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Lattice points in a circle:
An improved mean-square asymptotics

by

WERNER GEORG NOWAK (Wien)

1. Introduction. Let as usual
(1.1) r(n) = #{(u,v) € Z? 1 u* +v* = n}

denote the number of ways to write the integer n as a sum of two squares.
Then the classic circle problem, which goes back to C. F. Gau8}, is concerned
with the asymptotic behaviour of the quantity

(1.2) P(z):= Z r(n) — mx.
0<n<zx

In other words, this is the lattice point discrepancy of a compact, origin-
centered circular disc with radius /z. For detailed and enlightening ex-
positions of the rich history of this topic, the reader should consult the
monographs of E. Krétzel [10], [11].

The sharpest upper bound has been established quite recently by
M. Huxley [7] (as a slight improvement on Huxley [6]) and reads

(1.3) P(z) < x131/416(10g x)18637/8320’

where 131/416 = 0.3149... Concerning lower bounds, significant progress
has just been achieved by K. Soundararajan [20] who proved that

(1.4) P(x) # 0(371/4 (log x)1/4(10g log x)3(21/3,1)/4(10g log log $)75/8).

For a longer time, it has been known that

o P(x) : P(x)
1.5 1 f 0 | _ 0
(1.5) pa <ac1/4(log x) /4w, (l‘)) <5 131}L5£p <:131/4w2 (x) >

with
w1(x) := (loglog x)<10g2)/4 exp(—cq (logloglog x)1/2),

w2($) = eXp(CQ(IOgIOgx)1/4(10g10g logx)_3/4),
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c1, co appropriate positive constants. These results are due to J. L. Hafner
[4], resp. K. Corradi and 1. Katai [2].

It is usually conjectured that z!/%, as it appears in (1.4), essentially
meets the “true” order of P(z), i.e., that

inf{\: P(z) <, 2’} = 1/4.

4

In favour of this hypothesis, there are quite precise mean-square asymptotics
of the shape

X
(1.6) | (P(2))? de = CX? + Q(X),
0
with
L ey s 16 CP(3/2)L7(3/2) _3j2y-1
(L7 C= ﬁnzlr (n)yn=% =0 ) (14273/2)

~ 1.69396.

Here and throughout, L(s) denotes the L-series corresponding to the non-
principal character modulo 4.

The estimation of the remainder (X) has been subject of intensive
research, by increasingly sophisticated methods. We mention the results of
H. Cramér [3]: Q(X) < X°/4*t¢ E. Landau [12]: Q(X) < X'*¢ and A. Wal-
fisz [21]: Q(X) < X (log X)3. The sharpest bound to date is due to I. K4tai
[9] and reads

(1.8) Q(X) < X(log X)2.

More recently, E. Preissmann [17] found a short and elegant proof for this
result, using a deep inequality of Montgomery and Vaughan. (See Lemma
B below.)

The objective of the present note is to obtain a further reduction of the
log-exponent in the estimate (1.8).

THEOREM. The error term Q(X) defined by (1.6), (1.7) satisfies, as
X — o0,

Q(X) < X (log X)*?loglog X .

REMARKS. 1. Compared to the previous authors cited, we simplify the
analysis by an approach suggested by T. Meurman for the divisor prob-
lem [14]. The basic idea of our refinement is that most integers are not
representable as a sum of two squares, and that the so-called B-numbers
(i.e., those with r(n) > 0) are usually well-spaced—i.e., “B-twins” are still
less frequent. This fact permits a small extra saving when applying the
Montgomery—Vaughan bound with care.
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2. It may be instructive to report the present state-of-the-art with the
analogous error term Q A (X) corresponding to the Dirichlet divisor problem.
According to E. Preissmann [17], it is known that QA(X) < X (log X)4,
while Y.-K. Lau and K.-M. Tsang [13] recently proved that Qa(X) is not a
o(X (log X)?). This might suggest that our result is not far away from the
best possible bound.

2. Some auxiliary results

NOTATION. Variables of summation automatically range over all inte-
gers satisfying the conditions indicated. p denotes primes throughout, and P
is the set of all (rational) primes. For any subset P C P, we write D (J3) for
the set of all positive integers m whose prime divisors are all in B. All con-
stants implied in the symbols O(+), <, >, etc., are absolute, and e denotes
a sufficiently small positive constant.

LEMMA A. Suppose that x > 1, 2 € Z, and x < M < x4, where A > 1
is some fized constant. Denote by ||| the distance from the nearest integer.
Then, for every e > 0,

P(x) =z Z r(n)n~Y2J, (2nv/nz)
1<n<M
+ O(min(x5/4M_1/2 + .’171/2+€M_1/2HCU||_1 + $1/4M_1/4, $e))
where Jy is a Bessel function.

