A class number criterion for the equation \((x^p - 1)/(x - 1) = py^q\)

by

BENJAMIN DUPUY (Bordeaux)

1. Introduction. Let \(p\) be an odd prime number and let
\[
\Phi(x) = \Phi_p(x) = \frac{x^p - 1}{x - 1}
\]
be the \(p\)th cyclotomic polynomial. It is well-known that, for \(x \in \mathbb{Z}\), the integer \(\Phi(x)\) is divisible by at most the first power of \(p\). More precisely, \(p \nmid \Phi(x)\) if \(x \not\equiv 1 \mod p\), and \(p \parallel \Phi(x)\) if \(x \equiv 1 \mod p\).

Indeed, if \(p \nmid \Phi(x)\) then \(x^p \equiv 1 \mod p\), which implies \(x \equiv 1 \mod p\). Now, using the binomial formula, we obtain
\[
\Phi(x) = \frac{(1 + (x - 1))p - 1}{x - 1} = p + \sum_{k=2}^{p-1} \binom{p}{k} (x-1)^{k-1} + (x-1)^{p-1} \equiv p \mod p^2,
\]
which implies \(p \parallel \Phi(x)\).

Let \(q\) be another prime number. A classical Diophantine problem, studied, most recently, by Mihăilescu [6, 7], is whether the \(p\)-free part of \(\Phi(x)\) can be a \(q\)th power. This can be rephrased as follows: given \(e \in \{0, 1\}\), does the equation \(\Phi(x) = p^e y^q\) have a non-trivial solution in integers \(x\) and \(y\)? (By trivial solutions we mean those with \(x = e = 0\) and \(x = e = 1\).)

The case \(e = 0\), that is, the equation \(\Phi(x) = y^q\), is (a particular case of) the classical Nagell–Ljunggren equation. It is known to have several non-trivial solutions, and, as is commonly believed, no other solutions exist. See [3] for a comprehensive survey of results on this equation and methods for its analysis.

In the present note we study the case \(e = 1\), that is, the equation
\[
(1) \quad \frac{x^p - 1}{x - 1} = py^q.
\]
(As we have seen above, any solution of this equation must satisfy \(x \equiv 1 \mod p\).)

2000 Mathematics Subject Classification: Primary 11D41; Secondary 11R18, 11S80.

© Instytut Matematyczny PAN, 2007
Let h_p^- be the pth relative class number. Mihăilescu [7, Theorem 1] proved that (1) has no non-trivial solutions if $q \nmid h_p^-$ and, in addition, some complicated technical condition involving p and q is satisfied. In this note we show that this technical condition is not required.

Theorem 1.1. Let p and q be distinct odd prime numbers, $p \geq 5$. Assume that q does not divide the relative class number h_p^-. Then (1) has no solutions in integers $x, y \neq 1$.

In particular, since $h_p^- = 1$ for $p \leq 19$, equation (1) has no non-trivial solutions when $5 \leq p \leq 19$. (Neither does it have solutions when $p = 3$, as was shown long ago by Nagell [8].)

The interest in equation (1) was inspired by the fact that it is closely related to the celebrated equation of Catalan $x^p - z^q = 1$. In fact, Cassels [4] showed that any non-trivial solution of Catalan’s equation gives rise to a solution of (1). All major contributions to the theory of Catalan’s equation, including Mihăilescu’s recent solution [1, 5], have Cassels’ result as the starting point.

This article is strongly inspired by the work of Mihăilescu [5, 6, 7]. In particular, the argument in the case $q \equiv 1 \mod p$ (see Section 6) can be found in [6]. However, the case $q \equiv 1 \mod p$ (see Section 7) requires new ideas.

2. The cyclotomic field. Let p be an odd prime number and let $\zeta = \zeta_p$ be a primitive pth root of unity. In this section we collect several facts about the pth cyclotomic field $K = \mathbb{Q}(\zeta)$. As usual, we denote by $K^+ = K \cap \mathbb{R} = \mathbb{Q}(\zeta + \overline{\zeta})$ the maximal real subfield of K. (Here and below, $z \mapsto \overline{z}$ stands for the “complex conjugation” map.) We denote by \mathcal{O} the ring of integers of K; it is well-known that $\mathcal{O} = \mathbb{Z}[\zeta]$.

