huxley [7] (as a slight improvement on Huxley [6]) and reads

(1.3) P (x)� x131/416(log x)18637/8320,

where 131/416 = 0.3149 . . . Concerning lower bounds, significant progress
has just been achieved by K. Soundararajan [20] who proved that

(1.4) P (x) 6= o(x1/4(logx)1/4(log log x)3(21/3−1)/4(log log log x)−5/8).

For a longer time, it has been known that

(1.5) lim inf
x→∞

(
P (x)

x1/4(log x)1/4ω1(x)

)
< 0, lim sup

x→∞

(
P (x)

x1/4ω2(x)

)
> 0,

with
ω1(x) := (log log x)(log 2)/4 exp(−c1(log log log x)1/2),

ω2(x) := exp(c2(log log x)1/4(log log log x)−3/4),
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c1, c2 appropriate positive constants. These results are due to J. L. Hafner
[4], resp. K. Corrádi and I. Kátai [2].

It is usually conjectured that x1/4, as it appears in (1.4), essentially
meets the “true” order of P (x), i.e., that

inf{λ : P (x)�λ x
λ} = 1/4.

In favour of this hypothesis, there are quite precise mean-square asymptotics
of the shape

(1.6)
X�

0

(P (x))2 dx = CX3/2 +Q(X),

with

C =
1

3π2

∞∑

n=1

r2(n)n−3/2 =
16

3π2

ζ2(3/2)L2(3/2)
ζ(3)

(1 + 2−3/2)−1(1.7)

≈ 1.69396.

Here and throughout, L(s) denotes the L-series corresponding to the non-
principal character modulo 4.

The estimation of the remainder Q(X) has been subject of intensive
research, by increasingly sophisticated methods. We mention the results of
H. Cramér [3]:Q(X)� X5/4+ε, E. Landau [12]:Q(X)� X1+ε, and A. Wal-
fisz [21]: Q(X)� X(logX)3. The sharpest bound to date is due to I. Kátai
[9] and reads

(1.8) Q(X)� X(logX)2.

More recently, E. Preissmann [17] found a short and elegant proof for this
result, using a deep inequality of Montgomery and Vaughan. (See Lemma
B below.)

The objective of the present note is to obtain a further reduction of the
log-exponent in the estimate (1.8).

Theorem. The error term Q(X) defined by (1.6), (1.7) satisfies, as
X →∞,

Q(X)� X(logX)3/2 log logX .

Remarks. 1. Compared to the previous authors cited, we simplify the
analysis by an approach suggested by T. Meurman for the divisor prob-
lem [14]. The basic idea of our refinement is that most integers are not
representable as a sum of two squares, and that the so-called B-numbers
(i.e., those with r(n) > 0) are usually well-spaced—i.e., “B-twins” are still
less frequent. This fact permits a small extra saving when applying the
Montgomery–Vaughan bound with care.
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2. It may be instructive to report the present state-of-the-art with the
analogous error term Q∆(X) corresponding to the Dirichlet divisor problem.
According to E. Preissmann [17], it is known that Q∆(X) � X(logX)4,
while Y.-K. Lau and K.-M. Tsang [13] recently proved that Q∆(X) is not a
o(X(logX)2). This might suggest that our result is not far away from the
best possible bound.

2. Some auxiliary results

Notation. Variables of summation automatically range over all inte-
gers satisfying the conditions indicated. p denotes primes throughout, and P
is the set of all (rational) primes. For any subset P ⊆ P, we write D(P) for
the set of all positive integers m whose prime divisors are all in P. All con-
stants implied in the symbols O(·), �, �, etc., are absolute, and ε denotes
a sufficiently small positive constant.