Proof. This is Lemma 1 in A. Ivi¢ [8], combined with his eq. (1.7). =

LEMMA B. For an arbitrary finite index set J, let (a;)jes be a complex
sequence and let (A\j)jeg be a sequence of pairwise distinct reals. Write

0; = i Ao — Ml
! ker\?,l?;éj’ kAl
Then, for arbitrary real Ty and T > 0,
To+T ) ‘a‘lz
| | S oo =1 Tl +0(S 55,
To e j€TJ JET J

where the O-constant is absolute.

Proof. This is an obvious variant of Corollary 2 in H. L. Montgomery
and R. C. Vaughan [15]. =

LeMMA C. For each prime power p®, a > 1, let ﬁ(pa) be a set of distinct
residue classes ¢ modulo p®. Define further

Q(po‘):{nEZ+:n€ U E}, 0(;;“):1—2%, f(1) = 1.
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Suppose that 2(p*)NN2(p®) = O for all primes p and positive integers o # 3.
For real x > 0, let finally

A(m):{n€Z+:n§m and n & U Q(p“)}.

pEP,a€Z+
Then, for arbitrary real D > 1,
z+ D? 1 1
#A(x) < ,  where Vp:= Z H ( — = >
Vb 0Za2p peya NO@T) 0

Proof. This is a deep sieve theorem due to A. Selberg [19]. It can be
found in Y. Motohashi [16, p. 11, Theorem 2], and also in T. Cochrane and
R. E. Dressler [1]. =

LEMMA D. Let (an)nez, be a sequence of nonnegative reals, and suppose
that the Dirichlet series

fls) = Z anpn”?®
n=1

converges for R(s) > 1. Assume further that, for some real constants A and
v >0,

f(s)=(A+o0(1))(s—=1)""
as s — 1+. Then, as x — 00,
Gn A
1; " <m +0(1)><logx)'r.

Proof. This is a standard Tauberian theorem. For the present formula-
tion, cf. T. Cochrane and R. E. Dressler [1, Lemma B]. =

LEMMA E. Let as usual
B={necZ:r(n) >0},

and let b : Z — {0,1} denote the indicator function of B. Then, for each
integer n > 0,

(2.1) r?(n) < Y r(k)r(m),

km=n
k,m>0

and

(2.2) r(n) <4 > b(k)b(m).
km=n
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Proof. Recall the explicit formula for r(n) (cf., e.g., [5, p. 60]): ir(n)
(and hence also b(n)) is multiplicative; for p prime and any integer k£ > 0,

k+1 if p=1mod 4,

1 . 0 if p=3 mod 4 and k is odd,
(2.3) (") = o .
4 1 if p =3 mod 4 and k is even,
1 if p=2.

By multiplicativity, it suffices to verify (2.1) and (2.2) for prime powers. The
only case not completely obvious is that of (2.1) for p = 1 mod 4, where we
have to show that

k
(E+1)2 <> (G+1)(E-j+1).
7=0
Since the right hand side equals
1 1
g Dk +2)(k+3) = (k + 1)2+6 k(k+1)(k — 1),
this is clear as well. =

LEMMA F. Let ¢ denote the Euler totient function. Then, for y > 2,

(2.4) Oz; (%) # < (logy)'/?,
n \°r(n)
(2.5) Y I gy
0§<y<¢<n>) no Y

Proof. Recall that, for R(s) > 1, the Dedekind zeta-function of the Gaus-
sian field satisfies

= 1 —s —8\—
Con(s) = 7rmn™" =g(s) [ Q-p7%
n=1 p=1mod4
here and throughout, g1(s), g2(s),... denote functions which are holomor-

phic (at least) in the closed half-plane R(s) > 1. Hence, for R(s) > 1,
00 2
n
= —— | b(n)n™?
2 (30a7) o
1 —2 oo
o (o (-2) B
d4 p k=1

p=1mo

= g3(s)(Ca@) ())'/?

X _H {(1+ (1—%)21:;)(1_195)}

p=1mod4

= 93(s) (G (NY? ] <1 * (12919—_1;2 p_s>'

p=1mod4
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Since the last product converges absolutely for R(s) > 0, it follows that
f1(5) = 9a(5)(Cay ()2 in R(s) > 1, hence

NG

fi(s) = <94(1) 3 + 0(1)) (s—1)"2  ass— 1+.

Thus Lemma D immediately implies (2.4).
To establish (2.5), we similarly consider, for R(s) > 1,

5) = f: (ﬁ)QET(n)nS

— gs(s) Hd4 (1 4 (1 _ %>2i(k:+ 1)pks>

=1mo k=1

= gs(s )C@(z)(S)

1\~ p°(2 —p5)> —s 2}
1 1—- — (1 — .
. pll;lod4{< " < p> (1—p=*)? b=
The last product (call it H(s)) converges absolutely for s = 1, namely
_ (2p - 1) >
H)= ][] <1+p( e )
Thus
fa(s) = <g6(1)H(1) % + 0(1)> (s—1)"' ass— 1+,

and one more appeal to Lemma D completes the proof of Lemma F. m

3. Sums over ‘B-twins

PROPOSITION 1. For integers k > 0 and h # 0, and large real x,

2
(3.1) Solk hiw) i= 3 b(n)b(kn +h) < (gb(k/f‘!flf‘b!)) :

logz’
0<n<zx
where ¢ is the FEuler totient function.