We denote by p the principal ideal $(1 - \zeta)$. It is the only prime ideal of the field K above p, and $p^{p-1} = (p)$. For $k \not\equiv l \mod p$ the algebraic number

$$\frac{\zeta^k - \zeta^l}{1 - \zeta}$$

is a unit of K (called cyclotomic or circular unit); in other words, we have

$$(\zeta^k - \zeta^l) = p.$$

In particular,

$$\zeta^k + \zeta^l = \frac{\zeta^{2k} - \zeta^{2l}}{1 - \zeta} / \frac{\zeta^k - \zeta^l}{1 - \zeta}$$

is a unit in K. All this will be frequently used without special reference.

Finally, recall that $h_p^+ | h_p$, where h_p and h_p^+ are the class numbers of K and K^+, respectively, and the relative class number is defined by $h_p^- = h_p / h_p^+$.
The proofs of all statements above can be found in the first chapters of any course of the theory of cyclotomic fields; see, for instance, [9].

The following observation provides a convenient tool for calculating traces of algebraic integers from \(K \) modulo \(p \). We denote by \(\mathbb{F}_p \) the field of \(p \) elements, and we let \(\text{Tr} : K \rightarrow \mathbb{Q} \) be the trace map.

Proposition 2.1. Let \(\varrho : \mathcal{O} \rightarrow \mathbb{F}_p \) be the reduction modulo \(p \). Then for any \(a \in \mathcal{O} \) we have

\[
\varrho(a) \equiv -\text{Tr}(a) \mod p.
\]

Proof. We have \(\varrho(\zeta^n) = 1 \) for all \(n \in \mathbb{Z} \), and

\[
\text{Tr}(\zeta^n) = \begin{cases}
-1, & p \nmid n, \\
p - 1, & p \mid n.
\end{cases}
\]

Hence (2) holds for \(a = \zeta^n \). By linearity, it extends to \(\mathcal{O} = \mathbb{Z}[\zeta] \).

Here is an example of how one can use this.

Corollary 2.2. For any \(u \in \mathbb{Z} \) put

\[
\chi_u = \frac{\zeta^u - \zeta}{(1 + \zeta^u)(1 - \zeta)}.
\]

Then

\[
2\text{Tr}(\chi_u) \equiv u - 1 \mod p.
\]

In particular, \(\text{Tr}(\chi_u) \not\equiv 0 \mod p \) unless \(u \equiv 1 \mod p \).

Proof. For \(u \equiv 1 \mod p \) we have \(\chi_u = 0 \) and there is nothing to prove. Now let \(u \not\equiv 1 \mod p \). We may assume that \(u > 0 \). We have

\[
\varrho\left(\frac{\zeta^u - \zeta}{1 - \zeta}\right) = \varrho(-\zeta - \zeta^2 - \cdots - \zeta^{u-1}) = 1 - u.
\]

Also, since \(1 + \zeta^u \) is a unit, we have

\[
\varrho\left(\frac{1}{1 + \zeta^u}\right) = \varrho(1 + \zeta^u)^{-1} = \frac{1}{2}.
\]

Hence \(\varrho(\chi_u) = (1 - u)/2 \), which implies (5).

In the following example we cannot use (2) because the number we are interested in is not an algebraic integer.

Proposition 2.3. We have

\[
\text{Tr}\left(\frac{\zeta}{(1 - \zeta)^2}\right) = \frac{1 - p^2}{12}.
\]

Proof. Consider the rational function

\[
F(t) = \sum_{k=1}^{p-1} \frac{\zeta^k t}{(1 - \zeta^k t)^2}.
\]
Using (3), we obtain
\[
F(t) = - \sum_{k=1}^{p-1} \sum_{n=1}^\infty n \zeta^{kn} t^n = - \sum_{n=1}^\infty n \text{Tr}(\zeta^n) t^n
\]
\[
= \sum_{n=1}^\infty n t^n - p^2 \sum_{n=1}^\infty n t^{pn} = - \frac{t}{(1-t)^2} + \frac{p^2 t^p}{(1-t^p)^2}.
\]
When \(t \to 1 \) we have
\[
\frac{t}{(1-t)^2} = \frac{1}{(t-1)^2} + \frac{1}{t-1},
\]
\[
\frac{p^2 t^p}{(1-t^p)^2} = \frac{1}{(t-1)^2} + \frac{1}{t-1} + \frac{1-p^2}{12} + o(1).
\]
Hence
\[
\text{Tr} \left(\frac{\zeta}{(1-\zeta)^2} \right) = F(1) = \frac{1-p^2}{12}.
\]

3. Binomial power series. We shall need a property of binomial power series in the non-archimedean domain. As usual, we denote by \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \) the ring of \(p \)-adic integers and the field of \(p \)-adic numbers, and we extend the standard \(p \)-adic absolute value from \(\mathbb{Q}_p \) to the algebraic closure \(\overline{\mathbb{Q}_p} \).