Lemma A. Suppose that x ≥ 1, x 6∈ Z, and x ≤ M ≤ xA, where A > 1
is some fixed constant. Denote by ‖·‖ the distance from the nearest integer.
Then, for every ε > 0,

P (x) =
√
x
∑

1≤n<M
r(n)n−1/2J1(2π

√
nx)

+O(min(x5/4M−1/2 + x1/2+εM−1/2‖x‖−1 + x1/4M−1/4, xε))

where J1 is a Bessel function.

Proof. This is Lemma 1 in A. Ivić [8], combined with his eq. (1.7).

Lemma B. For an arbitrary finite index set J, let (aj)j∈J be a complex
sequence and let (λj)j∈J be a sequence of pairwise distinct reals. Write

δj := min
k∈J, k 6=j

|λk − λj |.

Then, for arbitrary real T0 and T > 0,
T0+T�

T0

∣∣∣
∑

j∈J
aj exp(iλjt)

∣∣∣
2
dt = T

∑

j∈J
|aj |2 +O

(∑

j∈J

|aj |2
δj

)
,

where the O-constant is absolute.

Proof. This is an obvious variant of Corollary 2 in H. L. Montgomery
and R. C. Vaughan [15].

Lemma C. For each prime power pα, α ≥ 1, let Ω(pα) be a set of distinct
residue classes c modulo pα. Define further

Ω(pα) =
{
n ∈ Z+ : n ∈

⋃

c∈Ω(pα)

c
}
, θ(pα) = 1−

α∑

j=1

#Ω(pj)
pj

, θ(1) = 1.
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Suppose that Ω(pα)∩Ω(pβ) = ∅ for all primes p and positive integers α 6= β.
For real x > 0, let finally

A(x) =
{
n ∈ Z+ : n ≤ x and n 6∈

⋃

p∈P, α∈Z+

Ω(pα)
}
.

Then, for arbitrary real D > 1,

#A(x) ≤ x+D2

VD
, where VD :=

∑

0<d<D

∏

pα‖d

(
1

θ(pα)
− 1
θ(pα−1)

)
.

Proof. This is a deep sieve theorem due to A. Selberg [19]. It can be
found in Y. Motohashi [16, p. 11, Theorem 2], and also in T. Cochrane and
R. E. Dressler [1].

Lemma D. Let (an)n∈Z+ be a sequence of nonnegative reals, and suppose
that the Dirichlet series

f(s) =
∞∑

n=1

an n
−s

converges for <(s) > 1. Assume further that , for some real constants A and
γ > 0,

f(s) = (A+ o(1))(s− 1)−γ

as s→ 1+. Then, as x→∞,
∑

1≤n≤x

an
n

=
(

A

Γ (1 + γ)
+ o(1)

)
(log x)γ .

Proof. This is a standard Tauberian theorem. For the present formula-
tion, cf. T. Cochrane and R. E. Dressler [1, Lemma B].

Lemma E. Let as usual

B = {n ∈ Z : r(n) > 0},
and let b : Z → {0, 1} denote the indicator function of B. Then, for each
integer n > 0,

(2.1) r2(n) ≤
∑

km=n
k,m>0

r(k)r(m),

and

(2.2) r(n) ≤ 4
∑

km=n
k,m>0

b(k)b(m).
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Proof. Recall the explicit formula for r(n) (cf., e.g., [5, p. 60]): 1
4r(n)

(and hence also b(n)) is multiplicative; for p prime and any integer k ≥ 0,

(2.3)
1
4
r(pk) =





k + 1 if p ≡ 1 mod 4,

0 if p ≡ 3 mod 4 and k is odd,

1 if p ≡ 3 mod 4 and k is even,

1 if p = 2.

By multiplicativity, it suffices to verify (2.1) and (2.2) for prime powers. The
only case not completely obvious is that of (2.1) for p ≡ 1 mod 4, where we
have to show that

(k + 1)2 ≤
k∑

j=0

(j + 1)(k − j + 1).

Since the right hand side equals
1
6

(k + 1)(k + 2)(k + 3) = (k + 1)2 +
1
6
k(k + 1)(k − 1),

this is clear as well.