Proof. For k = 1 this is a classic and celebrated result of G. J. Rieger
[18]. Instead of working out his argument for the general case, we prefer to
follow the approach of T. Cochrane and R. E. Dressler [1] who used a deeper
theorem of Selberg’s (our Lemma C) to deal with the problem of B-triples.
Let

PB=Prr={peP:p=3mod4 and ptkh}.
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Further, for p € P, o € Z, denote by @ the residue class modulo p® for
which E@ = 1. In the notation of Lemma C, we choose

Qp*) = {jp>1:j= L...,p—1}U{kia(p*t—h):j=1,...,p—1}
if and only if

(%) p € P and « is an even positive integer,
and £2(p®) := ) in all other cases. Thus it is easy to see that, in the case
(%), #02(p*) = 2(p — 1), and

ne NP = (P> |norp* | (kn+h)) = b(n)b(kn+h)=0.

Therefore, in the terminology of Lemma C,

(32) Solk i) < f A(a) < T2 < 22
Vb Vb
if we choose D := /z. To find a lower bound for Vp, we note that
O(p*)=1-2(p Z p~ 2 forpeP,
0<28<a
hence
1-— 2 + 2 for p € P and a > 0 even,
CORTNS S
O(pe—1) for p € P and « odd,
1 if p & P.
Therefore,
2p°(p+1)(p* — 1)
L1 Jee-D+2)p*(-1)+2p?)
O(p~) O(p>~1) if p e P and a > 0 even,

0 in all other cases.
Consequently, in the sum defining Vp, we can restrict d to perfect squares,
and moreover to the set D(P). Thus

o= 2 H( (p2152)>

0<dy <D pP|ld1

d1€D(P)
1
> Z :U'2<d1) H (0(p2) - 1)7
0<di<vD plds
d1€D(P)

where (+) is the M6bius function. By (3.3),
1 2p-1 2

0(p?) = p*P—2p+2 " p
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hence
- 20 2 _ 2y ow(di)
B4 Vozx 3 w@][S= 3 wd)——,
0<di<vVD pld1 0<di<vD
d1€D(P) d1€D(P)

where w(m) denotes the number of (distinct) prime divisors of m € Z. . Let

2
P :={peP: p=3mod4and p|kh}, ~(k,h):= H (1+—>.

peP’ p
Obviously,
klbl )
(3.5) Ak, 1) §< ) .
¢(kl|hl)
Furthermore, by (3.4),
ow(ma) ow(m2)
(36)  kWVD> Y pm) ——— D p(ma)
mi€D(P) ) ?
m2€D (P)
2w(m)
> 2
> Y, pim)——,
m<\/5
me@(Pg)

where
Ps:={peP: p=3mod4}.

To estimate the last expression in (3.6), we consider the generating function,
for R(s) > 1,

=T (1+2)= ¥ w2,

pGPS mE@([P’g)

Evidently,

f(s) = gr(s) ——= =
where g¢7(s) is holomorphic in R(s) > 1, and g7(1) # 0. Hence, for s — 1+,

4 _
Fs)~ gr(1) = (s = 1)L
Thus Lemma D implies that
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Together with (3.6) and (3.5), this implies that

klh| \7?

Recalling (3.2) and our choice D = /x, we complete the proof of Proposi-
tion 1. m

PROPOSITION 2. For integers k > 0 and h # 0, and large real x,

(3.7) Si(k,hsz) == Y r(n)b(kn+ h)

0<n<x

B\ s 172
< (¢<k|h|>> (logz) ™"~

Furthermore, for each integer h # 0,

o 2 hl 1/2
(3.8) Sa(h,x) = r“(n)b(n+h) < | —— | z(logz)/=.
Z <¢<rh>> g

Proof. By (2.2) and a crude form of the hyperbola method,

Si(k,hiz) <4 Y b(na)b(ng)b(kning + h)

0<nine<zx
ni,n2>0
> b(m) Y. b(ng)b(kniny + h)
0<ni <+ 0<ne<z/n1
> b(nl)so<kn1,h;i>.
ni
0<ni<vT

Hence, by Proposition 1 and (2.4) of Lemma F,

v 2 s (<(2)

0<ny <y

< <¢lehi>>2m§x I <¢Z;>>2 o

fhL NS s
< <¢<kh>) (logz)™%,

which establishes (3.7).
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Similarly, in order to show (3.8), we conclude by (2.1) that
So(h,) < > r(m)r(k)b(km + h)