Given \(a \in \mathbb{Z}_p \), we let
\[
R_a(t) = (1 + t)^a = 1 + at + \binom{a}{2} t^2 + \binom{a}{3} t^3 + \cdots
\]
be the binomial power series. Its coefficients are \(p \)-adic integers, and for any \(\tau \), algebraic over \(\mathbb{Q}_p \) and with \(|\tau|_p < 1 \), our series converges at \(t = \tau \) in the field \(\mathbb{Q}_p(\tau) \). For any \(n = 0, 1, \ldots \) we have the obvious inequality
\[
\left| R_a(\tau) - \sum_{k=0}^n \binom{a}{k} \tau^k \right|_p \leq |\tau|_p^{n+1}.
\]
When \(a \) is \(p \)-adically small, a sharper inequality may hold. For instance,
\[
|R_p(\tau) - (1 + p\tau)|_p \leq p|\tau|_p^2
\]
when \(|\tau|_p \) is sufficiently small. We shall need a result of this kind for the second order Taylor expansion.

It will be convenient to use the familiar notation \(O(\cdot) \) in a slightly non-traditional fashion: we say \(\tau = O(v) \) if \(|\tau|_p \leq |v|_p \).

\textbf{Proposition 3.1.} Assume \(p \geq 5 \) and that \(|\tau| \leq p^{-1/(p-3)} \). Then
\[
R_a(\tau) = 1 + a\tau - \frac{a}{2} \tau^2 + O(a^2 \tau^2) + O(a\tau^3).
\]
Proof. Since
\[\frac{a(a - 1)}{2} \tau^2 = -\frac{a}{2} \tau^2 + O(a^2 \tau^2), \]
equality (6) is an immediate consequence of
(7) \[R_a(\tau) = 1 + a \tau + \frac{a(a - 1)}{2} \tau^2 + O(a \tau^3), \]
so it suffices to prove the latter.

We prove (7) by induction on the \(p \)-adic order of \(a \). When \(|a|_p = 1\),
equality (7) is an immediate consequence of the binomial formula (and holds
even under the weaker assumption \(|\tau|_p < 1\)). Now assume that (7) holds for
some \(a \in \mathbb{Z}_p \), and let us show that it holds with \(a \) replaced by \(pa \).

By the induction hypothesis, \(R_a(\tau) = 1 + v \), where
\[v = a \tau + \frac{a(a - 1)}{2} \tau^2 + O(a \tau^3). \]
Then
(8) \[R_{pa}(\tau) = (1 + v)^p = 1 + pv + \frac{p(p - 1)}{2} v^2 + O(pv^3) + O(v^p) \]
\[= 1 + pa \tau + \frac{pa(a - 1)}{2} \tau^2 + \frac{pa^2(p - 1)}{2} \tau^2 + O(pa \tau^3) + O((a \tau)^p) \]
\[= 1 + pa \tau + \frac{pa(pa - 1)}{2} \tau^2 + O(pa \tau^3) + O((a \tau)^p). \]
Since \(|\tau| \leq p^{-1/(p-3)}\), we have \(|(a \tau)^p|_p \leq |pa \tau^3|_p \leq |pa^3|_p\). Hence the term
\(O((a \tau)^p) \) in (8) can be disregarded. This completes the proof of (7) and of
the proposition.

4. A special unit of the cyclotomic field. We start the proof of
Theorem 1.1. We fix, once and for all, distinct odd prime numbers \(p \) and \(q \),
and rational integers \(x, y \neq 1 \) satisfying (1). Recall that
\[x \equiv 1 \mod p, \]
this congruence being frequently used below without special reference. Also,
we use without special reference the notation of Section 2.

In this section, we construct a special unit of the field \(K \), which plays the
central role in the proof of Theorem 1.1. Our starting point is the following
well-known statement.