Lemma F. Let φ denote the Euler totient function. Then, for y ≥ 2,
∑

0<n≤y

(
n

φ(n)

)2 b(n)
n
� ( log y)1/2,(2.4)

∑

0<n≤y

(
n

φ(n)

)2
r(n)
n
� log y.(2.5)

Proof. Recall that, for <(s) > 1, the Dedekind zeta-function of the Gaus-
sian field satisfies

ζQ(i)(s) =
∞∑

n=1

1
4
r(n)n−s = g1(s)

∏

p≡1 mod 4

(1− p−s)−2;

here and throughout, g1(s), g2(s), . . . denote functions which are holomor-
phic (at least) in the closed half-plane <(s) ≥ 1. Hence, for <(s) > 1,

f1(s) :=
∞∑

n=1

(
n

φ(n)

)2

b(n)n−s

= g2(s)
∏

p≡1 mod 4

(
1 +

(
1− 1

p

)−2 ∞∑

k=1

p−ks
)

= g3(s)(ζQ(i)(s))
1/2

×
∏

p≡1 mod 4

{(
1 +

(
1− 1

p

)−2
p−s

1− p−s
)

(1− p−s)
}

= g3(s)(ζQ(i)(s))
1/2

∏

p≡1 mod 4

(
1 +

2p− 1
(p− 1)2 p

−s
)
.
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Since the last product converges absolutely for <(s) > 0, it follows that
f1(s) = g4(s)(ζQ(i)(s))1/2 in <(s) > 1, hence

f1(s) =
(
g4(1)

√
π

2
+ o(1)

)
(s− 1)−1/2 as s→ 1+.

Thus Lemma D immediately implies (2.4).
To establish (2.5), we similarly consider, for <(s) > 1,

f2(s) :=
∞∑

n=1

(
n

φ(n)

)2 1
4
r(n)n−s

= g5(s)
∏

p≡1 mod 4

(
1 +

(
1− 1

p

)−2 ∞∑

k=1

(k + 1)p−ks
)

= g6(s)ζQ(i)(s)

×
∏

p≡1 mod 4

{(
1 +

(
1− 1

p

)−2
p−s(2− p−s)

(1− p−s)2

)
(1− p−s)2

}
.

The last product (call it H(s)) converges absolutely for s = 1, namely

H(1) =
∏

p≡1 mod 4

(
1 +

(2p− 1)2

p2(p− 1)2

)
.

Thus

f2(s) =
(
g6(1)H(1)

π

4
+ o(1)

)
(s− 1)−1 as s→ 1+,

and one more appeal to Lemma D completes the proof of Lemma F.

3. Sums over B-twins

Proposition 1. For integers k > 0 and h 6= 0, and large real x,

(3.1) S0(k, h;x) :=
∑

0<n≤x
b(n)b(kn+ h)�

(
k|h|

φ(k|h|)

)2
x

log x
,

where φ is the Euler totient function.

Proof. For k = 1 this is a classic and celebrated result of G. J. Rieger
[18]. Instead of working out his argument for the general case, we prefer to
follow the approach of T. Cochrane and R. E. Dressler [1] who used a deeper
theorem of Selberg’s (our Lemma C) to deal with the problem of B-triples.
Let

P = Pk,h = {p ∈ P : p ≡ 3 mod 4 and p - kh}.
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Further, for p ∈ P, α ∈ Z+, denote by k∗pα the residue class modulo pα for
which k k∗pα = 1. In the notation of Lemma C, we choose

Ω(pα) := {jpα−1 : j = 1, . . . , p− 1} ∪ {k∗pα(jpα−1 − h) : j = 1, . . . , p− 1}
if and only if

(∗) p ∈ P and α is an even positive integer,

and Ω(pα) := ∅ in all other cases. Thus it is easy to see that, in the case
(∗), #Ω(pα) = 2(p− 1), and

n ∈ Ω(pα) ⇒ (pα−1 ‖n or pα−1 ‖ (kn+ h)) ⇒ b(n)b(kn+ h) = 0.