0o<mk<x
m,k>0
<2 Y r(k) > r(m)b(km+h)
0<k<z 0<m<z/k
x
=2 ) r(k‘)Sl<k,h;E>.
0<k<+\z

Therefore, by (3.7),

B “k)((bfk’whhn)?% (s <%)>/

0<k<+z
2 2
< (%)ix(log x)/2,

in view of (2.5). This completes the proof of Proposition 2. m

4. Proof of the Theorem

PROPOSITION 3. For X > 2 and %X <x <X, define

(4.1) H(X, z):= lxl/‘l Z % cos (277/%— zﬂ>,

s

1<n< X5
and
R(X,z):= P(x) — H(X, z).
Then
X
(4.2) | R(X,2)%dz < X'/2.
X/2

Proof. By the usual asymptotics for Bessel functions,
1
(4.3) J1(27r\/nx) = — (nm)*1/4 CoS (27T /nt — zﬂ) + O((nx)*3/4).
T

Using this in Lemma A, with M = X?®, the main terms of (4.3) obviously
add up to H(X,z). The total contribution of the O-terms from (4.3) to the
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left hand side of (4.2) is

X 2
- r(n)
(4.4) < | (x Y W) dr < X1/2.
X/2 1<n<X5
Squaring and integrating the O-term of Lemma A, with M = X°, we get
b'e
| min(x 2z 2+ X2 X*)de= | o+ |,
X/2 X/2<a<X = X/2<a<X

lzll<w llzll>w
say, where w = X ~%/3. Obviously,

| < | xX*do<wX' < x5

X/2<x<X X/2<z<X
]| <w ]| <w
and
[ <20 L X)X < X713
X/2<a<X
lal|>w

Together with (4.4) this verifies Proposition 3. m
PROPOSITION 4. For positive integers n, let
A = min |k —
(n) = min |k —nf,

k#n
and let H(X,z) be defined by (4.1). Then, for X > 2,
T 2 3/2 1 5/ r*(n)
H(X = X=X X Y
| oo —o(xr- (x) ) volx 3 Tns)
X/2 1<n<X5®

where C' is the constant given in (1.7).
Proof. For u > 1/ X/2, we put

u 2
r
(4.5) G(X,u) = S Z % cos (277\/_15 - —7r>) dt.
JX/2 | 1<n<X?
Then, in view of (4.1),

X VX
(46) | HX,2)?dr== | uzg—G(X,u)du
X/ T /X u
= 2 XX VE) - G(X,u)d
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after a change of variable and integration by parts. We apply Lemma B to
evaluate G(X,u), using the identity cos(a) = 3 (exp(ia) + exp(—ic)). We
choose

J={eZ:0<jl <X>|j| € B},

and, for all j € 7,

() exp(—SgH(j) Zm), A = 2m sgn(j)/]5].

72 |jprA

For integers n > 1, write
mg(n) :=min{m € B:m >n}, mg(n):=max{m e B :m < n}.

Then mg(n) < n < mg(n), e.g., as an immediate consequence of the classic
asymptotics for ) b(n). Hence, in the notation of Lemma B,

6; = min |\ — \;
J kej‘k J|

k#j
S mm( g (131) = Wil _|ms (4D — 1| >
Vg (i) + VIl Vmg () + Vi

A (1)

> —F.

Vil

Therefore, Lemma B yields

=5V LR
+0(uX5/”5>+O< 2 %)

Using this in (4.6), we immediately establish Proposition 4. =

We are now ready to complete the proof of our Theorem. Combining
Propositions 3 and 4, with an appeal to Cauchy’s inequality, and summing

over all intervals [%X, X], [%X, %X] ,. .., we obtain
(4.7) QX)) <X Y )
' nAxg(n)
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Now, for real numbers Z > 2 and W > 2,

7’2(71) 1 2
1Z;<Z ndp(n) Wz 1Z;<Z r
LWE A (n)<W Am(n)<W

g% S (X Pmbemn)

0<|hl<W  L1Z<n<Z

1 Al \? 1/2
< — (log Z)*/? (—) < (log 2)Y
i 2 G
by an appeal to (3.8). We use this estimate for W = 2,4,8,...,2% < log X,
thus w < loglog X, and
r2(n) 1 9 log Z
— 1
. Z nAg(n) < Zlog X Z rn) < log X <b
3Z<n<Z 1z<n<Zz
Ag (n)>2v

as long as log Z < log X. Therefore, altogether,

2
Z ) < (log X)'/?loglog X,

17<n<Z nASB (n)

24>

if log Z < log X. Summing finally over Z = X°, %XE’,%XE’,... (up to
O(log X) terms) and recalling (4.7), we complete the proof of our Theo-
rem. m
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