Proposition 4.1. Put
\[\alpha = \frac{x - \zeta}{1 - \zeta}. \]
Then we have the following:
1. The principal ideal \((\alpha)\) is a \(q\)th power of an ideal of \(K\).
2. Assume that \(q\) does not divide the relative class number \(h_p^-\). Then \(\overline{\alpha}/\alpha\) is a \(q\)th power in \(K\).

Though the proof can be found in the literature, we include it here for the reader’s convenience. We closely follow [2].

Proof. Since
\[\Phi_p(x) = (x - \zeta) \cdots (x - \zeta^{p-1}), \quad p = \Phi_p(1) = (1 - \zeta) \cdots (1 - \zeta^{p-1}), \]
we may rewrite equation (1) as
\[\prod_{k=1}^{p-1} \frac{x - \zeta^k}{1 - \zeta^k} = y^q. \]
Since \(p = p^{p-1} | (x - 1)\), we have \(p \parallel (x - \zeta^k)\) for \(k = 1, \ldots, p - 1\). Hence the numbers
\[\alpha_k = \frac{x - \zeta^k}{1 - \zeta^k} \quad (k = 1, \ldots, p - 1) \]
are algebraic integers coprime with \(p\).

On the other hand, since
\[(1 - \zeta^k)\alpha_k - (1 - \zeta^l)\alpha_l = \zeta^l - \zeta^k, \]
the greatest common divisor of \(\alpha_k\) and \(\alpha_l\) should divide \(p = (\zeta^k - \zeta^l)\). Hence the numbers \(\alpha_1, \ldots, \alpha_{p-1}\) are pairwise coprime. (In particular, \(\alpha\) and \(\overline{\alpha}\) are coprime, to be used in the proof of Proposition 4.2.) Now (9) implies that each of the principal ideals \((\alpha_k)\) is a \(q\)th power of an ideal. This proves part 1.

Now write \((\alpha) = a^q\), where \(a\) is an ideal of \(K\). If \(q \nmid h_p^-\) then the class of \(a\) belongs to the real part of the class group. In other words, we have \(a = b(\gamma)\), where \(\gamma \in K^*\) and \(b\) is a “real” ideal of \(K\) (that is, \(b = \overline{b}\)). Further, \(b^q\) is a principal real ideal; in other words, \(b^q = (\beta)\), where \(\beta \in K^+\). We obtain \((\alpha) = (\beta \gamma^q)\), that is, \(\alpha\) is equal to \(\beta \gamma^q\) times a unit of \(K\).

Recall that if \(\eta\) is a unit of a cyclotomic field then \(\overline{\eta}/\eta\) is a root of unity. Since \(\overline{\beta} = \beta\), we deduce that \(\overline{\alpha}/\alpha\) is \((\overline{\gamma}/\gamma)^q\) times a root of unity. Since every root of unity in \(K\) is a \(q\)th power, we have shown that \(\overline{\alpha}/\alpha\) is a \(q\)th power. This proves part 2.

From now on we assume that \(q\) does not divide \(h_p^-\). In particular, Proposition 4.1 implies that there exists \(\mu \in K\) such that \(\overline{\alpha}/\alpha = \mu^q\). Moreover, this \(\mu\) is unique because \(K\) does not contain non-trivial \(q\)th roots of unity. Similarly, the field \(K\) contains exactly one \(q\)th root of \(\alpha/\overline{\alpha}\). Since both \(\overline{\mu}\) and \(\mu^{-1}\) are \(q\)th roots of \(\alpha/\overline{\alpha}\), we have
\[\mu^{-1} = \overline{\mu}. \]
This will be used in Section 5.
Now we are ready to construct the promised unit.

Proposition 4.2. Let \(u \) be the inverse of \(q \) modulo \(p \) (that is, we have \(uq \equiv 1 \mod p \)). Then the algebraic number \(\phi = \alpha(\mu + \zeta^u)^q \) is a unit of the field \(K \).

Proof. Write the principal ideal \((\mu)\) as \(ab^{-1} \), where \(a \) and \(b \) are co-prime integral ideals of \(K \). Then \((\alpha/\alpha) = a^q b^{-q} \). Moreover, since \(\alpha \) and \(\overline{\alpha} \) are coprime (see the proof of Proposition 4.1), we have \((\alpha) = a^q \) and \((\alpha) = b^q \).

Further, we have \((\mu + \zeta^u) = cb^{-1} \), where \(c \) is yet another integral ideal of \(K \). We obtain \((\phi) = b^q c^q b^{-q} = c^q \), which shows that \(\phi \) is an algebraic integer.