Therefore, in the terminology of Lemma C,

(3.2) S0(k, h;x) ≤ #A(x) ≤ x+D2

VD
≤ 2x
VD

,

if we choose D :=
√
x. To find a lower bound for VD, we note that

θ(pα) = 1− 2(p− 1)
∑

0<2β≤α
p−2β for p ∈ P,

hence

(3.3) θ(pα) =





1− 2
p+ 1

+
2

pα(p+ 1)
for p ∈ P and α > 0 even,

θ(pα−1) for p ∈ P and α odd,

1 if p 6∈ P.
Therefore,

1
θ(pα)

− 1
θ(pα−1)

=





2pα(p+ 1)(p2 − 1)
(pα(p− 1) + 2)(pα(p− 1) + 2p2)

if p ∈ P and α > 0 even,

0 in all other cases.
Consequently, in the sum defining VD, we can restrict d to perfect squares,
and moreover to the set D(P). Thus

VD =
∑

0<d1<
√
D

d1∈D(P)

∏

pβ‖d1

(
1

θ(p2β)
− 1
θ(p2β−2)

)

≥
∑

0<d1<
√
D

d1∈D(P)

µ2(d1)
∏

p|d1

(
1

θ(p2)
− 1
)
,

where µ(·) is the Möbius function. By (3.3),

1
θ(p2)

− 1 =
2(p− 1)

p2 − 2p+ 2
≥ 2
p
,
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hence

(3.4) VD ≥
∑

0<d1<
√
D

d1∈D(P)

µ2(d1)
∏

p|d1

2
p

=
∑

0<d1<
√
D

d1∈D(P)

µ2(d1)
2ω(d1)

d1
,

where ω(m) denotes the number of (distinct) prime divisors of m ∈ Z+. Let

P′ := {p ∈ P : p ≡ 3 mod 4 and p | kh}, γ(k, h) :=
∏

p∈P′

(
1 +

2
p

)
.

Obviously,

(3.5) γ(k, h) ≤
(

k|h|
φ(k|h|)

)2

.

Furthermore, by (3.4),

γ(k, h)VD ≥
∑

m1∈D(P′)

µ2(m1)
2ω(m1)

m1

∑

m2<
√
D

m2∈D(P)

µ2(m2)
2ω(m2)

m2
(3.6)

≥
∑

m<
√
D

m∈D(P3)

µ2(m)
2ω(m)

m
,

where
P3 := { p ∈ P : p ≡ 3 mod 4}.

To estimate the last expression in (3.6), we consider the generating function,
for <(s) > 1,

f(s) =
∏

p∈P3

(
1 +

2
ps

)
=

∑

m∈D(P3)

µ2(m) 2ω(m)m−s.

Evidently,

f(s) = g7(s)
ζ(s)2

ζQ(i)(s)
= g7(s)

ζ(s)
L(s)

,

where g7(s) is holomorphic in <(s) ≥ 1, and g7(1) 6= 0. Hence, for s→ 1+,

f(s) ∼ g7(1)
4
π

(s− 1)−1.

Thus Lemma D implies that

∑

m<
√
D

m∈D(P3)

µ2(m)
2ω(m)

m
� logD.
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Together with (3.6) and (3.5), this implies that

VD �
(

k|h|
φ(k|h|)

)−2

logD.

Recalling (3.2) and our choice D =
√
x, we complete the proof of Proposi-

tion 1.

Proposition 2. For integers k > 0 and h 6= 0, and large real x,

S1(k, h;x) :=
∑

0<n<x

r(n)b(kn+ h)(3.7)

�
(

k|h|
φ(k|h|)

)2

x(log x)−1/2.