Next, put \(\phi' = \alpha^{q-1} \left(\sum_{k=0}^{q-1} \mu^k (-\zeta^u)^{q-1-k} \right)^q \).

The same argument as above proves that \(\phi' \) is an algebraic integer as well. Further,

\[
\phi \phi' = \alpha^q \left((\mu + \zeta^u) \sum_{k=0}^{q-1} \mu^k (-\zeta^u)^{q-1-k} \right)^q = (\alpha (\mu^q + \zeta^{uq}))^q.
\]

Now recall that \(\mu^q = \overline{\alpha}/\alpha \) and that \(uq \equiv 1 \mod p \). The latter congruence implies that \(\zeta^{uq} = \zeta \), and we obtain

\[
\phi \phi' = (\alpha (\overline{\alpha}/\alpha + \zeta))^q = (\overline{\alpha} + \zeta \alpha)^q = (1 + \zeta)^q.
\]

Since \(1 + \zeta \) is a unit of \(K \), so are \(\phi \) and \(\phi' \).

5. An analytic expression for \(\mu \). We shall work in the local field \(K_p = \mathbb{Q}_p(\zeta) \). As before, we extend \(p \)-adic absolute value from \(\mathbb{Q}_p \) to \(K_p \), so that \(|1 - \zeta|^p = p^{-1/(p-1)} \).

Since \(p \) totally ramifies in \(K \), every automorphism \(\sigma \) of \(K/\mathbb{Q} \) extends to an automorphism of \(K_p/\mathbb{Q}_p \). In particular, the “complex conjugation” \(z \mapsto \overline{z} \) extends to an automorphism of \(K_p/\mathbb{Q}_p \) (we continue to call it “complex conjugation”).

Let \(R_a(t) \) be the binomial power series, introduced in Section 3. Since the automorphisms of \(K_p/\mathbb{Q}_p \) (in particular the “complex conjugation”) are continuous in the \(p \)-adic topology, for any \(\tau \in K_p \) with \(|\tau|^p < 1 \) and for any \(\sigma \in \text{Gal}(K_p/\mathbb{Q}_p) \) we have \(R_a(\tau)^\sigma = R_a(\tau^\sigma) \). In particular, \(\overline{R_a(\tau)} = R_a(\overline{\tau}) \).

Put

\[
\lambda = \frac{x - 1}{1 - \zeta},
\]

so that

\[
\alpha = 1 + \lambda, \quad \overline{\alpha} = 1 + \overline{\lambda} = 1 - \zeta \lambda
\]
(recall that \(\alpha \) is defined in Proposition 4.1). Then
\[
|\lambda|_p = |x - 1|_p p^{1/(p-1)} \leq p^{-(p-2)/(p-1)} < 1,
\]
and similarly for \(\overline{\lambda} \). In particular, for any \(a \in \mathbb{Z}_p \), the series \(R_a(t) \) converges at \(t = \lambda \) and \(t = \overline{\lambda} \).

We wish to express the quantity \(\mu \), introduced in Section 4, in terms of the binomial power series. Since both \(\mu \) and \(R_{1/q}(\overline{\lambda})R_{-1/q}(\lambda) \) are \(q \)th roots of \(\alpha/\alpha \), we have
\[
\mu = R_{1/q}(\overline{\lambda})R_{-1/q}(\lambda)\xi,
\]
where \(\xi \in K_p \) is a \(q \)th root of unity. We want to show that \(\xi = 1 \).

The field \(\mathbb{Q}_p(\xi) \) is an unramified sub-extension of the totally ramified extension \(K_p \). Hence \(\mathbb{Q}_p(\xi) = \mathbb{Q}_p \), that is, \(\xi \in \mathbb{Q}_p \). It follows that \(\xi \) is stable with respect to all automorphisms of \(K_p/\mathbb{Q}_p \); in particular, it is stable with respect to the “complex conjugation”:\(\overline{\xi} = \xi \).

Applying the “complex conjugation” to (11) and using (10), we obtain
\[
\mu^{-1} = R_{1/q}(\lambda)R_{-1/q}(\overline{\lambda})\xi, \quad \text{which, together with (11), implies that} \quad \xi^2 = 1.
\]
Since \(\xi \) is a \(q \)th root of unity, this is possible only if \(\xi = 1 \).

We have shown that
\[
\mu = R_{1/q}(\overline{\lambda})R_{-1/q}(\lambda) = R_{1/q}(-\zeta \lambda)R_{-1/q}(\lambda) = R_{1/q}(-\zeta \lambda)R_{-1/q}(\lambda).
\]

The rest of the proof splits into two cases, depending on whether \(q \not\equiv 1 \mod p \) or \(q \equiv 1 \mod p \). The arguments in both cases are quite similar, but the latter case is technically more involved.

6. The case \(q \not\equiv 1 \mod p \). We have
\[
\mu = R_{1/q}(-\zeta \lambda)R_{-1/q}(\lambda) = 1 - \frac{1 + \zeta}{q} \lambda + O(\lambda^2),
\]
where, as in Section 3, we say that \(\tau = O(v) \) if \(|\tau|_p \leq |v|_p \).

Hence, for the quantity \(\phi \), introduced in Proposition 4.2, we have
\[
\phi = (1 + \lambda) \left(1 + \zeta^u - \frac{1 + \zeta}{q} \lambda + O(\lambda^2) \right)^q
\]
\[
= (1 + \zeta^u)^q (1 + \lambda) \left(1 - \frac{1 + \zeta}{1 + \zeta^u} \lambda \right) + O(\lambda^2)
\]
\[
= (1 + \zeta^u)^q \left(1 + \frac{\zeta^u - \zeta}{1 + \zeta^u} \lambda \right) + O(\lambda^2)
\]
\[
= (1 + \zeta^u)^q (1 + (x - 1)\chi_u) + O(\lambda^2),
\]
where \(\chi_u \) is defined in (4).
Since the automorphisms of K/Q extend to automorphisms of K_p/Q_p, the same is true for the norm and the trace maps: for any $a \in K$ we have

$$N_{K_p/Q_p}(a) = N_{K/Q}(a), \quad \text{Tr}_{K_p/Q_p}(a) = \text{Tr}_{K/Q}(a).$$

Below, we shall simply write $N(a)$ and $\text{Tr}(a)$. Also, since the automorphisms are continuous, we have $|N(a)|_p \leq |a|_p^{p-1}$ and $|\text{Tr}(a)|_p \leq |a|_p$.

Taking the norm in (13), we obtain

$$N\left(\frac{\phi}{(1+\zeta^u)^q}\right) = 1 + (x-1)\text{Tr}(\chi_u) + O(\lambda^2).$$

Since both ϕ and $1+\zeta^u$ are units, the norm on the left is ± 1. Since $-1 \not\equiv 1$ mod p, the norm is 1, and we obtain $(x-1)\text{Tr}(\chi_u) = O(\lambda^2)$.

But, since $q \not\equiv 1$ mod p, we also have $u \not\equiv 1$ mod p. Corollary 2.2 implies that $\text{Tr}(\chi_u)$ is not divisible by p. We obtain

$$|x-1|_p \leq |\lambda|^2_p = |x-1|^2_p p^{2/(p-1)},$$

which implies $|x-1|_p \geq p^{-2/(p-1)}$. Since $p \mid (x-1)$, this is impossible as soon as $p \geq 5$.

This proves the theorem in the case $q \not\equiv 1$ mod p.

7. The case $q \equiv 1$ mod p. We have (12). Also, $u \equiv 1$ mod p and $\chi_u = 0$, which means that the first order Taylor expansions are no longer sufficient. We shall use the second order expansion. Put $a = (q-1)/q$, so that $|a|_p \leq p^{-1}$, and rewrite (12) as

$$\mu = (1 - \zeta \lambda) R_{-a}(-\zeta \lambda)(1 + \lambda)^{-1} R_a(\lambda).$$

For $p \geq 5$ we have

$$|\lambda|_p \leq p^{-(p-2)/(p-1)} \leq p^{-1/(p-3)},$$

which means that Proposition 3.1 applies to $\tau = \lambda$. We obtain

$$R_{-a}(-\zeta \lambda) = 1 + a \zeta \lambda + \frac{\zeta^2}{2} a \lambda^2 + O(a \lambda^3) + O(a^2 \lambda^2),$$

$$R_a(\lambda) = 1 + a \lambda - \frac{a}{2} \lambda^2 + O(a \lambda^3) + O(a^2 \lambda^2).$$