Furthermore, for each integer h 6= 0,

(3.8) S2(h, x) :=
∑

0<n<x

r2(n) b(n+ h)�
( |h|
φ(|h|)

)2

x(log x)1/2.

Proof. By (2.2) and a crude form of the hyperbola method,

S1(k, h;x) ≤ 4
∑

0<n1n2<x
n1,n2>0

b(n1)b(n2)b(kn1n2 + h)

≤ 8
∑

0<n1<
√
x

b(n1)
∑

0<n2≤x/n1

b(n2)b(kn1n2 + h)

= 8
∑

0<n1<
√
x

b(n1)S0

(
kn1, h;

x

n1

)
.

Hence, by Proposition 1 and (2.4) of Lemma F,

S1(k, h;x)�
∑

0<n1<
√
x

b(n1)
(

kn1|h|
φ(kn1|h|)

)2
x

n1

(
log
(
x

n1

))−1

�
(

k|h|
φ(k|h|)

)2
x

log x

∑

0<n1<
√
x

(
n1

φ(n1)

)2 b(n1)
n1

�
(

k|h|
φ(k|h|)

)2

x(logx)−1/2,

which establishes (3.7).
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Similarly, in order to show (3.8), we conclude by (2.1) that

S2(h, x) ≤
∑

0<mk<x
m,k>0

r(m) r(k)b(km+ h)

≤ 2
∑

0<k<
√
x

r(k)
∑

0<m≤x/k
r(m)b(km+ h)

= 2
∑

0<k<
√
x

r(k)S1

(
k, h;

x

k

)
.

Therefore, by (3.7),

S2(h, x)�
∑

0<k<
√
x

r(k)
(

k|h|
φ(k|h|)

)2
x

k

(
log
(
x

k

))−1/2

�
( |h|
φ(|h|)

)2

x(log x)−1/2
∑

0<k<
√
x

(
k

φ(k)

)2
r(k)
k

�
( |h|
φ(|h|)

)2

x(log x)1/2,

in view of (2.5). This completes the proof of Proposition 2.

4. Proof of the Theorem

Proposition 3. For X ≥ 2 and 1
2X ≤ x ≤ X, define

(4.1) H(X,x) :=
1
π
x1/4

∑

1≤n<X5

r(n)
n3/4

cos
(

2π
√
nx− 3

4
π

)
,

and
R(X,x) := P (x)−H(X,x).

Then

(4.2)
X�

X/2

R(X,x)2 dx� X1/2.

Proof. By the usual asymptotics for Bessel functions,

(4.3) J1(2π
√
nx) =

1
π

(nx)−1/4 cos
(

2π
√
nx− 3

4
π

)
+O((nx)−3/4).

Using this in Lemma A, with M = X5, the main terms of (4.3) obviously
add up to H(X,x). The total contribution of the O-terms from (4.3) to the
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left hand side of (4.2) is

(4.4) �
X�

X/2

(
x−1/4

∑

1≤n<X5

r(n)
n5/4

)2

dx� X1/2.

Squaring and integrating the O-term of Lemma A, with M = X5, we get
X�

X/2

min(X−4+2ε‖x‖−2 +X−2,X2ε) dx =
�

X/2≤x≤X
‖x‖≤ω

+
�

X/2≤x≤X
‖x‖>ω

,

say, where ω = X−4/3. Obviously,
�

X/2≤x≤X
‖x‖≤ω

�
�

X/2≤x≤X
‖x‖≤ω

X2ε dx� ωX1+2ε � X−1/3+2ε

and �

X/2≤x≤X
‖x‖>ω

� (X−4+2εω−2 +X−2)X � X−1/3+2ε.

Together with (4.4) this verifies Proposition 3.

Proposition 4. For positive integers n, let

∆B(n) = min
k∈B
k 6=n

|k − n|,

and let H(X,x) be defined by (4.1). Then, for X ≥ 2,
X�

X/2

H(X,x)2 dx = C

(
X3/2 −

(
1
2
X

)3/2)
+O

(
X

∑

1≤n<X5

r2(n)
n∆B(n)

)
,

where C is the constant given in (1.7).

Proof. For u ≥
√
X/2, we put

(4.5) G(X,u) :=
u�
√
X/2

( ∑

1≤n<X5

r(n)
n3/4

cos
(

2π
√
n t− 3

4
π

))2

dt.

Then, in view of (4.1),

X�

X/2

H(X,x)2 dx =
2
π2

√
X�

√
X/2

u2 ∂G

∂u
(X,u) du(4.6)

=
2
π2 XG(X,

√
X)− 4

π2

√
X�

√
X/2

uG(X,u) du,
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after a change of variable and integration by parts. We apply Lemma B to
evaluate G(X,u), using the identity cos(α) = 1

2 (exp(iα) + exp(−iα)). We
choose

J = {j ∈ Z : 0 < |j| < X5, |j| ∈ B},

and, for all j ∈ J ,

aj =
1
2
r(|j|)
|j|3/4 exp

(
− sgn(j)

3
4
πi

)
, λj = 2π sgn(j)

√
|j|.

For integers n ≥ 1, write

m>
B(n) := min{m ∈ B : m > n}, m<

B(n) := max{m ∈ B : m < n}.

Then m>
B(n) � n � m<

B(n), e.g., as an immediate consequence of the classic
asymptotics for

∑
b(n). Hence, in the notation of Lemma B,

δj = min
k∈J
k 6=j

|λk − λj |

� min
( ∣∣m>

B(|j|)− |j|
∣∣

√
m>

B(|j|) +
√
|j|
,

∣∣m<
B(|j|)− |j|

∣∣
√
m<

B(|j|) +
√
|j|

)

� ∆B(|j|)√
|j|

.

Therefore, Lemma B yields

G(X,u) =
(
u−

√
1
2X
) 1

2

∑

1≤n<X5

r2(n)
n3/2

+O

( ∑

1≤n<X5

r2(n)
n∆B(n)

)

=
1
2

(
u−

√
1
2X
) ∞∑

n=1

r2(n)
n3/2

+O(uX−5/2+ε) +O

( ∑

1≤n<X5

r2(n)
n∆B(n)

)
.

Using this in (4.6), we immediately establish Proposition 4.

We are now ready to complete the proof of our Theorem. Combining
Propositions 3 and 4, with an appeal to Cauchy’s inequality, and summing
over all intervals

[
1
2X,X

]
,
[

1
4X,

1
2X
]
, . . . , we obtain

(4.7) Q(X)� X
∑

1≤n<X5

r2(n)
n∆B(n)

.
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Now, for real numbers Z ≥ 2 and W ≥ 2,
∑

1
2Z≤n<Z

1
2W≤∆B(n)<W

r2(n)
n∆B(n)

� 1
WZ

∑

1
2Z≤n<Z
∆B(n)<W

r2(n)

≤ 1
WZ

∑

0<|h|<W

( ∑

1
2Z≤n<Z

r2(n)b(n+ h)
)

� 1
W

(logZ)1/2
∑

0<|h|<W

( |h|
φ(|h|)

)2

� (logZ)1/2,

by an appeal to (3.8). We use this estimate for W = 2, 4, 8, . . . , 2w � logX,
thus w � log logX, and

∑

1
2Z≤n<Z
∆B(n)≥2w

r2(n)
n∆B(n)

� 1
Z logX

∑

1
2Z≤n<Z

r2(n)� logZ
logX

� 1,

as long as logZ � logX. Therefore, altogether,
∑

1
2Z≤n<Z

r2(n)
n∆B(n)

� (logX)1/2 log logX,

if logZ � logX. Summing finally over Z = X5, 1
2X

5, 1
4X

5, . . . (up to
O(logX) terms) and recalling (4.7), we complete the proof of our Theo-
rem.
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[9] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös
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