Substituting this into (14), we get

$$\mu = (1 - \zeta \lambda) \left(1 + a \zeta \lambda + \frac{a}{2} \zeta^2 \lambda^2\right)(1 + \lambda)^{-1} \left(1 + a \lambda - \frac{a}{2} \lambda^2\right)$$

$$+ O(a \lambda^3) + O(a^2 \lambda^2)$$

$$= \left(1 + (-\zeta + a + a\zeta) \lambda - \frac{(1 + \zeta)^2}{2} a \lambda^2\right)(1 + \lambda)^{-1}$$

$$+ O(a \lambda^3) + O(a^2 \lambda^2).$$
It follows that
\[
\phi = (1 + \lambda)(\mu + \zeta)^q \\
= \left(1 + (-\zeta + a + a\zeta)\lambda - \frac{(1 + \zeta)^2}{2} a\lambda^2 + \zeta(1 + \lambda)\right)^q (1 + \lambda)^{1-q} \\
+ O(a\lambda^3) + O(a^2\lambda^2) \\
= (1 + \zeta)^q \left(1 + a\lambda - \frac{1 + \zeta}{2} a\lambda^2\right)^{1+a/(1-a)} (1 + \lambda)^{-a/(1-a)} \\
+ O(a\lambda^3) + O(a^2\lambda^2).
\]
Applying Proposition 3.1 with the exponents \(\pm a/(1-a)\) and taking into account the inequality \(|a|_p < 1\), we find
\[
\left(1 + a\lambda - \frac{1 + \zeta}{2} a\lambda^2\right)^{a/(1-a)} = 1 + \frac{a^2}{1-a} \lambda + O(a^2\lambda^2),
\]
\[
(1 + \lambda)^{-a/(1-a)} = 1 - \frac{a}{1-a} \lambda + \frac{a}{2(1-a)} \lambda^2 + O(a\lambda^3)
\]
\[
= 1 - \frac{a}{1-a} \lambda + \frac{a}{2} \lambda^2 + O(a\lambda^3) + O(a^2\lambda^2).
\]
Taking everything together, we obtain
\[
\frac{\phi}{(1 + \zeta)^q} = \left(1 + a\lambda - \frac{1 + \zeta}{2} a\lambda^2\right) \left(1 + \frac{a^2}{1-a} \lambda\right) \left(1 - \frac{a}{1-a} \lambda + \frac{a}{2} \lambda^2\right) \\
+ O(a\lambda^3) + O(a^2\lambda^2) \\
= 1 - \frac{\zeta}{2} a\lambda^2 + O(a\lambda^3) + O(a^2\lambda^2) \\
= 1 - \frac{\zeta}{2(1-\zeta)^2} a(x-1)^2 + O(a\lambda^3) + O(a^2\lambda^2).
\]
Now we complete the proof in the same fashion as in Section 6. Taking the norm, we find
\[
\pm 1 = 1 - \frac{1}{2} \text{Tr}\left(\frac{\zeta}{(1-\zeta)^2}\right) a(x-1)^2 + O(a\lambda^3) + O(a^2\lambda^2).
\]
The \(-1\) on the left is again impossible, and if we have \(1\), then, in view of Proposition 2.3, we must have the inequality
\[
|x - 1|_p^2 \leq \max\{||\lambda|_p^3, |a|_p|\lambda|_p^2\} \\
= \max\{||x - 1|_p^3 p^{3/(p-1)}, |a|_p|x - 1|_p^2 p^{2/(p-1)}\},
\]
which means that either \(|x - 1|_p \geq p^{-3/(p-1)}\) or \(|a|_p \geq p^{-2/(p-1)}\). But, for \(p \geq 5\), neither of the latter inequalities can hold, because \(|x - 1|_p \leq p^{-1}\) and \(|a|_p \leq p^{-1}\). The theorem is proved in the case \(q \equiv 1 \mod p\) as well.
Acknowledgments. I thank Yuri Bilu for helping me to polish the exposition, and for indicating and correcting a mistake in the previous version of the proof. I also thank Professor P. Mihăilescu for a useful discussion, and Professor A. Schinzel for a helpful suggestion.

References

Institut de Mathématiques
Université Bordeaux 1
351 cours de la Libération
33405 Talence, France
E-mail: Benjamin.Dupuy@math.u-bordeaux1.fr

Received on 21.9.2006
and in revised form on 4.1.2007 (5279)